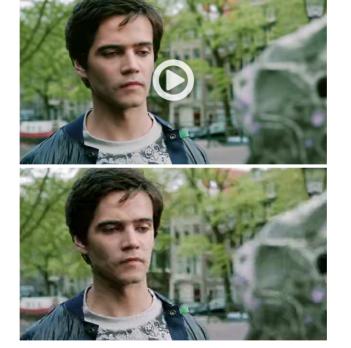


The xvc video codec

draft-samuelsson-netvc-xvc-00 Jonatan Samuelsson, Per Hermansson (Divideon) IETF 101, London, March 2018

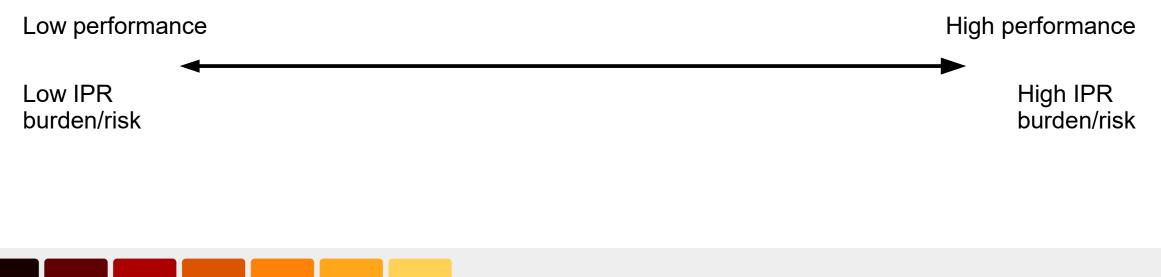

Outline

- What is xvc?
- Design philosophy
- Technology in xvc
- Restriction flags
- Version handling
- xvc in WebRTC
- Results
- xvc as candidate for NETVC

What is xvc?

- A next-generation video codec, first released in September 2017
- Higher compression performance than all other codecs
- Developed by Divideon
- Source code publicly available
- Commercial license that covers both software and patents
- Definition of a royalty-free baseline profile under investigation
- Well defined framework for handling evolution of the codec
- Efficient decoder implementation: <u>demo page</u>

The h.264 codec at 120 kbps


The xvc codec at 120 kbps

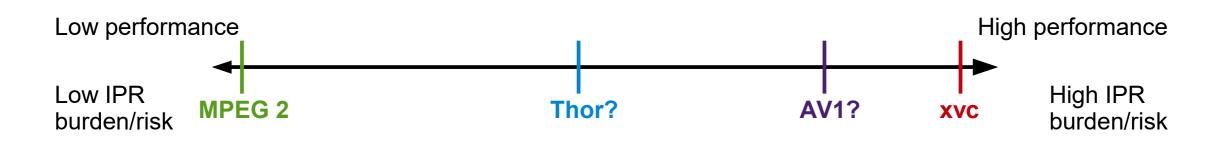
XVC.IO

Design philosophy

- The xvc codec has been designed to use the best available technology
- Technology is avoided and/or replaced only if it has been determined that the technology cannot be used under the xvc license

Design philosophy

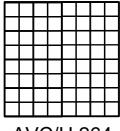
- The xvc codec has been designed to use the best available technology
- Technology is avoided and/or replaced only if it has been determined that the technology cannot be used under the xvc license

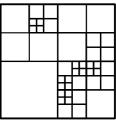


XVC.IO

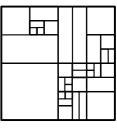
Design philosophy

- The xvc codec has been designed to use the best available technology
- Technology is avoided and/or replaced only if it has been determined that the technology cannot be used under the xvc license




XVC.IO

Technology in xvc


- Version 1.0 of xvc (Sept. 2017) included 62 coding tools
- Version 2.0 of xvc to be released during 2018
- Currently 14 new tools targeting version 2.0, involving:
 - More intra directions and intra predictors
 - Cross component prediction
 - Adaptive full-pel motion vectors
 - Affine motion prediction
 - High precision motion vectors
 - Local illumination compensation
 - RDO based transform selection
 - Advanced coefficient coding

HEVC/H.265

Restriction flags

- Each coding tool can be turned off by control information in the bitstream
- The restriction flags are examined during run time (for each segment of the coded video)
- The decoder uses a fallback solution when a tool is disabled
- There are currently
 76 restriction flags in xvc
- Average bitrate cost for disabling a tool is below 1%

void IntraPrediction::Predict(IntraMode intra mode, const CodingUnit &cu, 77 78 YuvComponent comp, const RefState &ref state, const YuvPicture &rec_pic, 79 SampleBuffer *output buffer) { 80 const int width = cu.GetWidth(comp); 81 const int height = cu.GetHeight(comp); 82 Sample *out ptr = output buffer->GetDataPtr(); 83 const ptrdiff_t out_stride = output_buffer->GetStride(); 84 const Sample *ref samples = &ref state.ref samples[0]; 85 if (Restrictions::Get().disable intra planar && 86 intra mode == IntraMode::kPlanar) { 87 intra mode = IntraMode::kDc; 88 89 if (util::IsLuma(comp)) { ... } 90 95 const bool post filter = util::IsLuma(comp) && width <= 16 && height <= 16;</pre> 96 switch (intra mode) { case IntraMode::kPlanar: 97 PlanarPred(width, height, ref samples, kRefSampleStride , 98 out_ptr, out_stride); 99 100 break;

- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)

Two aspects to take into account:

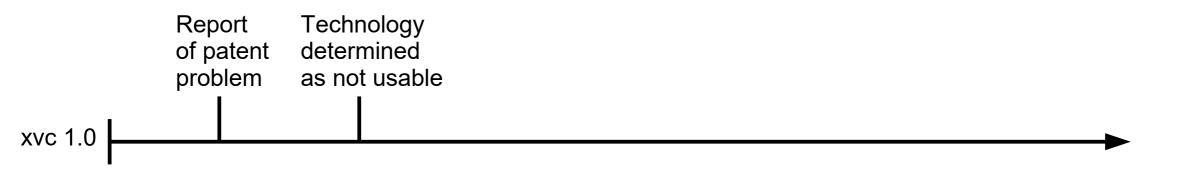
Bitstream upgrade

- typically centralized and only once per bitstream
- can be much more lightweight than re-encoding
- can give better performance due to improvements of the codec

Client upgrade

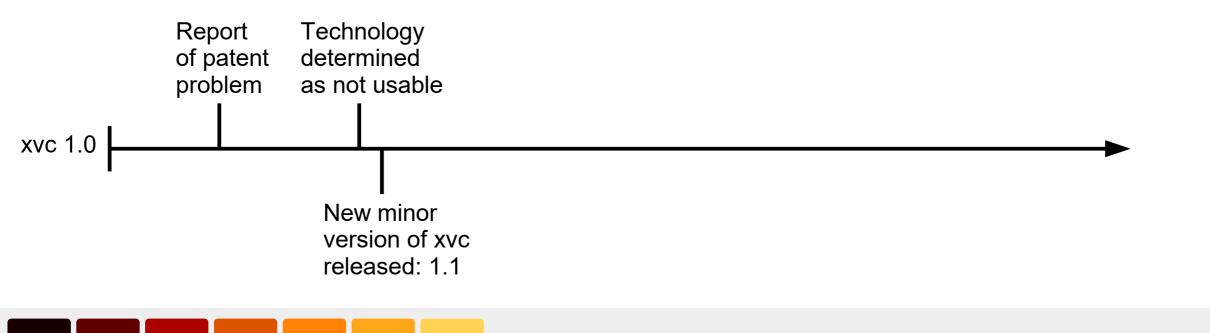
- new xvc decoder pushed out for new major version
- two versions of xvc decoders supported during upgrade period

XVL-

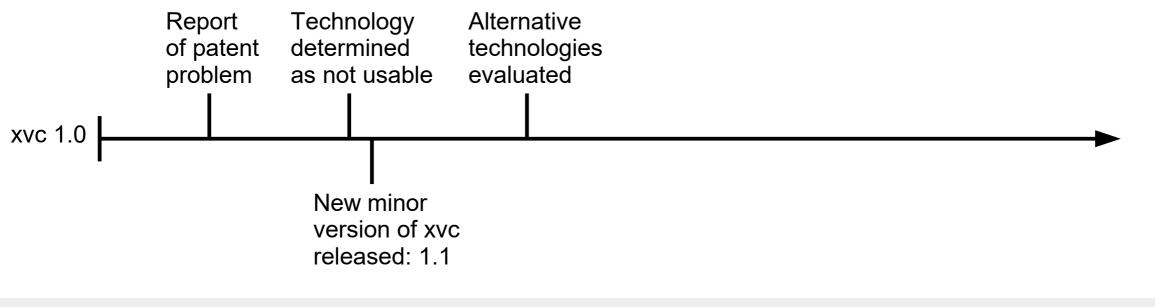

- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)

XVL-

- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)

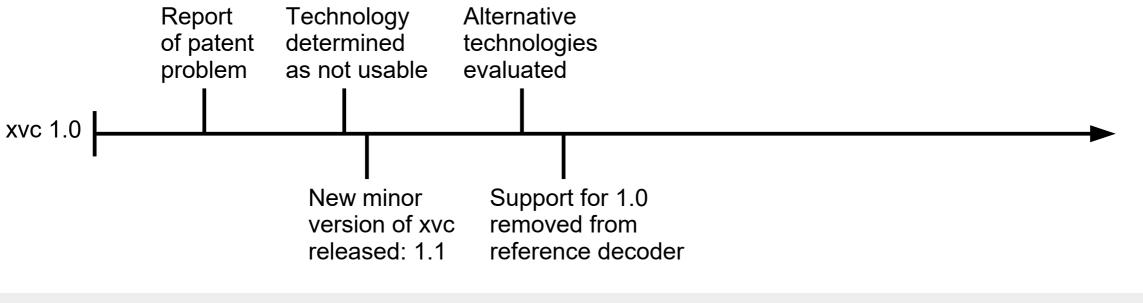

XVL.

- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools

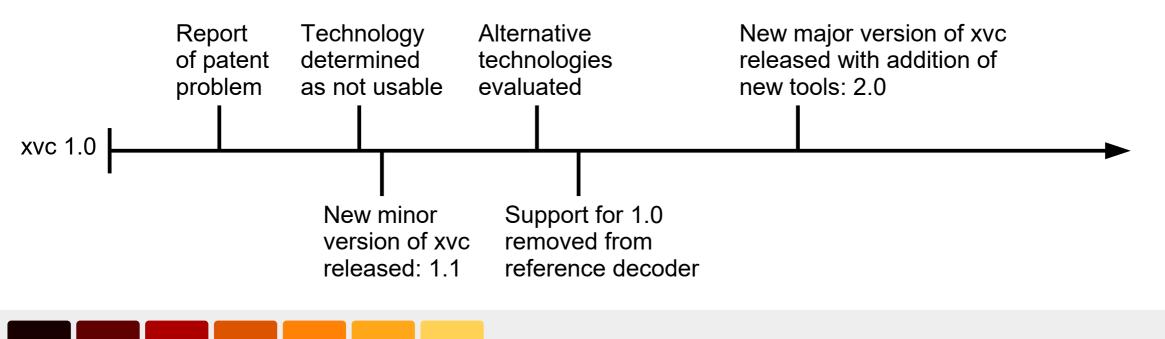

12/23

XVL-

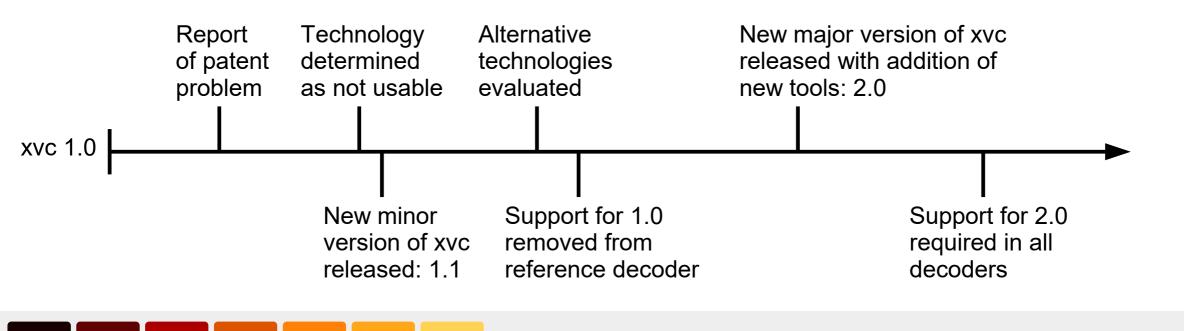
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)

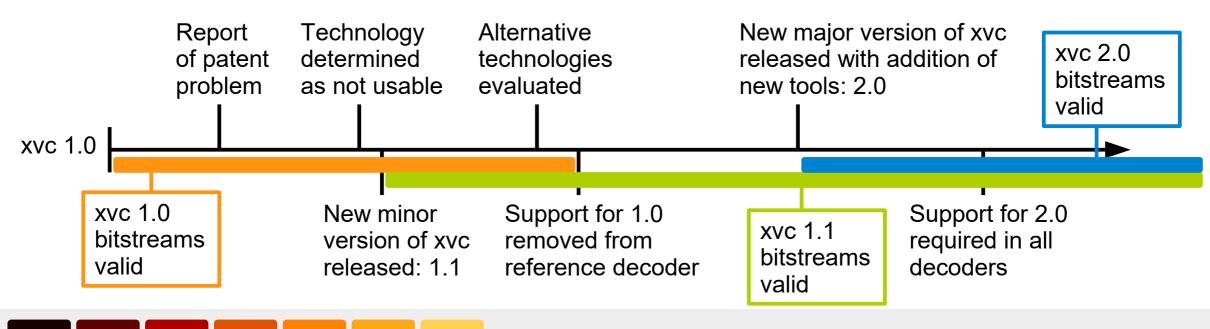


- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)



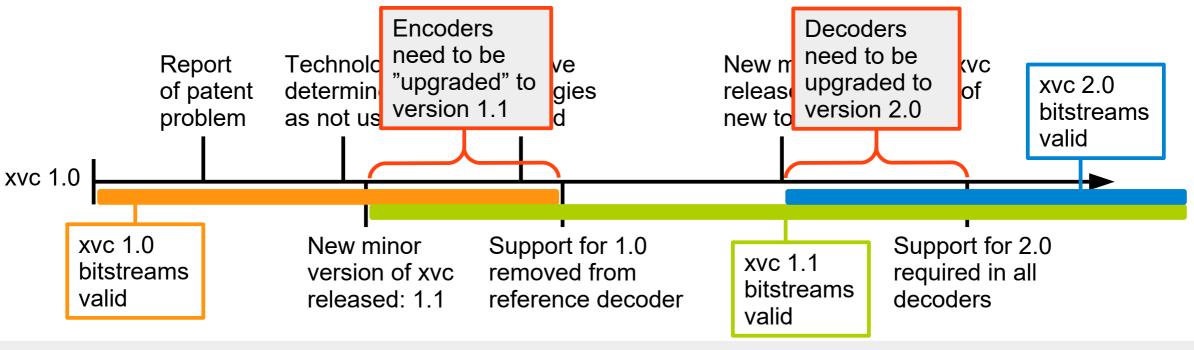
- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)


- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)

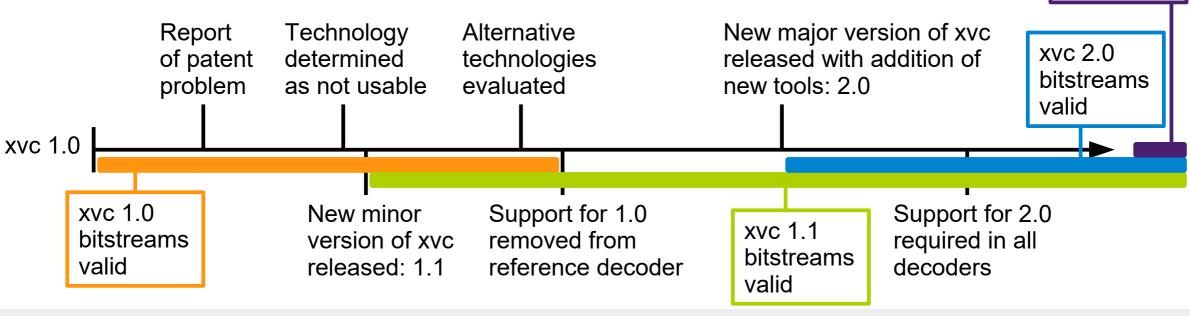

- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools

16 / 23

- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)



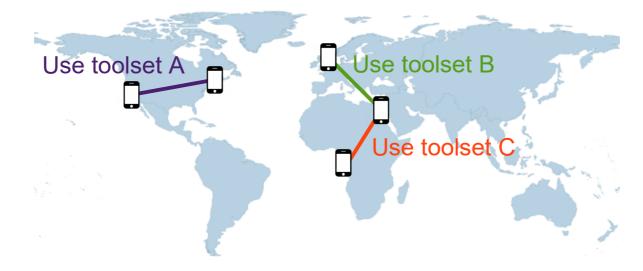
- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)



17 / 23

- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc license)

- All xvc bitstreams indicate major xvc version and minor xvc version
- Major version corresponds to non-backward compatible changes i.e. addition of new tools
- Minor version corresponds to backward compatible changes i.e. removal of tools
- The reference decoder defines which xvc versions are valid (i.e. safe to use with xvc li bitstreams

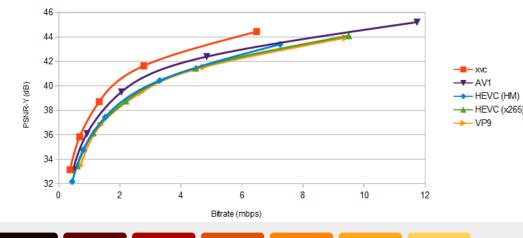


xvc.io

valid

xvc in WebRTC

- The xvc codec can be used in low delay configuration, without picture reordering
- In realtime communication applications it is possible to use the restriction flags to negotiate on different sets of tools for each session
- Negotiation may be related to resources, complexity, parallellism etc. but it would also be possible to take IPR status into account in order to make the session royalty-free
- It would even be possible to adjust the set of tools based on the location of the participants



XVC.IO

Results

- The xvc codec has been tested using the test conditions from draft-ietf-netvc-testing-06
- The AreWeCompressedYet? framework has been used
- All results available at <u>awcy.divideon.com</u>

Netflix_RollerCoaster_1280x720_60fps_8bit_420_60f.y4m

Single pass Random-Access xvc relative to HM:

	PSNR	PSNR Cb	PSNR Cr	+ PSNR HVS +	SSIM	MS SSIM
	-16.8				-17.9	
1080psc	-13.7	-44.5	-40.4	-15.4	-16.7	-17.0
720p	-20.8	-30.0	-32.6	-20.1	-23.8	-22.7
360p	-26.1	-24.7	-28.8	-26.4	-30.2	-29.6
Average	-19.5	-30.7	-31.3	-19.1	-22.0	-21.2

Single pass Random-Access xvc relative to AV1:

+	+		+	+	+	+	++
	1	PSNR	PSNR Cb	PSNR Cr	PSNR HVS	SSIM	MS SSIM
+	+		+	+	+	+	++
	720p	-13.3	-0.8	-4.4	-16.4	-20.2	-20.5
	360p	-19.7	-9.6	-3.4	-22.5	-23.0	-26.1
Ì	Average	-16.5	-5.2	-3.9	-19.4	-21.6	-23.3
+	+		+	+	+	+	++

Multi-pass Random-Access xvc relative to AV1:

	I	PSNR	I	PSNR Cb	I	PSNR Cr	I	PSNR HVS	I	SSIM	Ì	MS SSIM
1080p	-		-	-4.5	-	-3.2	-	-5.6	-		-	-9.7
1080psc	T	8.3	Ι	18.5	L	15.8	Ι	5.9	L	6.2	I	3.9
720p	Ι	-0.5	Ι	0.4	L	4.8	Ι	-1.4	L	-6.0	I	-5.5
360p	Ι	-15.9	Ι	-6.2	L	11.2	Ι	-19.9	L	-19.0	I	-21.2
Average	T	-5.1		-0.7	L	4.6	Τ	-6.4	L	-9.4	L	-9.6

xvc as candidate for NETVC

- The xvc codec is brought as a candidate proposal for NETVC
- We believe that xvc is well positioned to meet the objectives:
 - 1. Is competitive (in the sense of having comparable or better performance) with current video codecs in widespread use.
 - 2. Is optimized for use in interactive web applications.
 - 3. Is viewed as having IPR licensing terms that allow it to be widely implemented and deployed.

23 / 23

Thank you!

