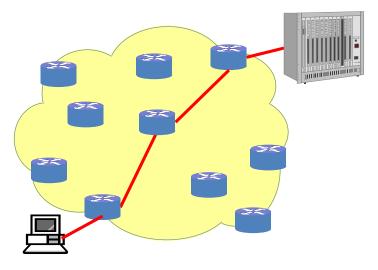
QoS is meaningless for **Rich Communications Services NFVRG IETF-101**

Yaakov (J) Stein RAD

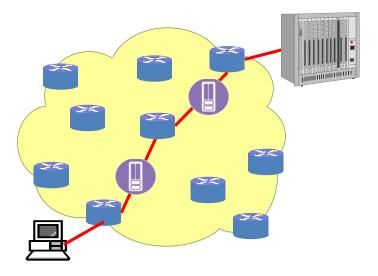

Communications services

A major paradigm major shift has occurred in networking spurred by NFV and in particular Distributed NFV

The traditional communications service was a *pure transport service*

Transport bits:

- from site X to site Y (or between N>2 sites)
- with data rate at least R
- with latency no more than L



Rich communications services

Today, the service provided is much richer

Provide a rich service:

- from site X to site Y (or between N>2 sites)
- with application information rate at least R
- with experienced latency no more than L
- while performing (virtual) network functions A, B, C and D

QoS KPIs are proxies

Customers have grown accustomed to receiving free or low flat-rate best effort service and are only willing to pay for services with QoE guarantees

There is a huge information base on how

- how to guarantee QoS KPIs
- to measure QoS KPIs

QoS KPIs are useful because

- they are straightforward to measure
- they perform well as *proxies* for subjective QoE

All current SLAs are based on QoS KPIs and not directly on QoE

QoE as a function of QoS

Many quantitative relationships between QoE and QoS have been found

QoE = f (application; QoSi)

- justifying the measurement of QoS KPIs instead of directly estimating QoE
- We know, for example:
- for conversational voice how PLR/delay determine MOS given voice codec
- for streaming video –

how PLR/PDV determine perceived quality given video codec

• for web browsing – how delay determines ApDex

QoS for rich services

In fact, the *only* reason to guarantee/measure a QoS KPI is its relationship to QoE but that relationship has only been established for *traditional* services

It turns out that one can **prove** that for rich communications services there is no such relationship

 $QoE \neq f$ (application; QoS_i)

Hence **QoS and conventional SLAs are meaningless** (and NFV makes the situation even worse)

How can this be proven ?

The proof is based on thought experiments (AKA gedanken experiments)

In each such thought experiment

• we pick a KPI

and

show a network function

that makes that KPI irrelevant to QoE

To demonstrate the principles involved we'll show a few of these thought experiments

Packet loss can be problematic

Experiment 1 Intrusion Protection Systems

We are used to Packet Loss leading to QoE degradation more specifically, increased PLR means decreased QoE

An IPS function **discards packets** that it deems to be malicious thus **leading to an increased PLR**

Discarding these packets are in the user's best interest thus the experienced QoE should increase

But there are much more convincing arguments!

Packet loss can be meaningless

Experiment 2 TCP proxy

A TCP proxy is placed near the middle of an end-to-end TCP session

The transmitted byte-stream is maintained

but its segmentation is not

For example, 3 packets may enter the proxy, and either 2 or 4 exit it !

Thus, PLR can be high or even negative without affecting the QoE!

We could abandon counting packets and measure *traffic volume* (the *number of bytes* received irrespective of packetization)

So, let's check if *traffic volume loss* is a good QoS KPI

Volume loss can be *meaningless*

Experiment 3 WAN optimization – compression

- Compression here can mean
- lossless data compression
- data deduplication
- audio or video compression, transcoding or transrating

All of these mechanisms

decrease the traffic volume without affecting QoE

So, traffic volume is not a relevant factor in determining QoE

The remedy is to completely abandon measuring byte volume and to measure *Shannon information* !

Information loss can be *meaningless*

Experiment 4 WAN optimization – caching server (CDN)

- A caching server stores information that may be consumed multiple times
- When a flow contains cached information zero information will transferred up to the cache but the QoE remains unaffected

So, even measured Shannon information loss can not be used as an end-to-end QoS parameter!

Note: Synthetic OAM packets aren't a fix

Network engineers will immediately object to our line of reasoning

- Certainly PLR is well-defined and the fault lies totally with our measurement methodology!
- The proper way to measure PLR in such cases is to introduce synthetic OAM packets designed to bypass the computational functionality and thus measure true end-to-end transport PLR!
- That argument is completely true, and completely irrelevant !

We aren't interested in measuring QoS parameters as an academic exercise The purpose of measuring them is to predict QoE on user traffic

- Traffic that does not traverse all the elements of user packets
- i.e., that is not *fate sharing* with true user traffic can not be expected to assist in the prediction of the QoE of such user traffic!

Delay may be meaningless

The 2nd most useful QoS parameter is end-to-end propagation delay

- Of course, many of our previous examples already cast doubt on the meaningfulness of delay
- If packets are combined and re-segmented as in a TCP proxy then we need to measure delay of individual bytes
- If packet contents changes as in experiment 3 (compression) then **byte delay becomes meaningless**
- If packets are not even sent as in a caching server then **propagation delay is undefined**

But, there is an even stronger argument !

Delay can be unrelated to QoE

Experiment 5 Web browsing

Studies show that users

are usually satisfied if web pages stabilize in less than 2 seconds

are usually frustrated

if web pages don't stabilize within 8 seconds

The browser is a software function that is part of the service and runs software (e.g., javascript) downloaded as data

This software may added an unbounded amount run-time before finally stabilizing the representation of the web page

Thus, delay from request to page stabilization is not uniquely determined by network delay!

Link failure can improve QoE!

Experiment 6 Rerouting or protection switching

A rich communications service

• initially traverses links 1, 2, 4, 6 and utilizes server 1

link 1 🔤

Due to a link 2 failure, the service is rerouted

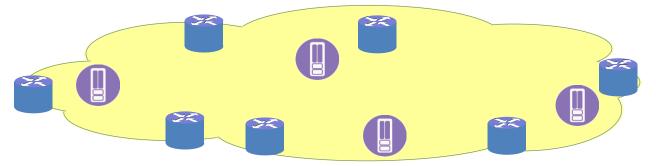
• now traverses links 1, 3, 5, 6 and utilizes server 2

Server 2 happens to perform the functionality better

• due to upgraded software

• or more available CPU power and/or memory and/or storage causing the QoE to improve!

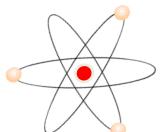
Thus, link failure may lead to QoE improvement !


How does NFV affect this result?

One may be able to *work around* these results for stationary network functionalities in known locations

But NFV facilitates

- developing new functionalities
- dynamically inserting/moving/reconfiguring functionalities so that
- we can not make assumptions on what functionalities do
- we can not make assumptions as to where functionalities are


So, with NFV we must pessimistically assume that any of the aforementioned problems may occur anywhere!

Possible solutions (WIP)

So, if QoS is meaningless, how can we estimate QoE?

- directly access QoE estimation by application end-points
- indirectly estimate QoE based on user behavior
- measure QoE of synthetic but *fate-sharing* content
- correlate QoS KPIs with
 - -NFVI KPIs (e.g., computation load, memory usage) and -VNF KPIs (as collected by VNFM)
- use machine learning techniques to predict QoE based directly on packet flows and NFV information without extracting traditional QoS KPIs

Thanks for listening !

comments appreciated

Yaakov_S@rad.com