OAuth 2.0 Mutual TLS Client
Authentication and Certificate
Bound Access Tokens

Brian Campbell

John Bradley
Nat Sakimura
Torsten Lodderstedt

IETF 101
London
March 2018

draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-ietf-oauth-mtls-07




Context: IWESW/O;@j
What is it?

e Mutual TLS client authentication to the AS

Two methods:
PKI based
Self-signed certificate based mode

e Mutual TLS sender constrained access tokens
for protected resources access

Certificate bound access tokens




Context: M asd
Why?

Mutual TLS client authentication, which provides better security
characteristics than shared secrets, is something that's been
done in practice for OAuth but we've never had a spec for it

Mutual TLS sender constrained resources access binds access
tokens to the client certificate so they can’t be (re)played or
used by any other entity without proof-of-possession

Banks “need” these for API use cases being driven by new
open banking regulations

Referenced by the OpenlD Foundation’s Financial API (FAPI)
WG’s “Read and Write API Security Profile” as a suitable
holder of key mechanism

Referenced by the UK Open Banking API Security Profile




Context: g
How Mutual TLS Client 1 ETF
Authentication Works

e MTLS client authentication to the authorization server

TLS connection from client to token endpoint is established
with mutual X509 certificate authentication

Client includes the "client_id" HTTP request parameter in all
requests to the token endpoint

AS verifies that the MTLS certificate is the ‘right’ one for the
client (based on configuration and method)
Metadata supporting the PKI method

Authentication Method Name: "tls_client_auth”
Client Metadata: "tIs_client_auth_subject_dn” specifies the expected subject
distinguished name of the client certificate

Metadata supporting the Self-signed Certificate method
Authentication Method Name: "self _signed tls client_auth”

The existing "jwks_uri" or "jwks" RFC7591 metadata parameters used to convey
a client's certificate(s)

4



}

"iss":
"sub":
"exp":
"nbf":
"cnf":

}

Context:
How Mutual TLS Sender : f/,/ .
Constrained Access Works

AS associates a hash of the certificate with the access token
e certificate bound access token
TLS connection from client to resource is mutually authenticated TLS

e The protected resource matches certificate from TLS connection to the
certificate hash in the access token

JWT Confirmation Method
o X.509 Certificate SHA-256 Thumbprint Confirmation Method: x5t#5256

Confirmation Method for Token Introspection

e Same data as JWT x5t#S256 confirmation returned in the introspection response and
checked by the protected resource

Doesn’t vary based on client authentication method

HTTP/1.1 200 OK
"https://server.example.com", Content-Type: application/json .
"ty.webbfexample.com", Token Introspectlon
1493726400, , : {
1493722800, JWT Confirmation “active": true,

{ "iss": "https://server.example.com",

"x5t#5256": "bwcKOesc3ACC3DB2Y5_ lESsXEB091tc05089jdN-dg2” "sub": "ty.webbfexample.com",

"exp": 1493726400,
"nbf": 1493722800,
"enf":{
"x5t#5256": "bwcKO0esc3ACC3DB2Y5 1ESsXEBo91tc05089jdN-dg2”
}
}



Changes
since
Singapore

Drafts -06 & -07
Use RFC 8174 boilerplate
Reference update to AS Metadata

Move the Security Considerations section to before the IANA
Considerations

Elaborated on certificate bound access tokens a bit more in the
Abstract

Changed the title to be more descriptive

A bit more text on certificate spoofing and CAs in the Security
Considerations

Add an explicit note that the implicit flow is not supported for
obtaining certificate bound access tokens

Add appendix describing the relationship of OAuth MTLS to OAuth
Token Binding

from IETF 100




1




