Enhanced Feasible-Path Unicast Reverse Path Filtering

draft-sriram-opsec-urpf-improvements-03

K. Sriram (NIST), D. Montgomery (NIST), and J. Haas (Juniper)

OPSEC WG Meeting, IETF 101, London
March 2018

Acknowledgements: The authors are grateful to many folks who offered feedback and suggestions in the OPSEC WG meeting at IETF-99 and earlier on the GROW mailing list.
Difficulties with Adoption of uRPF Solutions

- Strict uRPF is usable in very limited scenarios
- Loose uRPF is not very effective for denying traffic with IPv4 address spoofing (except bogons, etc.)
- Feasible path uRPF is a refinement but ISPs apprehensive that they might deny traffic with legitimate customer source IP addresses
 - When faced with multi-homing and asymmetric routing
- Is there a way to make feasible-path more generalized and accurate?
- Goal: Encourage wider deployment of uRPF
Reverse Path Filter (RPF) List

The list of permissible prefixes for source address validation on ingress data packets on a given interface.
Enhanced Feasible Path uRPF
Algorithm A

Algorithm for customer facing ISP eBGP router:

1. Set $A = \{AS1, AS2, \ldots, ASn\}$ is the list of all unique origin ASes in Adj-RIB-Ins on customer interfaces

2. Set X_1 is the list of unique prefixes in *all* Adj-RIB-Ins routes that have a common origin AS1.

3. Include X_1 in RPF list on all customer interfaces on which one or more of the prefixes in set X_1 were received

4. Repeat Steps 2 and 3 for all ASes in set A

(Apply Loose uRPF on lateral peer and transit-provider interfaces.)
Basic Scenario A

Consider data packets received on customer interfaces at AS2 with source address in P1 or P2:

- **X** Strict uRPF fails
- **X** Feasible-path uRPF fails (since routes for P1, P2 are selectively announced to different upstream ISPs)
- ✔ Loose uRPF works (but not desirable)
- ✔ Enhanced Feasible-path uRPF works best
Consider data packets received on customer interfaces at AS2 with source address in P1 or P2:

- Feasible-path uRPF works
- Loose uRPF works (but not desirable)
- Enhanced Feasible-path uRPF works best
Consider that data packets (sourced from AS1) may be received on customer interfaces at AS4 with source address in P1, P2 or P3:

- X Feasible-Path uRPF fails
- ✓ Loose uRPF works (but not desirable)
- ✓ Enhanced Feasible-Path uRPF works best
Scenario 2: Example of a Challenging Scenario (from OPSEC & GROW WG discussions)
Adding More Flexibility to Enhanced Feasible Path uRPF Algorithm B (meets with the challenge)

- Let $I = \{I_1, I_2, ..., I_n\}$ represent the set of all directly-connected customer interfaces at customer-facing edge routers in a transit provider's AS.
- Let $P = \{P_1, P_2, ..., P_m\}$ represent the set of all unique prefixes for which routes were received over the interfaces in Set I.
- Let $A = \{AS_1, AS_2, ..., AS_k\}$ represent the set of all unique origin ASes seen in the routes that were received over the interfaces in Set I.
- Let $Q = \{Q_1, Q_2, ..., Q_j\}$ represent the set of all unique prefixes for which routes were received over peer or provider interfaces such that each of the routes has its origin AS belonging in Set A.
- Then, $Z = \text{Union}\{P, Q\}$ is the RPF list for each of the interfaces in Set I.

(Apply Loose uRPF on lateral peer and transit-provider interfaces.)
Scenario 3: Example of a Challenging / Complex Scenario (Algorithm B works)

P1 and P2 NOT PROPAGATED

P1 [AS1] NO_EXPORT
P2 [AS1] NO_EXPORT
Customer Cone Size (# Prefixes) = RPF List Size (worst case; Algorithm B)

<table>
<thead>
<tr>
<th>Type of ISP</th>
<th>Measured Customer Cone Size in # Prefixes (in turn this is an estimate for RPF list size on line card)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Large Global ISP</td>
<td>32392</td>
</tr>
<tr>
<td>Very Large Global ISP</td>
<td>29528</td>
</tr>
<tr>
<td>Large Global ISP</td>
<td>20038</td>
</tr>
<tr>
<td>Mid-size Global ISP</td>
<td>8661</td>
</tr>
<tr>
<td>Regional ISP (in Asia)</td>
<td>1101</td>
</tr>
</tbody>
</table>

References:
Available FIB Sizes in Router Line Cards

<table>
<thead>
<tr>
<th>Type of ISP</th>
<th>Guesstimated Line Card FIB Memory Size (#prefixes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Large Global ISP</td>
<td>2M to 6M</td>
</tr>
<tr>
<td>Large Global ISP</td>
<td>1M</td>
</tr>
<tr>
<td>Mid-size Global ISP</td>
<td>0.5M</td>
</tr>
<tr>
<td>Regional ISP (in Asia)</td>
<td>100K</td>
</tr>
</tbody>
</table>

- RPF list sizes (slide 11) seem very small compared to the corresponding Line Card FIB sizes – correct?

Summary of BCP Recommendations

Depending on the scenario, an ISP or enterprise AS operator should follow one of the following recommendations concerning uRPF/SAV:

1. For directly connected networks, i.e., subnets directly connected to the AS and not multi-homed, the AS in consideration SHOULD perform ACL-based SAV.

2. For a directly connected single-homed stub AS (customer), the AS in consideration SHOULD perform SAV based on the strict uRPF method.

3. For all other scenarios:
 * If the scenario does not involve complexity such as NO_EXPORT of routes (see Section 3.3, Figure 4), then the enhanced feasible-path uRPF method in Algorithm A (see Section 3.1.1) SHOULD be applied.
 * Else, if the scenario involves the aforementioned complexity, then the enhanced feasible-path uRPF method in Algorithm B (see Section 3.4) SHOULD be applied.