
Path Awareness and Selection in the Socket Intents prototype

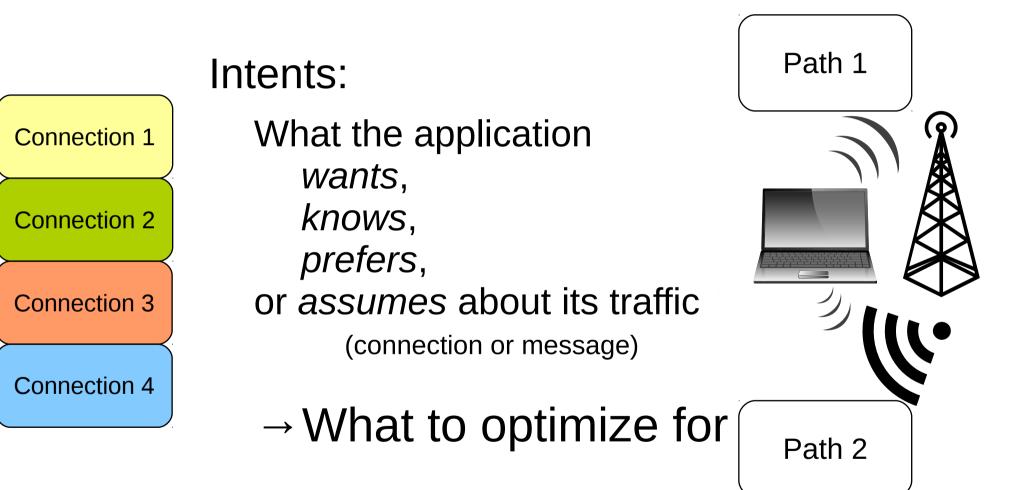
Theresa Enghardt TU Berlin theresa@inet.tu-berlin.de

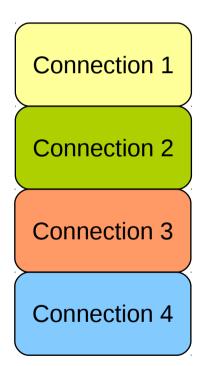
Scenario: Multiple paths

Multiple paths via different access networks

- Laptop can use WiFi or cellular
- WiFi usually default, but not always better¹ ¹ Deng et al.: "WiFi, LTE, or Both? Measuring Multi-Homed Wireless Internet Performance" (2014)
- \rightarrow Pick the better one? Use both?

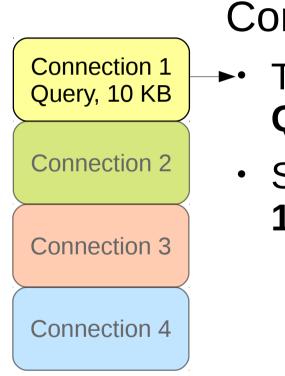
Socket API


Connection 1
Connection 2
Connection 3
Connection 4


Vanilla BSD sockets:

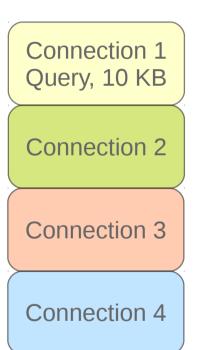
- Connections
 "look the same"
- No information about paths

→ use default path based on system policy



Intents:

- Traffic Category
- Size to be received
- Bitrate to send
- Timeliness
- Cost preferences



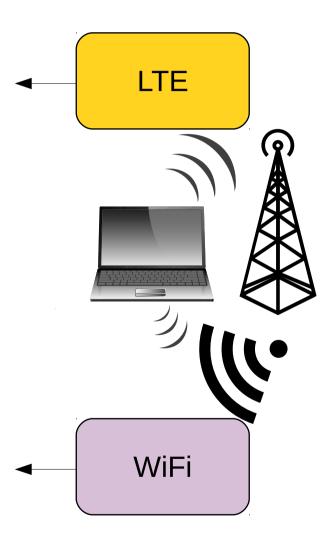
Connection 1:

- Traffic Category:
 Query
 - Size to be Received:
 10 KB

Path 1	
Path 2	

Path property estimates: -

- Median Round Trip Time (RTT)
- Maximum bitrate
- WiFi utilization



Path 1: LTE

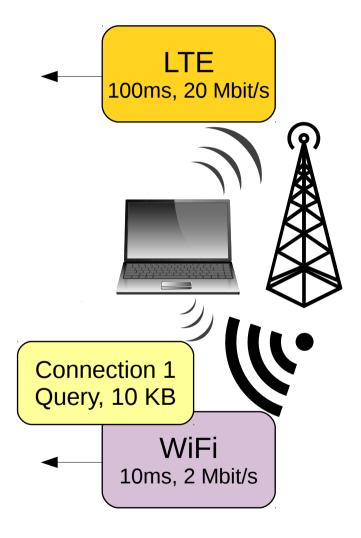
- RTT = 100 ms
- Bandwidth = 20 Mbit/s

Path 2: WiFi

- RTT = 10 ms
- Bandwidth = 2 Mbit/s

Path Selection Policy:

- "Use path with shorter completion time"
- LTE: ≈ 200 ms


Connection 2

Connection 3

Connection 4

• WiFi: ≈ 20 ms

→ Use WiFi

Connection 2:

Connection 2

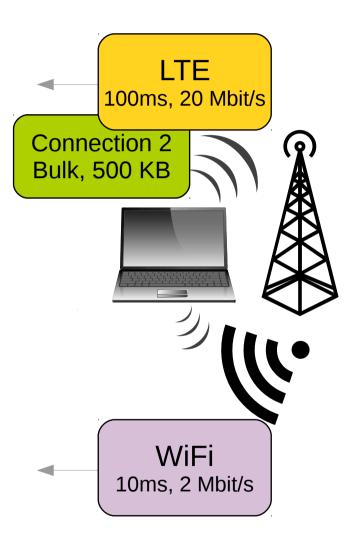
Bulk, 500 KB

Connection 3

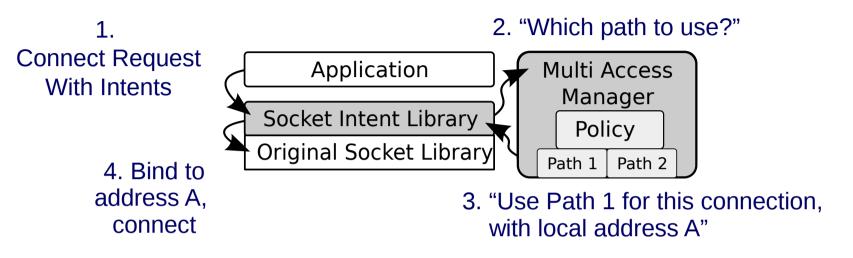
Connection 4

- Traffic Category:
 Bulk
- Size to be Received:
 500 KB

Path Selection Policy:


- "Use path with shorter completion time"
- LTE: ≈ 225 ms
- WiFi: ≈ 450 ms

→ Use LTE


Connection 3

Connection 4

... or both (MPTCP)

Socket Intents Prototype

- Socket Intents Library: Augmented Socket API
- Multi Access Manager:
 - Standalone daemon with policy modules
 - Gathers current performance estimates
 - Chooses path and local address

See our draft-tiesel-taps-socketintents-bsdsockets and code https://github.com/fg-inet/socket-intents

Paths

Multi Access Manager:

- Detects locally configured interfaces with their prefixes and addresses
- Gathers statistics on them passively, based on current and past traffic

	Path 1		Path 2		
Local prefix	a:a:a:a::a/64	1.2.3.4/24	b:b:b:b::b/64	5.6.7.8/24	
Minimum RTT	95 ms	105 ms	8 ms	10.5 ms	
Maximum Bitrate	18.9 Mbit/s		1.8 Mbit/s		
Utilization	N/A		2%		

Path Bitrate

- Bitrate per interface
 - Read interface counter every *n* ms¹

- bitrate_{current} = $\frac{counter_{current} - counter_{prev}}{n}$

- bitrate_max: Maximum within the last *m minutes*²
 - \rightarrow estimate of bandwidth of the path
- Assumes the bottleneck on each path is within the first few hops

¹ 100 ms works for us
² 5 minutes works for us

Path RTT

- RTT per prefix
 - Linux kernel keeps list of current TCP connections
 - Each TCP connection has a current Smoothed RTT (SRTT)
 - Query SRTTs of all connections over prefix every n ms
 - Compute current mean, median or SRTTs
 - If no current values, retain values for up to *m minutes*
 - Compute minimum of the last *m minutes*
- We expect the first hop or first few hops to dominate latency

Radio properties on path

- For WiFi:
 - Current Received Signal Strength
 - Last observed modulation bitrates
 - Utilization: QBSS Information Element from Beacon frames
- Other wireless technologies possible, but hard

Current and Future Work

- Show page load time reduction for web browsing
- More path selection policies
- More path properties
 - RTT variation
 - Packet loss
 - Information from the network

Summary

- Socket Intents:
 - Application provides hints on Connection (or Message...)
 - We know what to optimize for
- Path properties:
 - Socket Intents prototype gathers them locally
 - Observed median SRTT, maximum bitrate, WiFi Utilization
- Path selection:
 - E.g. use Path with shortest expected completion time
 - Other optimization possible, e.g. for cost

