I ETF

BIER-TE TEAS framework

IETF10T

draft-eckert-teas-bier-te-framework-00

Toerless Eckert, Huawei (tte @cs.fau.de)

mailto:lin.han@Huawei.com

Background
Multicast, BIER, BIER-TE

Il ETF

Traditional IP multicast problems

R(cvr)1

PE1

P3 P4 R(cvr)2
2 (51,G1)
S(ource)1 (S1,G2)

@:4 R(cvr)3
E3 (51,G1)
S(ource)2 P (51,G2)
PE12 pE4 |(51,G2)
S(ource)3 m (52,G2)
PE13 g(sz,Gz)

Traditional IP multicast problems

S(ource)1

PE11

! T
S(ou rce)

}
PE1

\
S(ource)3 ,

PE 13

* Tree state on P nodes

(S,G) - per source S, per receiver group G
3 sender, 5 receiver: up to 2°3*25 trees

Real networks (src,group large) -> impossible
Aggregation == wasted traffic
Forwarding, control plane state, signaling

Performance operations problem long before limits

* PIM, mLDP

No non-shortest path tree support native (use MT-IGP)
No cost reduced tree (eg: (52,G2) - better both via P2)
“randomized” ECMP control

mLDP somewhat better than PIM (later design)

* RSVP-TE P2MP

* Most expensive state (control, signaling)

(51,G1)

(52,G2)

(52,G2)

* But allows to path engineer trees arbitrarily
* No support for (*,G) trees (as in PIM, mLDP)

E T F

BIER - (B)IT (I)ndexed (E)xplicit i
(R)eplication

SSSSSSS

BIER — (B)IT (I)ndexed (E)xplicit s
~{R)eplication

BIER headgr abstra{:ted

[Sender || Actual name: BFIR-id * STATELESS: No tree state on P nodes
Bitstring-Set Actual name: BIFT-id e Not : ling/ trol either !
EEEEEIE The BitString O tree signaling/control either .

O da yan * BIER ‘for SR dummies experts’
* ‘BIER packet header indicates a SET OF egres-PE node-SIDs’

BIER payload:

IP multi/unicast MPLS, <whatever>

* Up to 256 egres PE, each one encoded as 1 bit
(51,G1) in 256 bit “bitstring” in the bier packet header

* BIER-IGP extensions:
(S1,G1) SPF routes for these Stbs bits

* PE/P node forwards/replicates BIER packet:

* One copy sent to each interface that is (according to IGP)
leading to one or more bits set in packets BitString.
(52 .G 2) « (also reset on each copy bits not reachable according to SPF route via that interface)
* Many sets of 256 possible BitStrings:
* Bit set identifier in BIER header (BIFT-id)
* Source needs to send one packet for each set of up to 256 receivers

(52,G2)

Source 1 Source 2
Bitstring-Set-1D Bitstring-Set-1D Bitstring-Set-ID . . -
isting-Set- S m Nice ECMP and MT-IGP support, but
—:ﬁm ttl, qos, next proto, ttl, qos, next proto, . . °
yadayada - . yada yada . - yadayada . * But no generic path engineering

BIER-TE - BIER with traffic engineering .- - -

@ @ PE1
@ e
T~ 1,G1
S(ource) g @\/\ \E 51,G2

51,G1
51,G2

—_— N

51,G2
52,G2

7
ﬁ@
A
y/
B[

/
f
il
|

o
m
O

52,G2

S

Unused links/adjacencies greyed out for clarity

Bitstrings:

s1,61)= @ @)@ (5
5162 © D@ @
(52,G2)= (9) (11 .

BIER-TE - BIER with traffic engineering . - -

BIER BitString indicate BFER-id

* Aka: Receiver PE (or wherever BIER domain ends)

BIER-TE BitStrings indicate transit adjacencies

* Most simple: every interface in topology is a bit

(51,G1)

Forwarding rule: every node (BFR = P/PE):

* Replicate based on only on direct adjacency bits
(S1,G1) * Resets bit when using its adjacency
* Eg: P1-looks only at bits 7, 8, 9 in example & resets them

Optimizations to reduce “bit-waste”

* Bit semantics:

52.62) * P2p link bit (e.g.: bit 3 on both adjacencies of interface)
(52,G2) * Lan, stub, flood, punt, ... bits
* Any traffic engineering
Unused links/adjacencies greyed out for clarity . NG STATE -

. . . Engineer path (graph!) of every packet individually through bitstring
BItStrmgS fom sender (BFIR) in BIER(-TE) header.

s160= @@ @G

Bit waste... ?
* BIER: 1 packet ~ 256 receivers
* BIER-TE 1 packet ~ 100 receivers ?

52 G2 @ ‘ @ * See further slides 8

BIER-TE - BIER with traffic engineering (2) 1 ETE

* Routed adjacencies (save the bits):
* Tunnel adjacency (GRE/MPLS/SR label stack/...) to desired next-hop
* Replication may only be required on limited number of nodes in (larger) topologies
* Tunnel through non BIER-TE capable nodes

* DetNet (or similar)
* PREF - Packet Replication and Elimination Function (DetNet)

* Transmit packets twice with flow-ID and sequence number - across disjoint paths
* Remove duplicate copies via sequence number “deduplication” on destination

* BIER-TE header proposed to include sequence number (and ‘existing’ flow-id)

* BIER-TE can be interesting not only for multicast but also unicast
* Replication e.g.: only/primarily for PREF. not for ‘multicasting’

* PREF suggested to be part of the BIER-TE TEAS framework

* Can maybe also be defined to be independent of BIER-TE
* But some BIER-TE specific OAM aspects.

QU0+

Pathsets: Determine BIER-TE Bitstrings ="~

* Pathset: result of (controller/BFIR) calculations of paths
* PathSet-i(bfir-j) = (bfer-k | {bitstring-i-j-k})

* Configure traffic classes to use a BIER-TE Pathset:
* E.g.: BFIR-10: VPN-foobar traffic should use Pathset-7(10)

* BIER: BitString(set of BFER-k) = OR (BFER-k-id bits)
* BIER-TE: BitString(set of BFER-k) = OR (bitstring-i-j-k)

* Bitstring-i-j-k can be redundant (e.g.: for PREF)

* More complex with minimum cost (“steiner”) trees
* Adding/removing destination requires recalculation
* Still much faster/easier than recalculation plus re-signaling (RSVP-TE/P2MP)

BIER-TE TEAS framework
(proposed / incomplete)

QU0+

BIER-TE signaling architecture (proposed) « - «

Conﬁgurat—ion |<'“ BIER-TE domain-->|
« »n
BIER-TE topology [Bier-TE Controller Host] ==
When BIER-TE service added/changed {PCE controller}, [Provisioning], [Monitoring]
When network topology changes A AA
/| N\ BIER-TE control protocol
| | | Yang(netconf/restconf), PCEP, IGP? BGP-LS?
Traffic: Bitstrings/PathSets vV oV v
Precalculate on controller/PCEP BFIR-----BFR-----BFER

{per-flow QoS} {EF,OAM} Optional per-flow BFIR/BFER
functions (for per-flow TE)

Send to BFIR (and BFER for PREF/OAM)
Allow BFIR to calculate itself

Allow BFIR to dynamically request from Controller(PCEP) ... >| BIER-TE forwarding
| >| {IGP extensions for BIER-TE}
PREF, flow QOS (optional, e.g: DetNet) PR . Existing IGP (1515/OSPF)
BFIR Routing underlay /{Existing IGP TE extensions}
Insert PREF sequence number, flow-id
BFER (receiver) e > Unicast forwarding underlay - IPv4/v6/SR
Elimination function, OAM / for routed adjacencies (tunnels) used by BIER-TE

Sequence number, flow-id

BIER-TE data model
(topology)

BIER - Expressing Topology

* BIER Topology

* Flooded information by BFR about themselves
* BFER include their BFR-ID

* MPLS: All BFR include label ranges (similar to SR)
Each table identified by a label from the range.

* BIER Routing Table

* Constructed from received IGP announcements
* List of bit (indices) for BFER
* Next-hop - from path calculation

* BFER IP identifier (“BFR-Prefix”)

* Just tying BFER bitindex (BFER-id) to IP routing
Not needed by BIER forwarding

* BIER Forwarding Table

* BitIndex and Next-hop copied from BIER Routing Table
* F-Bitmask: mask of all bits to the same neighbor

* Used during forwarding when creating copy to neighbor
reset all other bits for copy to this neighbor

BFER-1 IGP
“topology” announcement

Table-id-2

| Table-id-1

Index of BFER in table

. more (e.g: IGP topo-id

Mpls label range for table

QU0+

BFER-n IGP
“topology” announcement

Table-id-2

| Table-id-1

Index of BFER in table

. more (e.g: IGP topo-id

Mpls label range for table

Flooded via IGP
Path selection - e.g.: SPF
for each received topology Announcement

Routing Table-id-2

Routing Table-id-1

Bitindex |BFER IP identifier | Next-hop

1

| w1

256

| &5

Forwarding Table-id-2

Forwarding Table-id-1

Bitindex | F-Bitmask | Next-hop
1 o111 | w1
256 11000 | RS

E T F

BIER-TE - Expressing Topology (proposal) “

E T F
1 BIER-TE Controller Host
* BIER-TE BFR-i Topology ~~ configure N\
: . . BFR-i BIER-TE topol -j BIER- |
* Local adjacencies (bits used by BFR), metadata ! opoTosy BFR-) BIER-TE topology
: ble-id- il
* Configured by controller to each BFR-I Tabed? Table-id-2
. . - Table-id-1 || Table-id-1
* BIER-TE BFR-I Forwal‘dlng Table Local adjacencies (bits) Local adjacencies (bits)
* Almost the same as BIER-TE BFR-i Topology without metadata Metadata Metadata

* Plus auto configured bits/adjacencies ! \/—/

* Minus inconsistent/inoperable bits Network BIER-TE topology
optional: Flooded via IGP

or configured by controller
* BIER-TE Network Topolo
P , &Y , to all BFR or BFIR
* Set of all BIER-TE BFR-i Topologies | -
y "
* Needed on other BFR only for consistency check or adjacency auto- Consistency Check 1
conﬁgu ration Auto-configure adjacencies BFIR:
* Needed on other BFIR for local path calculation Strip 1 . .
P Metadata Opt'lonal.
BFER-i BIER-TE calculate path(sets)
* No equivalent of BIER Routing Table Forwarding Table-id-2 Otherwise: get them
* But table of path(sets)/bitstrings required on BFIR — Forwarding Table-id-1 from controller

Local adjacencies (bits)

QU0+

BIER-TE Topology: configured / operational= = =

BIER-TE Controller Host configures
Configured BFR-i BIER-TE topology

* Distinguish “configured” and“operational”
Configured Table-id-2

* Path calculation (controller, BFIR) depends on actual _I_AH BFR-i
operational BIER-TE network topology { Configured Table-id-1 -~

, — Configured
. . . Local adjacencies (bits)
* Because configured topology does not include auto- configured Network BIER-TE topology
bits/adjacencies. But does include adjacencies that may not be Metadata

operational. 1 /
Consistency Check

* Inconsistency discovery / auto-configuration depends on
conﬁgu red consistency Auto-configure adjacencies

— Operational

* Because operational topology will not show inconsistency when Disable non-working adjacencies

remode node already disabled bits due to inconsistency discovered. (e.g:: down neighbors) Network BIER-TE topology
Operational BFR-i BIER-TE topology / j
* BIER-TE Forwarding table same as Configured Table-id-2 | Tl BR-
configured topology table | [Confisuredablesia-1 BFIR:
* Except no need for metadata in forwarding table Local adjacencies (bits) j
* Operational topology table stands in for forwarding table etadata Optional:
externally strip |, Metadata calculate path(sets)
* No need to export forwarding table BPER-TBIERTE
(device internal) ?! Forwarding Table-id2 Otherwise: get them
|| Forwarding Table-id-1 from controller

Local adjacencies (bits)

BIER-TE Topology: Adjacency types

local_decap:
VRF / context: (TBD)

forward_connected: (send to interface)
dest: 1ink (ifIndex)
[, addr (nexthop)]
DNR: boolean (Do Not Reset)

forward_routed:
destination: ... (router-id, SID
TBD: path/encap info (e.g: SR SID stack)

ECMP:
list of 2 or more adjacencies,
forward connect and/or forward routed

I ETF

BIER-TE Topology T

BFR: <bfr> (eg: BFR-prefix of BFR)
Instance: '"configured", "operational", (of this BFR itself)
"learned-configured", "learned-operational"” (from another BFR)
BIFT-ID: <SD subdomain,BSL bitstring length,SI Set Identifier>
BIFT-Name: string (optional)

BFR-1d: 16 bit (BIER-TE ID of the <bfr> in this BIFT or undefined if not BFER)
Ingres-groups: (list of) string (1..16 bytes) (group that <bfr> is a member of)

EF: <TBD> (optional, parameters for EF Function on this BIFT)
OAM: <TBD> (optional, parameter for OAM Function on this BIFT)
Bits: #BSL (List of bits - BitStringLength, e.g.: 265)

BitIndex: 1...BSL
BitType(/Tag): "unassigned", “down”, (no adjacencies - maybe compress data struct)
"unique", "p2p", "lan", "leaf", "node", "flood", "group”
(Names: (list of O or more) string (1..16 bytes) (for BitTypes that require it)
List of @ or more adjacencies:
as on previous slide (most bits have 1 adjacency, but could be 1list)

BIER-TE — (partial) auto configuration eTE

(proposal)

Ingres-group:
midpoint2

Avoid configuring bits 4, 9 each on P21,...P25
Configure P21,...P25:

* member of ingres-group: midpoint2
Configure for P31

* bit 9 type “group”, name “midpoint2”
Configure for P33

* bit 4 type “group”, name “midpoint2”

“configured” instance of topology shows
above config

* Not operational - no adjacencies for bits 4, 9!

“operations” instance of topology shows
e P21,..P25:

Bit 4 type “p2p_unidrectional”,
routed_adjacency to P33

Bit 9 type “p2p_unidirectional”,

routed_adjacency to P31
19

BIER-TE path selection

I ETF

TBD: Path selection

* Fist model to define ?

* Yang model for PathSet
* Configuration/Provisioning from controller/operator
* Map to traffic classes

* Request/Reply model via PCEC ?

* Hopefully guidance from TEAS
* Would like reuse of existing solutions, adopt to BIER-TE

BIER-TE bandwidth
management

TBD: Bandwidth/QoS management

* Bandwidth allocation / bandwidth aware path selection

* Local decision on controller
-> Requires dynamic request of Bitstrings/Pathsets by BFIR from controller
-> Preferred initial option

* Local decision on BFIR
-> Not currently considered, but possible:
-> Keep midpoint BFR free of traffic related state (BIER principle)
-> RSVP-TE/IGP bandwidth extensions inappropriate
-> BFIR could signal path resources it has allocated to other BFIR
-> Signaling could use BIER/BIER-TE - only BFIR need to be receivers

E T F

I ETF

Next steps ?!

* Discuss / determine order of next steps
* Yang/PCEP configuration model first ?

* Improve framework according to TEAS guidance

* Finalize topology model
* Discuss in LSR acceptable topology information

* PREF, OAM,...

	Slide 1
	Background Multicast, BIER, BIER-TE
	Traditional IP multicast problems
	Traditional IP multicast problems
	BIER – (B)IT (I)ndexed (E)xplicit (R)eplication
	BIER – (B)IT (I)ndexed (E)xplicit (R)eplication
	BIER-TE – BIER with traffic engineering (1)
	BIER-TE – BIER with traffic engineering (1)
	BIER-TE – BIER with traffic engineering (2)
	Pathsets: Determine BIER-TE Bitstrings
	BIER-TE TEAS framework (proposed / incomplete)
	BIER-TE signaling architecture (proposed)
	BIER-TE data model (topology)
	BIER - Expressing Topology
	BIER-TE - Expressing Topology (proposal) (1)
	BIER-TE Topology: configured / operational
	BIER-TE Topology: Adjacency types
	BIER-TE Topology
	BIER-TE – (partial) auto configuration (proposal)
	BIER-TE path selection
	TBD: Path selection
	BIER-TE bandwidth management
	TBD: Bandwidth/QoS management
	Next steps ?!

