Reliable PIM Registers
draft-anish-reliable-pim-register

Stig Venaas,
Toerkess Eckert,
Anish Peter,
Robert Kebler,
Vikram Nagarajan
IETF 101 - March-2018
Motivation
to be added to next rev of draft

• draft-acg-mboned-deprecate-interdomain-asm
 • Deprecate ASM/PIM-SM interdomain -> Interdomain MSDP too
 • MSDP intradomain for MSDP mesh group unaffected

• MSDP mesh-group compared to PIM RP mesh group (RFC4610)
 • MSDP only IPv4, RFC4610 IPv4/IPv6, but MSDP has better performance, operational features
 • Reliable transport (TCP): Works reliable especially under bursts (large #state)
 • Even without anycast-RP: Big video server (large #(S,G)) to RP: Datagram PIM Hello issues
 • Recommendation: make FHR be RP, use MSDP to overcome PIM Register issues
 • MIB, YANG model, cache (which RP sent which (S,G)), limits (#state), filter (AC) – better Mgmt

• Want to have TCP (== PORT) based RFC4610 variant
 • also improve (see example above) FHR-DR<->RP reliability/performance
 • Finally deprecate MSDP (without loosing reliability, performance, manageability)
 • Define MSDP anycast equivalent YANG model for reliable PIM register
PIM Registers – How it is today

• First-Hop-Router (FHR-DR) tunnels via PIM (unicast) “Register” message/encap sources (S,G) packets to.

• PIM registers serve two purposes
 • It helps FHR to inform that it is getting traffic for a given (source, group).
 • It helps in avoiding initial packet loss.

• Each individual S, G is “ack’ed” with Register Stop
 • Register-stops prevent FHR from sending data Registers

• Subsequent to this, NULL-Registers are used to maintain the aliveness of the source

• Many Multicast applications are tolerant to initial packet loss.

• Many intradomain Multicast applications are not ssm capable.
 • Forcing networks to run on asm mode.
Observations

• PIM Null-Register
 • Is soft-state based
 • Packet format does not allow state refresh for multiple flows in the same message
• PIM register-stop messages inherit all the problems in Null-Register messages
• In the FHR, if Register-Stop times-out, its expected to resort to Packet-Register’s (RFC defaults to 60+5s).
 • This could happen even if one RS-message gets dropped.
Reliable Registers

• Reliable-Registers would support a reliable transport between FHR and RP
• Create a “targeted” adjacency between FHR and RP
 • These routers form adjacency.
 • Sends PIM Hellos with normal Hello Options to advertise capabilities
 • Can use Anycast-RP address to find closest RP
• Use TCP/SCTP
 • Some of the same encoding as RFC 6559 (PIM PORT)
 • Reliability and Flow control
 • New messages created to notify of new active source
• FHR sends message to RP to add/remove active sources
Targeted Hellos

- As per present spec, PIM hellos are link-level
- This draft extends that to supported pim neighbors over multiple hops reached via its known unicast address
- FHR router upon learning an RP (could be anycast-RP) address would transmit targeted hellos
- RP could respond to those targeted hellos
- From these hellos RP and FHR would learn the port capability and could start with reliable-registers
- RP when responding to targeted hello would use its unique address and would add its other address (including anycast addresses) in its secondary address TLV’s.
- New TLV would be added for targeted neighbor properties/capabilities.
- Hellos will have TLV’s as specified by PORT for reliable connection setup
Connection Setup

• Based on hello FHR and RP would learn its peers PORT capabilities.
• Once adjacency is formed, RP would connect to FHR to form the reliable connection.
• PORT Keep-alive could be used to maintain aliveness of session.
Hard-State Register Messages

• Stream-Register Message send by FHR
• Similar to a NULL-register
• FHR can withdraw the register when it finds doing so is appropriate (KAT trigger)
• To withdraw, set withdraw flag in the same register message
Anycast RP

• FHR would discover nearest RP by means of sending targeted hellos to anycast address.

• Reliable full mesh connection among the anycast RP-Set.

• Redistribution of source information
 • RP’s would transmit stream-register messages received from FHR to all the other any-cast peers.
 • When a new anycast-RP connection is setup, an RP would send to the peers all the stream-registers it had learned from FHR.
Management Considerations

- Only mandatory configuration needed is an enable/disable knob for reliable register/packet registers (No need configure peers)
- Incremental deployment is possible
- Feature support needed only on RP and FHR
Security Considerations

• Can help improve the pim register attack vulnerability
• TCP sync attack vulnerability is limited due to targeted hello session
• Targeted hellos are introduced, which may in future have an authentication extension for FHR
Next steps

• Please review, discuss on mailing list
• Call for working group adoption (IETF102 ?!)

• Open work
 • Policy for register encap of actual data packet (not null register)
 • What do we want ?
 • YANG model
 • Creates ask for manageability features of registers (cache, limit, filter)

• Possible extensions
 • Source control (RP based permit/deny of (S,G) via register msg
 • Simple oversight for original PIM register message mechanism (next rev)
Thank You

Opinions
&
Clarifications
Summary: FHR <-> RP

• FHR and RPs configured to support this feature (part of port ? TBD)
• FHR learns RP as usual (configuration or discovery via BSR)
• FHR that is DR exchanges new directed (unicast) PIM Hello (datagram) with RP (FH-DR start)
• After RP sees directed PIM Hello, opens TCP Reliable Register (PORT-Register) to FHR-DR
• Two routers who are both DR and RP: determine which is TCP initiator
 • same method as in PORT (RFC6559)
• Reset situation via Directed PIM Hello with updated GenID, rebuild TCP connection
 • Reconfiguration, redundancy failover (route processor), ...
• Timeout (various error conditions) -> rebuild after directed PIM hello rediscover neighbor mutually
Summary: RP <-> RP (Anycast RP)

• Mesh-group-logic: like RFC4610
 • Full mesh of configured RP-neighbors
 • Remember per (S,G) whether received from mesh-group tunnel peer or FHR-DR tunnel peer
 • Forward only FHR-DR learned (S,G) to mesh-group-peer
 • For diagnostics (not protocol) good to remember exact neighbor (S,G) was learned from)

• Anycast FHR-DR to RP relies on anycast to unicast resolution via directed PIM Hello
 • Learned/configured peer address can be anycast (from PR).
 • Directed PIM Hello signals “primary address” PIM option so other side can learn unicast IP address for TCP connection

• Backward compatibility – MSDP peers, legacy PIM Register peers
 • Defined. Not sure if MSDP should still be mentioned, legacy PIM peer support more important for migration. Easier to change RP set to be capable of new mechanisms than all FHR-DR at once)

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type = H1 (for alloc)     |           Length = 4          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|F|R|                        Reserved                   |  Exp  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```
Protocol: Port Register Message TLV (IPv4/IPv6)