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Agenda
● The current architecture (brief)
● A brief survey of stream 0 problems
● Root cause analysis
● “Crypto Stream”
● Layering



Current Layering Architecture

QUIC Packets

Streams

TLS Handshake Application

Keys/
State



“Stream 0” Problems (Data)
● Partly encrypted, partly not

○ Retransmission
○ Boundary between SFIN and NST

● Very tight coupling with the TLS stack
○ Boundaries between flights
○ Is this an SH or an HRR (or a stateful versus stateless HRR go)

● Exempt from flow control during the handshake but not later 
○ You can go negative

● Mismatch between QUIC and TLS 1.3 notions of 0-RTT boundaries
● Can’t bundle unencrypted and encrypted in one packet
● QUIC sure knows a lot about crypto

○ + Double encryption



“Stream 0” Problems (ACKs)
● Complicated ACK rules

○ Just a pain to reason about and implement
● Holes from unencrypted packets being ACKed in enc packets
● Contradictions between ACKs and handshake state

○ SFIN means CFIN received but might not contain ACKs
● Reliability for the CFIN



“Stream 0” Problems (code)
● Constantly special cased in people’s code

uint32_t
StreamPair::ResetInbound()
{
  // this is used in a very peculiar circumstance          
after HRR on stream 0 only
  assert(mStreamID == 0);
  return mIn->ResetInbound();
}



What’s the source of the problem?
● We’re to set up a reliable transport
● The reliable transport depends on keys which come from TLS
● But TLS requires a reliable transport to work



Breaking the dependency cycle
● Step 1: Separate the transport used by the crypto from the transport 

used by the application
● Step 2: ???
● Step 3: Profit



Crypto Streams and Crypto ACKs
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Crypto Streams Implications
● Probably the minimal change that does anything
● Solves some of the problems

○ Flow control
○ Clarity about what’s encrypted and what’s not (at cost of widening the TLS interface 

further)
○ Holes from unencrypted packets
○ ACK rules

● Need some solutions for the other problems
○ HANDSHAKE_DONE for CFIN?
○ Or live with them….



Crypto Streams and Crypto ACKs
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Layer over DTLS
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DTLS Implications 
● Bigger change to QUIC

○ Exempts crypto from flow control entirely (reverts previous decision)
○ Mostly deletions!

● Some small changes to DTLS 1.3
○ Mostly stealing QUIC packet formats and connection ID structure (which came from 

DTLS actually)
● Solves effectively all these problems



DTLS Impact (I) 
● Bigger change to QUIC

○ But mostly deletions!
● Small changes to DTLS 1.3

○ Primarily importing features from SIP (more later)
○ Conveniently the I-D is still open

● Solves effectively all these problems
● Implementation experience shows a significant net simplification in the 

QUIC code



DTLS Impact (II)
● DTLS becomes the QUIC wire image

○ We have flexibility because the I-D isn’t done
○ Ultimately could mostly graft QUIC packet formats onto DTLS 1.3

● Small amount of packet expansion (maybe?)
● ACKs require QUIC having

○ access to DTLS packet #s
○ Epochs require changing ACKs a bit

■ Something like this is also required by crypto streams
● DTLS 1.3 spec and implementations less mature than TLS 1.3



Discussion
What is the right architecture for QUIC?

How do we evaluate the alternatives? 
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An Alternative for the Schedule Sensitive
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Alternative
● (Somewhat) bigger change to QUIC

○ But mostly deletions!
● Solves effectively all these problems
● Challenges

○ Need to write a document describing how to carry DTLS data over QUIC records
■ Straightforward mapping to DTLS records

○ Small amount of packet expansion (maybe?)
○ DTLS epochs require changing ACKs a bit

■ Though this is also required by crypto streams
○ DTLS implementations less mature


