
The Latency Spin Bit
draft-trammell-quic-spin-01

Brian Trammell — ETH Zürich

(with Piet De Vaere)

IETF 101 London

What is it?
• Proposal (#1046): take a bit from QUIC short header type field and make it spin

• Server sets last spin it saw on each packet it sends

• Client sets ~(last spin it saw) on each packet it sends

• Creates a square-wave with period == RTT (when sender not app-limited)

 +-+-+-+-+-+-+-+-+
 |0|C|K|S|Type(4)|
 +-+
 | |
 + [Connection ID (64)] +
 | |
 +-+
 | Packet Number (8/16/32) ...
 +-+
 | Protected Payload (*) ...
 +-+

https://github.com/quicwg/base-drafts/pull/1046

Why?
• Explicit signal for passive measurement of per-flow RTT

• Reduce loss of visibility of metrics with respect to TCP:

• Replaces SEQ/ACK or TSval/TSecr calculation in TCP

• Superior to QUIC handshake RTT: multiple samples per flow,  
no additional handshake-linked delay

• Use cases enumerated in draft-trammell-quic-spin-01:

• Interdomain and intradomain troubleshooting

• Home network troubleshooting

• Bufferbloat mitigation for mobile networks

• Internet measurement research

https://tools.ietf.org/html/draft-trammell-quic-spin-01

How does it work?

client server

0 0 0 0

How does it work?

client server

0 0 0 0

0 0 0 0

How does it work?

client server

0 0 0 0

0 0 0 0

How does it work?

client server

1 1 1 1

0 0 0 0

0 0 0 0

How does it work?

client server

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

How does it work?

client server

1 1 1 1

1 1 1 1

0 0 0 0

observer

Unidirectional one-point
measurement

client server

time

spin

observer

0 0 0 0

Unidirectional one-point
measurement

client server

time

spin

observer

0 0 0 0

0 0 0 0

Unidirectional one-point
measurement

client server

time

spin

observer

0 0 0 0

0 0 0 0

Unidirectional one-point
measurement

client server

1 1 1 1

time

spin

observer

0 0 0 0

0 0 0 0

Unidirectional one-point
measurement

client server

1 1 1 1

1 1 1 1

time

spin

observer

0 0 0 0

0 0 0 0

Unidirectional one-point
measurement

client server

1 1 1 1

1 1 1 1

0 0 0 0

time

spin

observer

Bidirectional one-point
measurement

client server

time

spin

observer

0 0 0 0

Bidirectional one-point
measurement

client server

time

spin

observer

0 0 0 0

0 0 0 0

Bidirectional one-point
measurement

client server

time

spin

observer

0 0 0 0

0 0 0 0

Bidirectional one-point
measurement

client server

1 1 1 1

time

spin

observer

0 0 0 0

0 0 0 0

Bidirectional one-point
measurement

client server

1 1 1 1

1 1 1 1

time

spin

observer

0 0 0 0

0 0 0 0

Bidirectional one-point
measurement

client server

1 1 1 1

1 1 1 1

0 0 0 0

time

spin

Does it work?
• Piet De Vaere has implemented the spin bit in minq (ekr's minimal QUIC

implementation in Go)

• Implementation effort is trivial.

• Spin signal gives high-resolution information to observers about the RTT
experienced by endpoint applications.

• Improves information available at the receiver (client) for asymmetric flows.

yes, it does.

Coping with Loss  
and Reordering

• Spin bit useful in environments in which troubleshooting signals are necessary

• Signal survives heavy loss (~2%) with slight RTT overestimation:

• Some loss of fidelity with heavy reordering:

• Packet numbers used to correct loss/reordering during signal generation

• Packet numbers can be used to detect loss/reordering on path if they
increment by one per packet and are in cleartext

Fake Spin Bits?

• The spin bit can be implemented completely separate
from transport mechanics; it needs only packet number
information to avoid generating spurious edges.

• Why should the network trust this signal?

• Dishonest endpoint could systematically delay or
anticipate edges to generate arbitrary measured RTT
values...

• ...though this is trivially detectable by an honest
endpoint.

In conclusion...

• The spin bit proposal represents a

• minimal-overhead,

• high-fidelity,

• explicit signaling approach,

• with minimal privacy impact,

• to replace on-path visibility into application-experienced
RTT lost when moving from TCP (with SEQ/ACK + TSval/
TSecr analysis) to QUIC.

Backup
you have questions? we have answers.

Possible enhancement:
two-bit spin

• Two-bit spin: count 0,1,2,3,0,1,... instead of square wave

• Server reflects, client increments by one

• Allows observers to easily cope with reordering, 
even with encrypted packet numbers

• Example: reordering of the 8th and 9th packets

• with one-bit spin: 0 0 0 0 1 1 1 0 1 0 0 0

• with two-bit spin: 0 0 0 0 1 1 1 2 1 2 2 2

• detected as reorder instead of as spurious edge

• Experiments show two-bit spin as good as packet numbers
in rejecting reordered edges.

Possible enhancement:
edge valid signal

• Bursty traffic can lead to wild overestimates of RTT: adds
delay between bursts to actual measured RTT.

• A damping filter can reduce overestimate samples

• Addition of a edge valid bit eliminates this overestimation

• Set when a spin edge contains a value less than k µs
old (current experimentation with k=1000)

• Experiments show edge valid bit is effective at producing
good RTT samples during bursts without damping filters.

Interaction with other  
short header proposals

• Packet Number Encryption (#1079)

• Packet number no longer useful for loss/reordering detection: need additional signal
(e.g. two bit spin) if rejecting reordered spin edges is important.

• Type no longer necessary to encode packet number length (type bits free)

• Asymmetric Connection ID (on list): would allow each side to propose a connection ID.  
CID is varlen, length/presence is per-flow (C bit free)

 +-+-+-+-+-+-+-+-+
 |0|X|K|S|X|X|X|X|
 +-+
 | |
 + Connection ID (per-flow varlen) +
 | |
 +-+
 | Packet Number (encrypted, varint) ...
 +-+
 | Protected Payload (*) ...
 +-+

https://github.com/quicwg/base-drafts/pull/1079
https://mailarchive.ietf.org/arch/msg/quic/l_b1NnBmQpQGCxCfQteOMkft-lE/?qid=92588f66ef2edf347527ffa4d73eed03

