A Simple BGP-based Mobile Routing System for the Aeronautical Telecommunications Network

Fred L. Templin (fltemplin@acm.org)

IETF101 Routing Working Group (rtgwg)

March 22, 2018
Background

- International Civil Aviation Organization (ICAO) building an IP-based networking system for worldwide Air Traffic Management (ATM)
- Developing the Aeronautical Telecommunications Network with Internet Protocol Services (ATN/IPS)
- Under development in ICAO Working Group I (WG-I)
- IPv6-based; mobility capable
- Accommodates aircraft with multiple data links
 - SATCOM
 - LDACS
 - VHF
 - etc.
ICAO Mobility Subgroup Solution Discussion

• Looking at three candidate mobility solutions:
 • MIPv6/PMIPv6
 • Ground-based LISP
 • BGP-based overlay (subject of this document)

• “A Simple BGP-Based Mobile Routing System for the Aeronautical Telecommunications Network”

• BGP overlay network – separate from the global public Internet BGP routing system
• Based on a “hub and spokes” arrangement with regionally distributed stub ASBRs and centrally located core ASBRs
• s-ASBRs advertise; withdraw airplane Mobile Network Prefixes (MNPs)
• c-ASBRs in a hub AS forward packets between s-ASBRs
• Proxys connect data link subnetworks to the overlay
• Clients are aircraft that may connect to multiple subnetworks
• Route optimization removes ASBRs from path
ATN/IPS With BGP

- **Subnetworks** connect airplanes
- **Internetwork** conn. subnetworks
- **Native IPv6** within subnetwork
- **Tunneled IPv6** across Internetwork
BGP Details

- Each s-ASBR is a stub AS unto itself
- All c-ASBRs members of the same core AS
- s-ASBRs advertise their associated MNPs to c-ASBRs using eBGP
- c-ASBRs originate “default”, but DO NOT advertise any MNPs to s-ASBRs
- c-ASBRs discover all MNPs in the system using iBGP
- c-ASBRs can connect the overlay to the global public Internet, in which case they would advertise short and unchanging aggregates (e.g., 2001:db8::/32) instead of dynamically changing more-specifics (e.g., 2001:db8:1:2::/64)
Route Optimization

- Initial packets go from Proxy through source and target s-ASBRs as well as any c-ASBRs
- Proxy sends NS to get an NA back from the target s-ASBR
- Future packets go directly from source Proxy to target Proxy
Draft Status

• Draft presented at ICAO WG-I mobility subgroup; under active consideration there as mobility solution candidate

• Identify IETF working group

• Questions?