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Formal security analysis hand-in-hand with standardization
• Cryptographic proofs (of drafts 5,9,10) 

• Mechanized cryptographic proofs (of draft 18) 

• Automated symbolic protocol analysis (of draft 10, 18, 20)

• Verified implementations (of draft 18)

What did all these papers prove? How much effort does it take?
Can we formally analyze your shiny new crypto protocol?





• BEAST CBC predictable IVs [Sep’11]
• CRIME Compression before Encryption [Sep’12]
• RC4 Keystream biases [Mar’13]
• Lucky 13 MAC-Encode-Encrypt CBC [May’13]
• HeartBleed Memory safety bug [Apr’14]
• 3Shake Insecure resumption [Apr’14]
• POODLE SSLv3 MAC-Encode-Encrypt  [Dec’14]
• SMACK State machine attacks [Jan’15]
• FREAK Export-grade 512-bit RSA [Mar’15]
• LOGJAM Export-grade 512-bit DH [May’15]
• SLOTH RSA-MD5 signatures [Jan’16]
• DROWN SSLv2 RSA-PKCS#1v1.5 [Mar’16]
• Sweet32 3DES and Blowfish [Aug’16]
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Example: Diffie-Hellman key exchange



Classic man-in-the-middle attack

Active Network Attacker
or Malicious Peer



SIGMA: authenticated Diffie-Hellman
PKI

SIGNATURE + MAC
prevents MitM attacks



Crypto Proof: Diffie-Hellman assumption

Large Prime
(e.g. 2255 - 19)

0 < x,y < p
g fixed (e.g. 2)

PROTOCOL SECURITY RELIES ON DH HARDNESS ASSUMPTION: 



Crypto Weakness: small prime groups

If the prime p is too small, 
an attacker can compute the discrete log: 

y = log(gy mod p)
and hence compute the session key:

Current discrete log computation records:
• [Joux et al. 2005] 431-bit prime 
• [Kleinjung et al. 2007] 530-bit prime 
• [Bouvier et al. 2014] 596-bit prime 
• [Kleinjung et al. 2017] 768-bit prime 



Negotiating the strongest available group

Why a 512-bit group?
backwards compatibility,

export regulations,…

Group 
Negotiation 



Protocol Flaw: group downgrade attack 

The Logjam Attack [2015]:
Crypto Weakness + Protocol Flaw

Remove Strong Groups



Implementation Bugs

Negotiation flaws re-enable disabled ciphersuites
• e.g. FREAK, Logjam, DROWN

Functional correctness bugs in DH computation
• e.g. Carry propagation errors in Curve25519

Side-channel attacks on signature algorithm
• e.g. Timing attacks on ECDSA/RSA



Identifying and preventing such attacks
Prove cryptographic security of the protocol core
• Hire a cryptographer to do the proof (~ months)
• Use mechanized provers: EasyCrypt, CryptoVerif, …

Analyze full protocol for MitM attacks like downgrades
• Model and verify full protocol automatically (~ weeks)
• Use protocol verification tools: ProVerif, Tamarin,… 

Verify implementation to find coding bugs
• Insert verification into development workflow (~ years)
• Use software verification tools: hacspec, F*, Frama-C, … 
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Designing protocols to be verifiable
1. Precisely define the threat model and security goals

2. Use standard, well-understood crypto constructions

3. Break protocol into composable sub-protocols

4. Remove or limit key reuse between different modes

5. Specify state machines and necessary data structures



Protocol re-designed to enable easier cryptographic analysis
• Sometimes security won over performance, sometimes not

Formal security analysis hand-in-hand with standardization
• Cryptographic proofs (of drafts 5,9,10) 

• Mechanized cryptographic proofs (of draft 18) 

• Automated symbolic protocol analysis (of draft 10, 18, 20)

• Verified implementations (of draft 18)



Some modes of TLS 1.2 are broken.

All modes of TLS 1.3 are provably secure.

Can a man-in-the-middle downgrade TLS 1.3 
connections to use broken TLS 1.2 modes?



TLS 1.3 1-RTT handshake
• 12 messages in 3 flights, 

16 derived keys,
then data exchange

+ 0-RTT + TLS 1.2

• Protocol model:  500 lines
• Threat model: 400 lines
• Security goals: 200 lines





Classic Needham-Schroeder/Dolev-Yao network adversary
• Can read/write any message on public channels
• Can participate in some sessions as client or server
• Can compromise some long-term keys
• Cannot break strong crypto algorithms or guess encryption keys

We extend the model to allow attackers to break weak crypto
• Each primitive is parameterized by an algorithm 
• Given a strong algorithm, the primitive behaves ideally
• Given a weak algorithm, the primitive completely breaks
• Conservative model, may not always map to real exploits



We state security queries for data sent between honest peers
• Secrecy: messages between honest peers are unknown to an adversary
• Authenticity: messages between honest peers cannot be tampered 
• No Replay: messages between honest peers cannot be replayed 
• Forward Secrecy: secrecy holds even if the peers’ long-term keys are 

leaked after the session is complete 

Secrecy query for msg(conn,S) sent from client C to server S

query not attacker(msg



• QUERY: Is msg(conn,S) secret?

query not attacker(msg

• FALSE: ProVerif finds a counterexample if S’s private key is compromised



• QUERY: Is msg(conn,S) secret 
as long as S is uncompromised?

query attacker(msg
event(

• FALSE: ProVerif finds a counterexample if the AE algorithm is weak



• QUERY: Is msg(conn,S) secret 
as long as S is uncompromised 
and only strong AE algorithms are used?

query attacker(msg
event(

• FALSE: ProVerif finds a counterexample if the DH group is weak



• Strongest secrecy query that can be proved in our model

query attacker(msg
event( CompromisedKey

WeakAE
WeakDH
WeakRSADecryption

WeakHash

• TRUE: ProVerif finds no counterexample 



Messages on a TLS 1.3 connection between honest peers are secret: 
1. If the connection does not use a weak AE algorithm,
2. the connection does not use a weak DH group,
3. the server never uses a weak hash algorithm for signing, and
4. the server never participates in TLS 1.2 RSA key exchange

Analysis confirms preconditions for downgrade resilience in TLS 1.3
• Identifies weak algorithms in TLS 1.2 that can harm TLS 1.3 security



Not just TLS: Analyses for Other Protocols
Attacks and proofs for OAuth 2.0

Attacks and proofs for ACME

Attacks on 5G AKA

NEW: A call for design and analysis of MLS



• Two HTTPS redirects
• No crypto in protocol

(except within AT)



What is the Web threat model?
OAuth 2.0 needs to protect against web attackers

Analysis needs a new threat model for Web attackers





Conclusion
Formal security analyses can find protocol flaws, 
and provide strong cryptographic security guarantees 

The first step is to write a formal specification

• Maybe you can also include the formal spec in the RFC?

39



Questions?

• hacspec: https://github.com/HACS-workshop/hacspec
• ProVerif: http://proverif.inria.fr
• Tamarin: https://tamarin-prover.github.io/
• Cryptoverif: http://cryptoverif.inria.fr
• EasyCrypt: https://www.easycrypt.info

https://github.com/HACS-workshop/hacspec
http://proverif.inria.fr/
https://tamarin-prover.github.io/
http://cryptoverif.inria.fr/
https://www.easycrypt.info/

