Origin Validation Policy Considerations for Dropping Invalid Routes

Study of “Drop Invalid if Still Routable (DISR)” Policy

draft-sriram-sidrops-drop-invalid-policy

K. Sriram, Oliver Borchert, Doug Montgomery (NIST), and Job Snijders (NTT)

Special thanks to Lilia Hannachi (NIST) for Routeviews / ROA Data Analysis

March 2018

Acknowledgements: Thanks to Jeff Haas and Saku Ytti for discussions related to implementation issues. Thanks also due to many who offered feedback and comments on the SIDROPS mailing list.
Question: How to utilize Origin Validation (OV) state in route selection policy?

- ‘Valid’ -- obviously raises no concerns
- ‘NotFound’ – not penalized during partial deployment
- ‘Invalid’ – questions
 - Always drop Invalid?
 - Answer: Perhaps not. Network operators would like reachability not be compromised during incremental deployment / transient conditions.
 - Unconditionally dropping Invalid -- only in mature RPKI adoption state.
 - Incremental deployment state -- Should ‘Invalid’ route be dropped only if a less specific route exists that is ‘Valid’ or ‘NotFound’?
Why DISR?

What is DISR:

• DISR = Drop Invalid if Still Routable
 ➢ Drop Invalid if a Valid or NotFound less specific route exists

Why DISR:

• If ROA for subsuming less specific prefix exists but there is no ROA for the more specific that you announce, then
 ➢ DISR (working in ASes elsewhere) ensures that traffic for the more specific prefix still reaches you - correct destination (possibly via suboptimal / non-TE path)
 ➢ Invalid announcements of your more specific prefix (by you or others) are rejected
Scenario 1

No ROA coverage for
10.1.0.0/22 or
10.1.0.0/24

• AS4 performs OV
• Hijack succeeds because of lack of ROAs
Scenario 2

ROA: 10.1.0.0/22 AS1

- AS4 performs OV & DISR, but AS 3 does not.
- Drop Invalid if Still Routable (DISR) policy at AS4 prevents hijack from AS5; it also disrupts the TE intended by AS1
- However, all traffic for 10.1.0.0/24 reaches the correct destination albeit via a non-optimal / non-TE path.
Scenario 3

ROA: 10.1.0.0/23 AS1

AS4 (ISP4)

AS5 (ISP5)

AS2 (ISP2)

AS3 (ISP3)

AS1

10.1.0.0/22 AS2 AS1

10.1.0.0/24 AS5 AS1

10.1.0.0/24 AS3 AS1

10.1.0.0/24 AS1

10.1.0.0/22 AS1

TE but looks like a hijack

• AS4 performs OV & DISR, but AS 3 does not.
• DISR policy at AS4 prevents hijack from AS5; it also disrupts the TE intended by AS1
• However, all traffic for 10.1.0.0/24 reaches the correct destination albeit via a non-optimal / non-TE path.
Scenario 4

ROA: 10.1.0.0/23 AS2

- AS2 aggregates and announces the /23

- AS4 performs OV & DISR
- DISR policy at AS4 prevents hijack from AS5
Scenario 5

ROA: 10.1.0.0/23 AS2

AS2 aggregates and announces the /23

- AS4 performs OV & DISR
- DISR policy at AS4 prevents hijack from AS5
- All traffic for 10.1.0.0/24 reaches the correct destination but possibly via a non-optimal / non-TE path.
Rogue Customer (Jeff Haas’ concern)

ROA: 10.1.0.0/16 AS2

AS2 aggregates and announces the /16

- 10.1.0.0/16 AS2
- 10.1.0.0/24 AS3
- 10.1.0.0/24 AS5

Hijack

- 10.1.0.0/24 AS3
- 10.1.0.0/24 AS5

C2P

- C2P

Moved

- Moved

- 10.1.0.0/24

Customer

Observation: If ISP2 (AS2) still cares about customer’s connectivity, they should create a ROA for the /24 with AS3.
Routeviews / ROA Data Analysis

- NIST RPKI and OV analysis
- # Routeviews collectors used = 7
Routeviews / ROA Data Analysis

- **Invalid 10417**
 - **I-ML 6846**
 - **R-V-NF 6027**
 - **Same OAS 5987**
 - OAS is transit of OAS in Inv. route in question 26
 - **Diff OAS 40**
 - **I-AS 3317**
 - **NR-V-NF 819**
 - **I-ML-AS 240**

- R-V-NF = Routable to V or NF
- NR-V-NF = Not Routable to V or NF
- Same OAS = origin AS same as that in the Invalid route in ques.

OAS is transit of OAS in Inv. route in question 26
OAS is not transit of OAS in Inv. route in question 14
Routeviews / ROA Data Analysis

OAS is transit of OAS in Inv. route in question 567

OAS is not transit of OAS in Inv. route in question 1512

R-V-NF = Routable to V or NF
NR-V-NF = Not Routable to V or NF
Same OAS = origin AS same as that in the Invalid route in ques.

Invalid
10417

I-ML
6846

I-AS
3317

I-ML-AS
240

R-V-NF
2096

NR-V-NF
1221

Same OAS
17

Diff OAS
2079

Covering NF route that is less specific than ROA
Routeviews / ROA Data Analysis

- **Invalid**: 10417
 - **I-ML**: 6846
 - **I-AS**: 3317
 - **I-ML-AS**: 240
 - **R-V-NF**: 195
 - **NR-V-NF**: 45
 - **Same OAS**: 109
 - **Diff OAS**: 86
 - OAS is transit of OAS in Inv. route in question: 79
 - OAS is not transit of OAS in Inv. route in question: 7

- **Diff OAS**: 86
 - R-V-NF = Routable to V or NF
 - NR-V-NF = Not Routable to V or NF
 - Same OAS = origin AS same as that in the Invalid route in ques.
Conceptual Implementation of DISR
(Part 1 of 2)

Adj-RIB-Ins → Origin Validation checks → Decision Process → Local RIB → DISR policy → FIB, Adj-RIB-Outs

With inputs from Jeff Haas
When a Valid/NotFound route is added, check if there are any more specific prefixes in FIB / Adj-RIB-Outs subsumed by the route prefix; If such more specific prefix route is Invalid, then remove it from FIB / Adj-RIB-Outs.

When a Valid/NotFound route is withdrawn, check if there are any more specifics prefixes subsumed by the route prefix; If such more specific prefix route is Invalid, then rerun the route selection decision and DISR policy for it.

When router is notified of RPKI state change, then list all the prefixes effected by it. Rerun route selection decision and DISR policy for those prefixes.
Gradual Hardening of the ‘Stick’

<table>
<thead>
<tr>
<th>Today</th>
<th>Soft stick – Drop Invalid if address space is covered by a Valid or NotFound route (DISR policy)</th>
<th>Hard stick – Always drop Invalid policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid routes are NOT dropped.</td>
<td>Moderate adoption;</td>
<td>Mature adoption</td>
</tr>
<tr>
<td>Early adoption; Notify about Invalid; Educate and encourage adoption</td>
<td>Notify about Invalid; Educate and encourage adoption</td>
<td></td>
</tr>
</tbody>
</table>

Drop Invalid refers to filtering it in route selection.