
Deep learning 
on	microcontrollers

Jan	Jongboom	
IETF	101,	London	

22	March	2018
https://twitter.com/billyd/status/701804370560729089





©	2018	Arm	Limited	3

Machine	learning



©	2018	Arm	Limited	4

Why	machine	learning	on	the	edge?

Sensor fusion
http://www.gierad.com/projects/supersensor/



©	2018	Arm	Limited	5

Why	machine	learning	on	the	edge?

Federated learning
https://research.googleblog.com/2017/04/federated-learning-collaborative.html



©	2018	Arm	Limited	6

Why	machine	learning	on	the	edge?

LPWANs



©	2018	Arm	Limited	7

Why	machine	learning	on	the	edge?

Offline self-contained systems
https://os.mbed.com/blog/entry/streaming-data-cows-dsa2017/



©	2018	Arm	Limited	8

Edge	vs.	Cloud



©	2018	Arm	Limited	9

Microcontrollers
Small (1cm²) 

Cheap (~1$) 

Efficient (standby: 0.3 μA)

Slow (max. 100 MHz) 

Limited memory (max. 256K RAM)

Downsides



©	2018	Arm	Limited	10

uTensor

Machine	learning	for	microcontrollers	

Runs	in	<256K	RAM	

TensorFlow	compatible	

Built	on	top	of	Mbed	OS	5 
								(file	systems,	drivers,	150	boards	compatible)	

Open	source,	Apache	2.0	license



©	2018	Arm	Limited	11

uTensor	Team

Neil	Tan	
Arm

Michael	Bartling	
Arm

Dboy	Liao	
Piniko

Kazami	Hsieh	
Academia Sinica



©	2018	Arm	Limited	12



©	2018	Arm	Limited	13

How?

MNIST	data	set	

Training	set:	60,000	images	

Every	drawing	is	downsampled	to	28x28	pixels	

Supervised	learning	through	backpropagation



©	2018	Arm	Limited	14

Multi-layer	perceptron	(MLP)	classification
28x28 = 784

Neuron

Output

9

Matrix	multiplication	(weight),	then	activation	function

Potential	outputs



©	2018	Arm	Limited	15

How?



©	2018	Arm	Limited	16

Quantization

8-bit	integers	instead	of	32-bit	floats	

Only	during	classification	

79.9%	accuracy	vs.	80.3%	accuracy	(CIFAR-10)	

TensorFlow	requires	floating-point	de-quantization	between	layers	

https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/

https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/


©	2018	Arm	Limited	17

Memory	usage

Matrix	multiplication	in	first	hidden	layer	dominates	RAM	usage:

		Input	elements:																															784	

		Number	of	neurons	(1st	layer):																128	

		Number	of	weight	(input	to	1st	layer):								128	*	784	

		Resulting	values	(Pre-activation	function):			128	

		Data	type:																																				8-bit	integer	(1	byte)	

1	byte	*	(784	+	(128	*	784)	+	128)	=	98.891	kB	



©	2018	Arm	Limited	18

Other	tricks

Paging	of	memory	for	larger	models	(sacrifices	speed)	

Graph	in	ROM	(requires	pre-processing)	(MNIST:	26K)	

Take	advantage	in	sparsity	of	data,	sacrifice	accuracy	(TBD)



©	2018	Arm	Limited	19

Operators

Add,	Subtract	

Min,	Max,	ArgMax	

ReLU,	Matrix	multiplication,	Reshape,	Quantization	

Convolution	(WIP)	

Pooling	(WIP)



©	2018	Arm	Limited	20

Tensors

RAM	tensor	

Flash	tensor	

Sparse	tensor	

Networked	tensor	

Tensors	can	be	paged	to	fit	larger	networks



©	2018	Arm	Limited	21

Workflow

Matrix	multiplication	data	
from	trained	model

Tensor	graph



Developing	using	the	simulator



©	2018	Arm	Limited	23

CMSIS-NN

New	neural	network	kernel	functions	

Leverages	the	DSP/SIMD	functions	in	silicon	

See	speedup	of	4-5x	

Hardware	acceleration	for	convolution,	pooling,	etc.	

uTensor	will	be	built	on	top	of	CMSIS-NN



©	2018	Arm	Limited	24

Recap

1. Buy	a	development	board	(http://os.mbed.com/platforms)	

2. Clone	uTensor	(https://github.com/uTensor/uTensor)	

3. ???	

4. PROFIT!!!



©	2018	Arm	Limited	25

https://labs.mbed.com

Jan Jongboom, Arm

Thank you!


