
An Abstract Application Layer
Interface to Transport Services

draft-trammell-taps-interface-00
Brian Trammell

TAPS — IETF 101 — London — 21 March 2018

Interface - TAPS - B Trammell - IETF 101

Transport
Services
Implementation

Transport
Services
API

2

Architecture Diagram
Application

Basic Objects

Protocol Stack(s)

Cached State

System Policy

Pre-Establishment
Establi shment

Data Transfer
Termi nation

Events

Candidate
Gathering

Candidate
Racing

Interface - TAPS - B Trammell - IETF 101

Interface Design Principles (§3)

We set out to define a single interface to a variety of transport
protocols to be used in a variety of application design patterns,
to enable applications written to a single API to make use of
multiple transport protocols in terms of the features they
provide, providing:

• explicit support for security properties as first-order
transport features;

• asynchronous connection, transmission, and reception;

• support for multistreaming and multipath transport
protocols; and

• atomic transmission of data, using application-assisted
framing and deframing where necessary.

Interface - TAPS - B Trammell - IETF 101

Transport
Services
API

4

Interface Diagram
Application

Pre-Establishment
Establi shment

Data Transfer
Termi nation

Events

Preconnection Connection

Parameters

Endpoints
Local

Remote

Connection Group

Interface - TAPS - B Trammell - IETF 101

Endpoints (§5.1)

• Remote and local endpoints can be specified at a variety
of resolutions (e.g. hostname / service name, address /
port, interface).

• Resolution is under transport services control, not
application control.

• May depend on PvD / selected protocol stack.

• Open issue: resolution can leak interest when DNS is
not private.

Interface - TAPS - B Trammell - IETF 101

Transport Parameters (§5.2):
Protocol and Path Selection Properties

• Protocol and path selection properties used to select/eliminate
candidates during connection establishment.

• Five levels of preference: require, prefer, ignore, avoid, prohibit.

• Properties derived from minset:

• Reliable Data Transfer

• Preservation of Ordering

• Per-Message Reliability

• 0-RTT Session Establishment

• Multiplexing (multistreaming)

• RTX and ICMP notification

• Checksum coverage control

• Capacity profile

• (path-only) Interface Type

Interface - TAPS - B Trammell - IETF 101

Transport Parameters:
Protocol Properties (§9.1)
• Generic protocol properties allow configuration and

querying of protocol stacks in a transport-independent way:

• Specific protocol properties allow specific stacks to be
configured in detail, should they be selected.

• Relative Niceness within group

• Group TX scheduler

• Connection Abort timeout

• RTX notification threshold

• Minimum checksum coverage

• Maximum 0RTT message size

• Maximum non-fragmented
message size

• Maximum non-partial message
size on send

• Maximum non-partial message
size on receive

Interface - TAPS - B Trammell - IETF 101

Transport Parameters:
Security Parameters (§5.3)

• Generic security properties allow configuration and querying
of security features in a protocol-independent way:

• Identity

• Private Key

• Groups

• Algorithms

• Ciphersuites

• Session Cache
configuration

• Pre-shared keys

• Trust verification and
identity challenge
callbacks

Interface - TAPS - B Trammell - IETF 101

Preconnection (§5)

• A preconnection describes  
the state of a connection  
that might exist in the future, including parameters and
endpoint specifiers.

• This design allows the system to prepare and cache
information based on application requirements before
establishment

• Preconnections can also be used to group connections
before establishment.

• Implementations of the interface may provide
convenience calls to connect via an implicit
preconnection.

Preconnection Connection

Parameters

Endpoints

Interface - TAPS - B Trammell - IETF 101

Establishing Connections (§6)

• Three ways to establish a connection:

• Active (Initiate()): application notified that the
connection is up by a Ready<> event.

• Passive (Listen()): application notified of each
incoming connection by a ConnectionReceived<> event.

• Simultaneous/Peer (Rendezvous()): application notified
connection is up by a RendezvousDone<> event

• Data can be sent on an initiating connection immediately.

• Details of 0RTT still an open issue.

Connection

Interface - TAPS - B Trammell - IETF 101

Connection Groups (§6.4)

• Connections can be entangled into groups

• All connections in a group share protocol properties and
may share connection state.

• Connections in a connection group are implemented as
streams in a multistreaming protocol when available.

• Preconnection.Clone() creates preconnections whose
eventual connections will be entangled.

• Connection.Clone() creates a new connection entangled
with an existing one.

• New streams yield a ConnectionReceived<> event

 Connection
Connection Group

Interface - TAPS - B Trammell - IETF 101

Sending Data (§7)

• Data (as a Message) sent with Connection.Send()

• Sender-side framing allows for arbitrarily-typed
application objects to be converted to octet streams.

• Send parameters control per-Send behavior:

• Sending may yield Sent<> or Expired<> events

• Lifetime

• Niceness

• Ordered

• Idempotent

• Checksum Coverage

• Immediate Acknowledgment

• Instantaneous  
Capacity Profile

Interface - TAPS - B Trammell - IETF 101

Receiving Data (§8)

• Application indicates readiness to receive via
Connection.Receive(), message sent to application via
supplied callback.

• Message contains an octet array, as well as transport
metadata

• Messages are split from octet via application-provided
receiver-side deframing when the transport doesn't
provide its own framing

• Very large messages or lack of deframing may result in
partial reception

Interface - TAPS - B Trammell - IETF 101

Connection Termination (§10)

• Connection.Close(): orderly connection shutdown after
pending send and receive, results in Connection.Closed<>
event

• Underlying stack closes after last Connection in a
Group closes.

• Connection.Abort(): immediate connection shutdown,
results in Connection.Aborted<> event

• All Connections in a Group abort simultaneously.

Interface - TAPS - B Trammell - IETF 101

Parameters

Security parameters (Identity, PrivateKey, Algorithm, Group, Ciphersuite)

15

Interface Diagram

Preconnection

Clone()

Connection

Clone() →

Send() → Sent<>, Expired<>
Receive() → Received<>

Close() → Closed<>
Abort() → Aborted<>

Initiate() → Ready<>
Listen() → CReceived<>
Rendezvous() → RDone<>

Require() Prefer() Ignore() Avoid() Prohibit()

Endpoints
Local

Remote

Connection Group

