
Implementing Interfaces to
Transport Services

draft-brunstrom-taps-impl-00

Anna Brunstrom
TAPS

IETF 101, 21 March 2018, London
1

Scope

• Serve as a guide to
implementation on how
to build a system that
provides a Transport
Services API

• Complements
architecture and API
drafts

2

Implementing Basic Objects

• Preconnection: bundle of properties that describes the application
constraints on the transport

• Connection: represents a flow of data in either direction between the
Local and Remote Endpoints

• Listener: a passive waiting object that delivers new Connections
• The implementation should ensure that the copy of the properties

held by the Connection or Listener is immutable

3

Implementing Pre-Establishment

• Application specifies Endpoints and its preferences regarding Protocol
and Path Selection

• Implementation stores these objects and properties as part of the
Preconnection object

• Default values specified in the Transport Services API must be used
for Properties not provided by the application

• Early failure detection should be done during pre-establishment
• Protocol Properties include requirements or prohibitions that cannot be

satisfied
• Requested Protocol Properties are in conflict with each other

4

Role of system policy

• Implementation combines and reconciles several different
sources of preferences when establishing Connections

1. Application preferences specified during the pre-establishment
2. Dynamic system policy compiled from internally and externally

acquired information
3. Default implementation policy, predefined policy by OS or

application
• Any protocol or path used for a connection must conform to

all three sources of constraints

5

Implementing Connection Establishment

Two main steps:
• Candidate Gathering, identifying the paths, protocols, and

endpoints that can be used
• Candidate Racing, in which the necessary protocol

handshakes are conducted in order to select which set to use

6

Candidate Gathering

• Candidates can be described by
[Endpoint, Path, Protocol]

• Available candidates can be
structured as a tree

• Branching Order-of-Operations
1. Alternate Paths (e.g. Wi-Fi then LTE)
2. Protocol Options (e.g. QUIC then

HTTP/2)
3. Derived Endpoints (e.g. IPv6 then IPv4)

• Sort branches based on application
preferences and policy

7

Candidate Racing

• Racing approaches: Immediate (avoid as default), Delayed, Failover
• Completes when one candidate has successfully established a

connection, or all candidates have failed to connect
• Determining Successful Establishment

• TCP – established when TCP handshake completes
• Multiplexed connection – immediately established, no handshake needed

• Initiate may not result in a ConnectionReceived event at the peer
• UDP - established as soon as a local route to the peer endpoint is confirmed

8

Implementing listeners

• Listener object should register for incoming traffic on all eligible
network interfaces or paths

• Implementation should monitor network path changes and register and de-
register the Listener across all usable paths

• Listener object should register across all eligible protocols for each
path

• Inbound Connections delivered by the implementation may have
heterogeneous protocol stacks

9

Data Transfer - Sending message

• Depends on the top-level protocol in the established Protocol Stack
• Support for the different send parameters (Lifetime, Niceness,

Ordered, Idempotent, Corruption Protection Length, Immediate
Acknowledgement, Instantaneous Capacity Profile)

• 0-RTT data needs to be provided before the process of connection
establishment has begun

• Implementation should keep a copy of this data and provide it to each
0-RTT protocol started during racing

10

Data Transfer - Receiving message

• Depends on the top-level protocol in the established
Protocol Stack

• Size and boundaries of the Message are not known
beforehand

• Application can communicate the parameters for the Message

11

Implementing Termination

• Application not able to read any more data after calling Close
• No half-closed connections

• A Close may not always provoke a Finished event at peer
• Connection may be mapped to a stream of an underlying multi-

streaming protocol
• Similarly an Abort may not always provoke a

ConnectionError event at peer

12

Other parts covered in draft

• Implementing Maintenance
• Changing Protocol Properties and Handling Path Changes

• Cached State
• Protocol state caches and performance caches

• Specific Transport Protocol Considerations
• TCP, UDP, SCTP, TLS, HTTP, QUIC, HTTP/2

• Rendezvous and Environment Discovery
• Connection establishment process in peer-to-peer Rendezvous

scenarios
13

?

14

	Implementing Interfaces to Transport Services� �draft-brunstrom-taps-impl-00
	Scope
	Implementing Basic Objects
	Implementing Pre-Establishment
	Role of system policy
	Implementing Connection Establishment
	Candidate Gathering
	Candidate Racing
	Implementing listeners
	Data Transfer - Sending message
	Data Transfer - Receiving message
	Implementing Termination
	Other parts covered in draft
	?

