More Accurate ECN Feedback in TCP

draft-ietf-tcpm-accurate-ecn-06

Bob Briscoe <ietf@bobbriscoe.net>
Mirja Kühlewind <mirja.kuehlewind@tik.ee.ethz.ch>
Richard Scheffenegger <rscheff@gmx.at>
Background & Problem

• **Explicit Congestion Notification (ECN):** Routers make packets as Congestion Experienced (CE) instead of dropping them in case of incipient congestion

• **ECN Feedback in RFC6831:** Receiver only provides feedback once per RTT to the sender

• **Accurate ECN (AccECN):** Receiver feeds back the accurate number of seen markings (within each RTT)
Overview AccECN

- **Capability Negotiation**: Repurposing the former NS (ECN Nonce Sum) TCP header flag
 - fully backward compatible

- **Essential Feedback**: Overloading the ECN TCP header flags (NS/ECE/CWR) as Accurate ECN (ACE) field
 - feed back the number of received CE marks (including control packets without payload)
 - no overhead compared to classic ECN but limited resilience to loss

- **Supplementary Feedback**: Using a new AccECN TCP Option
 - provide additional feedback on the number of marked bytes

- Both essential and supplementary parts: receiver maintains ECN-IP-codepoint counters and AccECN repeats LSBs of counters for resilience
The ACE field

The (post-ECN Nonce) definition of the TCP header flags (bytes 13 & 14):

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|               |           | | | | | | | | | |
| A | C | E | U | A | P | R | S | F |
| Header Length | Reserved |
| E | W | C | R | C | S | S | Y | I |
|               |           |   | R | E | G | K | H | T | N | N |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
```

Definition of the ACE field (when AccECN has been negotiated and SYN=0):

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|               |           |           | | | | | |
| U | A | P | R | S | F |
| Header Length | Reserved | ACE |
| R | C | S | S | Y | I |
|               |           | G | K | H | T | N | N |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
```
The AccECN Option

| Kind = TBD1 | Length = 11 | EE0B field |
| EE0B (cont’d) | ECEB field |
| EE1B field |

EE0B number of bytes received with ECT(0) marked
ECEB number of bytes received with CE marked
EE1B number of bytes received with ECT(1) marked

optional
Usage of the AccECN TCP Option

• **Change-Triggered ACKs**
 MUST send immediate ACK if an arriving packet increments a different byte counter

• **Continual Repetition**
 SHOULD include if CE-bytes-counter has incremented (MUST give precedence to SACK if space is limited)

• **Full-Length Options Preferred**
 SHOULD always use full-length AccECN Options; MAY use shorter AccECN Options if space is limited, but it MUST include the counter(s) that have incremented since the previous AccECN Option

• **Beaconing Full-Length Options**
 MUST include a full-length AccECN TCP Option on at least three ACKs per RTT
Implementation Status

- Linux patch available: https://github.com/mirjak/linux-accecn/
 - Use of net.ipv4.tcp_ecn=4 to enable AccECN
 - Fallback detection mechanisms incl. recently added IP codepoint feedback in handshake not implemented yet
 - No counter wrap detection implemented yet

- TCP Experimental Option Experiment Identifier (TCP ExID) registered with IANA:
 - 0xACCE
 - TCP Option is requested with publication (IESG approval)
Re-assignment of the „NS“ flag

• RFC8311 "Relaxing Restrictions on Explicit Congestion Notification (ECN) Experimentation“ declares RFC 3540 (ECN Nonce) as historic and de-assigns the NS bit; now marked as „reserved“

• IANA TCP Header Flags registration policy is „Standards Action“

 • AccECN is an experimental TCP extension that uses the former NS bit for negotiation and as part of the ACE field

 • Hum at last tcpm meeting to assign to AccECN with IESG approval