
RACK: a time-based fast loss recovery
Draft-ietf-tcpm-rack-03 updates

Yuchung Cheng
Neal Cardwell

Nandita Dukkipati
Priyaranjan Jha

Google

tcpm IETF 101, March 2018

https://tools.ietf.org/html/draft-ietf-tcpm-rack-03

What’s RACK (Recent ACK)?

Time-based loss inferences instead packet or sequence
counting

Conceptually...
● Every sent packet has a timer
● All timers are constantly adjusted based on most

recent RTT sample
● A packet is retransmitted after RTT + reo_wnd

● RACK is about implementing this w/ one timer per
connection and ACK events

P1

P2

Retransmit P1

Expect ACK of P1
by then … wait
RTT/4 in case P1
was reordered

SYN

SYN/ACK

ACK

SACK of P2

ACK of P1/P2

Tail Loss Probe (TLP)
● Problem:

○ Tail drops are common on request/response
traffic

○ Tail drops lead to timeouts, which are often 10x
longer than fast recovery

○ 70% of losses on Google.com recovered via
timeouts before TLP was deployed

● Goal:
○ Reduce tail latency of request/response

transactions

● Approach:
○ Convert RTOs to fast recovery
○ Solicit a DUPACK by retransmitting the last

packet in 2 SRTTs
○ Requires RACK to trigger fast recovery

P1

P2

Retransmit P1

After 2 SRTTs...
send TLP to
get SACK to start
RACK recovery
of a tail loss

SYN

SYN/ACK

ACK

SACK of P2

ACK of P1/P2

TLP: P2

3

P0

ACK

Updates since IETF 100

● What’s new in draft-ietf-tcpm-rack-03
○ Dynamic reordering window
○ DUPACK-threshold mode
○ Fast implementation example
○ Congestion control interactions
○ Cosmetic changes

● Deployment
○ RACK/TLP has now entirely replaced RFC6675 recovery in the latest Google/YouTube server TCP

■ Previously both RFC6675 and RACK/TLP were enabled to detect losses

https://tools.ietf.org/html/draft-ietf-tcpm-rack-03
https://tools.ietf.org/html/rfc6675
https://tools.ietf.org/html/rfc6675

Dynamic reordering window

● Previous RACK: reo_wnd = min_RTT/4
○ Spurious loss recoveries when reordering degree > reo_wnd

● Initial idea: precisely measure reordering degree in time
○ Complex
○ Requires remembering per-packet timestamp after the packet is ACKed and deallocated in the stack

● New idea: dynamically adapt reo_wnd using Duplicate SACK (DSACK; RFC2883)
○ DSACK signals spurious retransmission and implies reo_wnd is too small
○ Increase reo_wnd on DSACKs
○ Decrease reo_wnd gradually if no DSACKs
○ DSACK is supported by Linux, iOS, MacOS, and Windows

https://tools.ietf.org/html/rfc2883
https://tools.ietf.org/html/rfc3708

Dynamic reordering window details
Init: reo_wnd = min_RTT/4

For every round trip that receives some ACKs with DSACK option
reo_wnd += min_RTT/4

After 16 loss recoveries without observing more DSACK options, reset state
reo_wnd = min_RTT/4

Temporarily set reo_wnd = 0 during loss recovery for prompt repair

Always cap reo_wnd by SRTT (smoothed RTT from RFC6298)

https://tools.ietf.org/html/rfc6298

Dynamic reordering window

Old: static reo_wnd (draft -02) New: adaptive reo_wnd (draft -03)

White: data, Green: ACK Purple: (D)SACK, Red: (spurious) retransmission, Yellow: recv-win limit

DUPACK-threshold is useful with ultra-low RTTs (when RACK timer tick slower than RTT)

New: RACK support for DUPACK-threshold

If #DUPACKs >= 3, Then reo_wnd = 0

Subtle differences between RFC6675 and RACK:

1. RFC6675: a packet is lost when >=3 packets are SACKed and have higher sequence
2. RACK: a packet is lost when >=3 packets are SACKed and at least one has higher sequence
3. Example: send 10 packets, and packets 3, 5, 7 are SACKed

RFC6675: packets 1, 2 lost
RACK: packets 1, 2, 4, 6 lost

DUPACK-threshold emulation mode

https://tools.ietf.org/html/rfc6675
https://tools.ietf.org/html/rfc6675
https://tools.ietf.org/html/rfc6675

Interaction with congestion control

Potential burst interaction with Reno congestion control (i.e. RFC5681)

a. On a single ACK, RACK could mark a large number of packets lost
b. Inflight (aka pipe) drops suddenly
c. TCP retransmission bursts (cwnd - inflight) == (ssthresh - inflight)
d. Causes more drops

Recommendation

e. Use Proportional Rate Reduction [RFC6937] to pace via packet conservation or slow start
i. Also helpful: a rate-based TCP pacing mechanism (e.g. Linux fq/pacing)

https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/rfc6937

Conclusion

The development of RACK is near the end

1. Linux/FreeBSD/Windows support RACK
2. Authors consider draft-03 as complete and ready for final review

Questions? Concerns?

https://tools.ietf.org/html/draft-ietf-tcpm-rack-03

