
TEEP: Open Trust Protocol (OTrP)

draft-pei-opentrustprotocol-06.txt

Mingliang Pei IETF 101th, London

Open Trust Protocol (OTrP) Goal

← → Open Trust Protocol

OTrP Proposed Design Choices

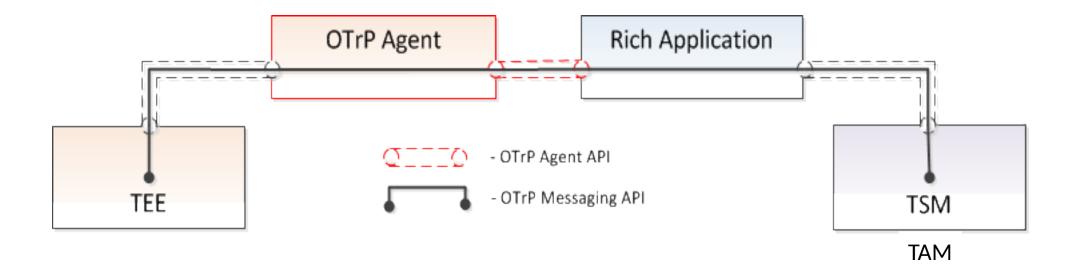
- Uses asymmetric keys and certificates for device and TAM attestation
 - Manufacturer-provided keys and trust anchors
 - Enables attestation between TAM and TEE-device
- OTrP Agent in REE relays message exchanges between a TAM and TEE
- Device has a single TEE only
- Flat Security Domain hierarchy
- JSON-based messaging between TAM and TEE
 - Other message format: CBOR?

OTrP Operations and Messages

✓ Remote Device Attestation

Command	Descriptions			
GetDeviceState • Retrieve information of TEE device state including SD and TA associated to a TAM				

✓ Security Domain Management


Command	Descriptions			
CreateSD	Create SD in the TEE associated to a TAM			
UpdateSD	Update sub-SD within SD or SP related information			
DeleteSD	Delete SD or SD related information in the TEE associated to a TAM			

✓ Trusted Application Management

Command	Descriptions		
InstallTA	Install TA in the SD associated to a TAM		
UpdateTA	Update TA in the SD associated to a TAM		
DeleteTA	Delete TA in the SD associated to a TAM		

OTrP Message Exchange via an OTrP Agent

- An OTrP Agent handles how to interact with a TEE from a REE
- Most commonly developed and distributed by TEE vendor

OTrP Agent Message Relay between TEE and TAM

1. ProcessOTrPMessage

A TEE specific OTrP Agent function that passes OTrP messages between TEE and TAM

In:

An OTrP message from TAM

Out:

An OTrP message returned by TEE

2. GetTAInformation

Local query of a TA for its information. The response can be verified by the prior TEE SP AIK public key.

In:

A JSON message with TA identifier, SP Identifer, and a nonce value Out:

An OTrP message received from TEE that describes a TA

Sample Protocol Usage Flow

Sender's Certificate	
Selders Ceducale	
Contact o Contineato	
Sender to check immutability	

TA	١M	Client App	OTrP Agent	TE	E
Phase#1 "Device Attestation" Operation request triggered and verify Device state information	-	Request to TSM for TA installation Send [GetDeviceState] to TEE	-		
		Return DSI as a response to [GetDeviceState]			
Phase#2 Prerequisite operation (if Security domain doesn't exist where the TA should be installed)		d [CreateSD]to create SD where the TA will be installed			✓ Create new SD
Phase#3 Perform Operation requested by SP or Client Application	Send [instalITA] with encrypted TA binary and its personalization	data		 Decrypt TA binary and its personal data. Install TA into target SD. Store personal data in TA's private storage.

OTrP JSON Message Format and Convention

```
"<name>[Request | Response]": {
```

```
"payload": "<payload contents of <name>TBS[Request | Response]>",
```

```
"protected":"<integrity-protected header contents>",
```

```
"header": <non-integrity-protected header contents>,
```

```
"signature":"<signature contents>"
```

For example:

}

{

```
- CreateSDRequest
```

```
- CreateSDResponse
```

Sample OTrP Message: CreateSD Request

"CreateSDTBSRequest": {

"ver": "1.0",

"rid": "<unique request ID>",

"tid": "<transaction ID>", // this may be from prior message

"tee": "<TEE routing name from the DSI for the SD's target>",

"nextdsi": "true | false",

"dsihash": "<hash of DSI returned in the prior query>",

"content": ENCRYPTED { // this piece of JSON data will be encrypted "spid": "<SP ID value>",

"sdname": "<SD name for the domain to be created>",

"spcert": "<BASE64 encoded SP certificate>",

"tamid": "<An identifiable attribute of the TSM certificate>",

"did": "<SHA256 hash of the TEE cert>"

- Signed by TSM and encrypted to target TEE private key
- Includes TSM and SP identity information and respective certificates
 - SD name for SD to be created
 - TAM ID associated TAM owner with the created SD
- "Last known configuration" hash is included to prevent race conditions

Sample OTrP Message: CreateSD Response

"CreateSDTBSResponse": {

"ver": "1.0",

- "status": "<operation result>",
- "rid": "<the request ID received>",
- "tid": "<the transaction ID received>",

"content": ENCRYPTED {

- "reason":"<failure reason detail>", // optional
- "did": "<the device id received from the request>",
- "sdname": "<SD name for the domain created>",
- "teespaik": "<TEE SP AIK public key, BASE64 encoded>",
- "dsi": "<Updated TEE state, including all SD owned by this TSM>"

- Signed by TEE and encrypted to requesting TSM private key
- Create TEE SP AIK if the TEE hasn't created one earlier
- May include a device generated, anonymous public key assigned by TEE to the SP

Message Format Choices

- JSON Message today
- CBOR?
 - As the only mandatory format to replace JSON
 - JSON as mandatory support, CBOR as an alternative format to JSON
 - In a separate RFC draft

Transport Support

- HTTPs as basic one required for a TEE device and a TAM
 - Current draft option
- CoAP as an alternative?
 - Option 1:
 - Only HTTPs as mandatory one, CoAP as optional in both devices and TAM
 - Option 2:
 - TAM supports both HTTPs and CoAP, devices must support CoAP
 - Option 3:
 - TAM and devices must support CoAP

Transport Support Consideration

- TEE generally doesn't have networking capability
- A Rich Application, or Client Application in REE will be doing all networking with TAM
- A Rich App in a device with TEE, which already does PKI cryptography, is most probably capable to do HTTPs, at least on devices with a TEE such as one over TrustZone or SGX today
- Question:
 - Can we start with the protocol with just HTTPs or CoAP must be an mandate for TAM to start with?

Changes from the prior version

- Added transport mandatory support
 - HTTPs as default for now
- Schema small changes to support multiple values
 - GetDeviceStateRequest:
 - Use an array to represent a list of OCSP stapling data ("ocspdat")
 - Use an array to represent a list of support of signing algorithms for algorithm agility instead of comma separate strings ("*supportedsigalgs*")
 - Use JSON Boolean true | false instead of string "true" and "false"
 - Use "TAM" consistently across the entire document in place of "TSM" (e.g. tsmid to tamid)
 - Communicated with GP editors (also preferred during discussion with the editors)

Changes from the prior version cont.

- OTrP Agent API changed to be abstract ones
 Independent of programming languages
- Separated trusted error codes (TEE responded) from the nontrusted error codes (TEE not reachable etc.)
 - E.g. ERR_AGENT_TEE_BUSYERR_AGENT_TEE_FAILERR_AGENT_TEE_UNKNOWN
- Many small editorial updates

Discussion

Thank you!

APPENDIX

GetDeviceState

Assess FW and TEE authenticity and current state prior to a management command

• GetDeviceStateRequest

- Signed by TAM
- Contains TAM identifying and status (OCSP) information
- Typically triggered by an SP Rich Application

GetDeviceStateResponse

- Signed by TEE and encrypted with TAM public key
- Encapsulates TFW signed data
- Contains TEE identifying information and a list of all SDs and TAs managed by the requesting TAM
- May include device generated, anonymous Public Keys assigned by TEE to all registered SPs (if SD present)

• Changed to use JSON Array for OCSP data and supported algorithms

"GetDeviceStateTBSRequest": { "ver": "1.0", "rid": "<Unique request ID>", "tid": "<transaction ID>", "ocspdat": [<OCSP stapling data of TSM certificate and theirs CAs up to the root>], "supported signing algorithms >] "GetDeviceStateRequest": { "payload":"<BASE64URL encoding of the GetDeviceStateTBSRequest JSON above>", "protected": "<BASE64URL encoded signing algorithm>", "header": { "x5c": "<BASE64 encoded TSM certificate chain up to the root CA certificate>" "signature":"<signature contents signed by TSM private key>"