TEEP WG
Problem Statement Recap

Background

* Hardware based security is desirable
— Today'’s processor technology supports various isolation concepts.

— Well known are the concepts like the memory management unit, user and kernel
space, and the hypervisor.

— Additional isolation concepts where a Rich Execution Environment (REE) resides
alongside a Trusted Execution Environment (TEE)

* TEE already widely deployed in the payment industry
* TEE already adopted in other standard bodies (GP, OneM2M, etc.)

Benefits of TEE

* ATEE provides hardware-enforcement that 60
— The device has unique security identity U
— Any code inside the TEE is authorized code 4

* Reduced risk for application compromise

— Any data inside the TEE cannot be read by code outside the TEE

» Safe area of the device to protect assets (great for key management)

— Compromising REE and normal apps don'’t affect TEE and code (called Trusted
Application) running inside TEE

Background: Hardware Details

Protected
Area
External REE TEE
Volatile
Memory
; Public Trusted
Public Trusted
A RAM Crypio RAM ST
Accelerators Accelerators
[[
Public Trusted
Processing Processing
Core(s) Caore(s)
Public ROM Public Trusted ROM e
Peripherals Peripherals
[[
Y Y
. Trusted OTP
Y Public OTP Fields —‘ Cryplographic Assets —|
External l l
Non-Volatile
Memory
Replay

Protected Arsa

Figure: Hardware Arghitectural View of REE and TEE,
Global Platform, TEE System Architecture v1.1

Despite such widely available TEE environment

* Trusted App development and distribution are hard
— Much less than that for normal apps via App Store

— Trust and management issues due to multiple parties involved in the
scenario

o 0

Example use cases for TEE apps

1. Payment

— Only authorized code can make payments or see payment data, to
protect against financial loss

2. loT

— Only authorized code can access physical actuator/sensor, to protect
against safety issues

3. Confidential cloud computing
— Only tenant (not cloud hoster) can access data

Entity Roles and Example Experience

Provides certificates out of band to
*App developer (for code signing)
*TAM (for server certificate)

*TEE (for device certificate)
Different CAs can be used for above.

App developer uploads
their Normal App to a

suitable app store. End user downloads
e’ Trusted App could be Normal App from an app

optionally bundled X store. Normal App triggers (i End User

inside the Normal App. Trusted App install. : :
Pp. PP : o End user enjoys a rich
o ([E o experience and the

security of a TEE
App developer builds two

v

backed trusted
components: App developer sends their trusted app component
1) Normal App to a TAM provider. Optional if Trusted '
2) Trusted App App was distributed via Normal App.
Developer includes a TAM / Normal App on first start
library into normal app to communicates to TAM, and installs
handle the OTrP interaction Trusted App into the TEE

Trusted App Manager
(TAM)

IETF 101 - TEEP WG 7

/ How to verify and N\
allew many App
Developers and
Apps?

How to get
identified and
trusted?

TEE
Providers

v
Device

Manufactures

How to get FW and TEE
packaged and verifiable?

Gaps to utilize hardware based security

Devices with TEE

Normal Applications

v
Trusted Applications

AC

TEEA, B, C, ...

Device owner:
- what developers do |

b\\J [Is FW trustworthy? J

trust?
- what apps to accept? App
Manufacturer: Developers
- how to trust over-the-air
Apps update?
<---==..,,_=. Trl'Jste.d
Applications
° tu-.===_=§=
App Dev Normal
- What TEEs / FW devices Applications
to trust?
- how to identify a remote
device?
- How to update my apps?
““““““ Firmware
Providers
EFEte=TEEP WG\ 8

The Problems

Adoption gap for App Developers
— Applications have to be provisioned somehow into the TEE

— Many device manufacturers + many device types (e.g., phones, tablets, networking equipment,
servers) + multiple TEE providers
* An application provider needs to support

Lack of standards to manage Trusted Apps
— Via proprietary techniques today

— Need to answer

* How is mutual trust based and verified
— App Developers / TAM trusts Device’s TEE / FW
— Device trusts App Developers and Apps to be installed and updated

* What messages for mutual communication
* What permissions that different entities should have

Fragmentation is growing - loT accelerated that fragmentation

Goal

* Define a standardized protocol for providing and managing

trusted applications in various devices with TEE

— Grow the adoption of trusted applications to reduce the inherent security
weakness with rich OS

— Non-lock in for broad device types and providers
* E.g., allow a TAM to work with multiple TEE & device vendors and flavors

— Such a protocol better provides security

Software Updates for loT (SUIT) WG relationship

* TEEP focuses on more on trusted “apps” after boot, whereas
SUIT focuses more on “firmware” for boot

* TEEP focuses on installation of code into a Trusted Execution
Environment (whether for |oT or not), whereas SUIT focuses on
installation of code on an lIoT device (whether in a TEE or not)

* TEEP focuses more on initial provisioning of code the first time,

whereas SUIT focuses more on subsequent updates to already-
provisioned code

Q&A

	Slide 1
	Background
	Benefits of TEE
	Background: Hardware Details
	Despite such widely available TEE environment
	Example use cases for TEE apps
	Slide 7
	Gaps to utilize hardware based security
	The Problems
	Goal
	Software Updates for IoT (SUIT) WG relationship
	Slide 12

