
TEEP WG
Problem Statement Recap

IETF 101, London

1IETF 101 - TEEP WG

Background

• Hardware based security is desirable
– Today’s processor technology supports various isolation concepts.

– Well known are the concepts like the memory management unit, user and kernel
space, and the hypervisor.

– Additional isolation concepts where a Rich Execution Environment (REE) resides
alongside a Trusted Execution Environment (TEE)

• TEE already widely deployed in the payment industry

• TEE already adopted in other standard bodies (GP, OneM2M, etc.)

2IETF 101 - TEEP WG

Benefits of TEE

• A TEE provides hardware-enforcement that
– The device has unique security identity

– Any code inside the TEE is authorized code
• Reduced risk for application compromise

– Any data inside the TEE cannot be read by code outside the TEE
• Safe area of the device to protect assets (great for key management)

– Compromising REE and normal apps don’t affect TEE and code (called Trusted
Application) running inside TEE

3IETF 101 - TEEP WG

Figure: Hardware Architectural View of REE and TEE,

Global Platform, TEE System Architecture v1.1

Background: Hardware Details

4IETF 101 - TEEP WG

Despite such widely available TEE environment

• Trusted App development and distribution are hard
– Much less than that for normal apps via App Store

– Trust and management issues due to multiple parties involved in the
scenario

5IETF 101 - TEEP WG

Example use cases for TEE apps

1. Payment
– Only authorized code can make payments or see payment data, to

protect against financial loss

2. IoT
– Only authorized code can access physical actuator/sensor, to protect

against safety issues

3. Confidential cloud computing
– Only tenant (not cloud hoster) can access data

6IETF 101 - TEEP WG

App developer builds two
components:
1) Normal App
2) Trusted App

Developer includes a TAM
library into normal app to
handle the OTrP interaction

App developer uploads
their Normal App to a
suitable app store.
Trusted App could be
optionally bundled
inside the Normal App.

End user downloads
Normal App from an app
store. Normal App triggers
Trusted App install.

Normal App on first start
communicates to TAM, and installs
Trusted App into the TEE

End user enjoys a rich
experience and the
security of a TEE
backed trusted
component

Trusted App Manager
(TAM)

App Developer

End User

App developer sends their trusted app
to a TAM provider. Optional if Trusted
App was distributed via Normal App.

CAs

Provides certificates out of band to
•App developer (for code signing)
•TAM (for server certificate)
•TEE (for device certificate)
Different CAs can be used for above.

2a

2b

Entity Roles and Example Experience

7IETF 101 - TEEP WG

Gaps to utilize hardware based security

8

TEE A, B, C, …TEE A, B, C, …

Firmware X, Y, ZFirmware X, Y, Z

App
Developers

Device HardwareDevice Hardware

Trusted ApplicationsTrusted Applications

Normal ApplicationsNormal Applications

Device
Manufactures

TEE
Providers

Firmware
Providers

?
App Dev:
- What TEEs / FW devices

to trust?
- how to identify a remote

device?
- How to update my apps?

Trusted
Applications

Devices with TEE

Normal
Applications

Device owner:
- what developers do I

trust?
- what apps to accept?
Manufacturer:
- how to trust over-the-air

Apps update?

?

How to get FW and TEE
packaged and verifiable?

How to get FW and TEE
packaged and verifiable?

How to verify and
allow many App
Developers and
Apps?
How to get
identified and
trusted?

How to verify and
allow many App
Developers and
Apps?
How to get
identified and
trusted?

Is FW trustworthy?Is FW trustworthy?

IETF 101 - TEEP WG

The Problems
• Adoption gap for App Developers

– Applications have to be provisioned somehow into the TEE

– Many device manufacturers + many device types (e.g., phones, tablets, networking equipment,
servers) + multiple TEE providers
• An application provider needs to support

• Lack of standards to manage Trusted Apps
– Via proprietary techniques today

– Need to answer
• How is mutual trust based and verified

– App Developers / TAM trusts Device’s TEE / FW

– Device trusts App Developers and Apps to be installed and updated

• What messages for mutual communication

• What permissions that different entities should have

• Fragmentation is growing - IoT accelerated that fragmentation
9IETF 101 - TEEP WG

Goal

• Define a standardized protocol for providing and managing
trusted applications in various devices with TEE
– Grow the adoption of trusted applications to reduce the inherent security

weakness with rich OS

– Non-lock in for broad device types and providers
• E.g., allow a TAM to work with multiple TEE & device vendors and flavors

– Such a protocol better provides security

10IETF 101 - TEEP WG

Software Updates for IoT (SUIT) WG relationship

• TEEP focuses on more on trusted “apps” after boot, whereas
SUIT focuses more on “firmware” for boot

• TEEP focuses on installation of code into a Trusted Execution
Environment (whether for IoT or not), whereas SUIT focuses on
installation of code on an IoT device (whether in a TEE or not)

• TEEP focuses more on initial provisioning of code the first time,
whereas SUIT focuses more on subsequent updates to already-
provisioned code

Q&A

12IETF 101 - TEEP WG

	Slide 1
	Background
	Benefits of TEE
	Background: Hardware Details
	Despite such widely available TEE environment
	Example use cases for TEE apps
	Slide 7
	Gaps to utilize hardware based security
	The Problems
	Goal
	Software Updates for IoT (SUIT) WG relationship
	Slide 12

