Certificate Compression

draft-ietf-tls-certificate-compression

Alessandro Ghedini, Cloudflare

Victor Vasiliev, Google

1/7

Why compress certificates:

e Reduce amplification factor during QUIC handshake.

o QUIC combines TLS handshake and connection establishment, so the first server
flight can be used for amplification in reflection attacks.

o Explicit source address verification adds 1-RTT to handshake.

e General performance improvement (less is more).

27

From Victor Vasiliev's slides at IETF 98:

Based on analysis of ~30k certificate chains from popular websites:

Compressing chains with Brotli yields (rough estimate):
e -30% size reduction at median
e -48% size reduction at 95th percentile
e Chains fitting into two QUIC packets: 2% -> 54%

e Chains fitting into three QUIC packets: 55% -> 97%

3/7

Current design:

« Supports both server and client certificates compression.

« For server certificates compression, client advertises algorithms it supports in CH
extension:

ClientHello
+ compress_certificates @ -------- >
SUoCECoC ServerHello

{CompressedCertificate}
{CertificateVerify}

« New CompressedCertificate message

struct {
CertificateCompressionAlgorithm algorithm;

uint24 uncompressed length;

opaque compressed_certificate _message<1..2724-1>;
} CompressedCertificate;

 If compression is not desired, server sends normal Certificate message.

417

Current design (cont.):

 For client certificates compression, server advertises algorithms it supports in CR
extension:

ClientHello ceeean-- >
ServerHello

{CertificateRequest}
+ compress_certificates

{CompressedCertificate}
{CertificateVerify}

 If compression is not desired, client sends normal Certificate message.

5/7

TLS 1.3 and later only:

« Extensions in CertificateRequest were introduced in TLS 1.3.

 Certificate is encrypted, so meddling middleboxes can't see it.

6/7

Next steps:

« Get early code points assignment.

« Deploy experiment in real world to gather more data.

717

