
Certi�cate Compression
draft-ietf-tls-certi�cate-compression

Alessandro Ghedini, Cloudflare

Victor Vasiliev, Google

1 / 7

Why compress certi�cates:
Reduce amplification factor during QUIC handshake.

QUIC combines TLS handshake and connection establishment, so the first server
flight can be used for amplification in reflection attacks.

Explicit source address verification adds 1-RTT to handshake.

General performance improvement (less is more).

2 / 7

From Victor Vasiliev's slides at IETF 98:
Based on analysis of ~30k certificate chains from popular websites:

Compressing chains with Brotli yields (rough estimate):

-30% size reduction at median

-48% size reduction at 95th percentile

Chains fitting into two QUIC packets: 2% -> 54%

Chains fitting into three QUIC packets: 55% -> 97%

3 / 7

Current design:
Supports both server and client certificates compression.

For server certificates compression, client advertises algorithms it supports in CH
extension:

ClientHello
+ compress_certificates -------->
 <-------- ServerHello
 ...
 {CompressedCertificate}
 {CertificateVerify}
 ...

New CompressedCertificate message

 struct {
 CertificateCompressionAlgorithm algorithm;

 uint24 uncompressed_length;

 opaque compressed_certificate_message<1..2^24-1>;
 } CompressedCertificate;

If compression is not desired, server sends normal Certificate message.

4 / 7

Current design (cont.):
For client certificates compression, server advertises algorithms it supports in CR
extension:

ClientHello -------->
 ServerHello
 ...
 {CertificateRequest}
 + compress_certificates
 <-------- ...
{CompressedCertificate}
{CertificateVerify}
... -------->

If compression is not desired, client sends normal Certificate message.

5 / 7

TLS 1.3 and later only:
Extensions in CertificateRequest were introduced in TLS 1.3.

Certificate is encrypted, so meddling middleboxes can't see it.

6 / 7

Next steps:
Get early code points assignment.

Deploy experiment in real world to gather more data.

7 / 7

