
Attested TLS Token Binding

Giri Mandyam
draft-mandyam-tokbind-attest

Introduction
• Identity federation systems often use bearer tokens for

client verification
– 3rd parties can validate client when receiving token from trusted

identity provider
– Tokens can come in many forms (JSON web tokens, cookies)

• Bearer tokens that are extracted from the client device can
be used to impersonate the end user

• Problem can also occur when encrypted connection such as
TLS is subject to MITM
– Attacker extracts token

• As a result, the IETF is standardizing token binding for TLS
– https://tools.ietf.org/wg/tokbind/

Introduction (cont.)
• Bearer tokens are still applicable, but client must prove possession

of a private key on every TLS connection to a server
• Current specification requires signing of payload that includes

– Exported Key Material (RFC 5705)
– Tokbind.type and Tokbind.KeyParameters

• User agent (browser) could maintain private keys associated with
TLS token binding
– Problem: User agents are usually implemented in user space; private

keys may be vulnerable
• Attacker that obtains private key and bearer token can impersonate client

– Problem not much better for native applications
• Many OS’s use open source libraries such as OpenSSL to implement secure

socket connection
– Private keys may still be stored in user space

Hardware-Secured Signing for TLS
Token Binding

• Definition, “signing process” – any application or platform
functionality that can execute crypto operations such as signing
– “HW-bound” or “HW-secured” signing process: process runs in the

context of a root-of-trust
• Many existing HW-bound signing processes protect private keys in

trusted environments (trusted execution environment - TEE, secure
element, TPM)
– Examples include HW-secured authenticators (e.g. authenticators

running in TEE)
• Such processes can be used for generating the signature for token

binding
• Relying parties can make decisions as to whether to continue TLS

session with clients based on storage of private keys

Remote Attestation
• Describes the process by which software executing on a device provides

an assertion to a relying party about the integrity of its platform
– The platform in question is the one controlling the tokbind private key

• The attestation can be based on several criteria, including ‘health’
measurements of platform
– An assessment of the operating system kernel
– Enumeration of 3rd-party applications installed in environment where

credential is stored
– Suspicious events such as protected memory access

• Attestation data is formed by combining these indications into a compact
data structure that can be sent to a relying party
– Attestation data is used to form an attestation statement, which is the actual

message sent to the relying party
– Attestation statement should be cryptographically-verifiable (signed and/or

encrypted)

Tokbind Impact

• Inclusion of an attestation in the tokbind message
enabled through an extension
– Sec. 3.4, draft-ietf-tokbind-protocol: “One of the possible

uses of extensions envisioned at the time of this writing is
attestation …”

• Current I.-D. proposes a pairing of attestation type and
attestation data for extension

• Types can be extracted from sources such as
– TCG – TPM v1.2 specifications
– Pre-registered attestation formats in W3C Web

Authentication API spec
• https://www.w3.org/TR/webauthn/#defined-attestation-formats

Recommendations

• Tokbind WG adopt this draft
– Can be informational

• Determine initial attestation formats for
Tokbind
– While still allowing for extensibility

