UDP CS rules

• **ATOMIC**
 – UDP CS if acting as L4
 – OMIT if acting as L2

• **Non-ATOMIC**
 – Never UDP CS each fragment
 – Reassembled result
 • Reassembled CS required if this is the “real” L4
 • OMIT if this layer acts as L2
Reasoning – in order

1. IPv6 assumes L2/L4 checks for errors

2. Tunnels are L2s - but over other L2s

3. Nodes don’t mangle, transmission and reassembly does
 i.e., true L2s check transmission; all L2s check reassembly
 so tunnels that don’t reassemble don’t need checks

4. UDP CS needed when L4;
 UDP CS needed when L2
 only upon reassembly and only on that result

Some details follow…
1. IPv6 assumes others check

• IPv6 has header-only checksum
 – Assumes L2 checks hop errors
 – Assumes L4 checks E2E errors
 – Because “nodes don’t mangle,”
 but packets (at any layer) can be lost

• Which is why UDPv6 requires UDP CS
 – UDPv6 refers to UDP in the IPv6
 – UDPv6 is thus L4
 – L4 needs to check E2E errors

• And why UDP as L2 requires UDP CS
 – But only when there isn’t another layer that does so already…
2. A tunnel is L2

• They look the same:
View from inside the next layer

• Link or tunnel
 – both look like a host-to-host path at layer N
 – ingress/egress or interfaces look like hosts
View from the upper layer

• Both look like a (L2) hop in a (L3) network M
3. Reassembly vs. checks

• Transmission as reassembly
 – Packets become sequence of symbols
 – Symbols represent bits or groups of bits
 – Transmission is reassembly of these groups

• Other reassembly
 – None for “atomic” packets (not fragmented)
 – IPv6 reassembles (but doesn’t check)
 • Still relies on L2 to check chunks, L4 to check whole
4. UDP CS rules

• **ATOMIC**
 - UDP CS if acting as L4
 - OMIT if acting as L2

• **Non-ATOMIC**
 - Never UDP CS each fragment (*wasted effort!*)
 - Reassembled result
 - Reassembled CS required if this is the “real” L4
 - OMIT if this layer acts as L2

Current IPv6 rules