
UDP Options
Implementation Experience
draft-ietf-tsvwg-udp-options-02
Tom Jones
tom@erg.abdn.ac.uk

1
NEAT is funded by the European Union’s Horizon 2020
research and innovation programme under grant
agreement no. 644334.

UDP Option Area

2

 IP transport payload
 <--->
 +--------+---------+----------------------+------------------+
 | IP Hdr | UDP Hdr | UDP user data | surplus area |
 +--------+---------+----------------------+------------------+
 <------------------------------>

UDP Option TLV

3

+--------+ +--------+
| Kind=0 | | Kind=1 |
+--------+ +--------+
 EOL NOP

+--------+--------+
| Kind=2 | Ones8 |
+--------+--------+
 OCS

+--------+--------+--------+--------+
| Kind=3 | Len=4 | CRC16sum |
+--------+--------+--------+--------+
 ACS

UDP Options

4

Kind Length Meaning
--
0* - End of Options List (EOL)
1* - No operation (NOP)
2* 2 Option checksum (OCS)
3 4 Alternate checksum (ACS)
4 4 Lite (LITE)
5 4 Maximum segment size (MSS)
6 10 Timestamps (TIME)
7 12 Fragmentation (FRAG)
8 (varies) Authentication and Encryption (AE)
9-126 (varies) UNASSIGNED (assignable by IANA)
127-253 RESERVED
254 N(>=4) RFC 3692-style experiments (EXP)
255 RESERVED

UDP Options

4

Kind Length Meaning
--
0* - End of Options List (EOL)
1* - No operation (NOP)
2* 2 Option checksum (OCS)
3 4 Alternate checksum (ACS)
4 4 Lite (LITE)
5 4 Maximum segment size (MSS)
6 10 Timestamps (TIME)
7 12 Fragmentation (FRAG)
8 (varies) Authentication and Encryption (AE)
9-126 (varies) UNASSIGNED (assignable by IANA)
127-253 RESERVED
254 N(>=4) RFC 3692-style experiments (EXP)
255 RESERVED

Implementation Status

5

• Implementation for FreeBSD
• https://github.com/uoaerg/freebsd
• branch udpoptions-ietf101

• Wireshark dissector
• PacketDrill Tests

https://github.com/uoaerg/freebsd

• Add two New Options
• Echo Request

• Echo Response

• Probe: Echo request with entire padding packet

New Options to support DPLPMTUD

6

+---------+--------+-----------------+
| Kind=9 | Len=6 | Token |
+---------+--------+-----------------+
 1 byte 1 byte 4 bytes

+---------+--------+-----------------+
| Kind=10 | Len=6 | Token |
+---------+--------+-----------------+
 1 byte 1 byte 4 bytes

Why do we need two options

7

• Each data direction is a separate unidirectional stream
• Use echo request and response in each direction

• Uses:
• To verify UDP Options is supported on the path
• As a connectivity check
• To verify PMTU Probe is received
• Could verify remote receives a specific “option”

Why do we need two options

7

ECHOREQ 0x11223344

• Each data direction is a separate unidirectional stream
• Use echo request and response in each direction

• Uses:
• To verify UDP Options is supported on the path
• As a connectivity check
• To verify PMTU Probe is received
• Could verify remote receives a specific “option”

Why do we need two options

7

ECHOREQ 0x11223344

ECHORES 0x11223344

• Each data direction is a separate unidirectional stream
• Use echo request and response in each direction

• Uses:
• To verify UDP Options is supported on the path
• As a connectivity check
• To verify PMTU Probe is received
• Could verify remote receives a specific “option”

Why do we need two options

7

ECHOREQ 0x11223344

ECHORES 0x11223344

• Each data direction is a separate unidirectional stream
• Use echo request and response in each direction

• Uses:
• To verify UDP Options is supported on the path
• As a connectivity check
• To verify PMTU Probe is received
• Could verify remote receives a specific “option”

ECHOREQ 0x56785678

Why do we need two options

7

ECHOREQ 0x11223344

ECHORES 0x11223344

• Each data direction is a separate unidirectional stream
• Use echo request and response in each direction

• Uses:
• To verify UDP Options is supported on the path
• As a connectivity check
• To verify PMTU Probe is received
• Could verify remote receives a specific “option”

ECHOREQ 0x56785678

ECHORES 0x56785678

Problem with OCS

8

- Derek Fawcus

“I was proposing that the current OCS option be
discarded, and replaced with a fixed length 16 bit
checksum field at the start of the surplus area…

Problem with OCS

8

So I am again proposing:
1. Remove the OCS option.
2. Add a fixed length 16 bit checksum field at a

known location (The start of the surplus area).
3. Potentially allow one to store 0x0000 in that field

to indicate the options themselves are not
protected by a checksum.”- Derek Fawcus

“I was proposing that the current OCS option be
discarded, and replaced with a fixed length 16 bit
checksum field at the start of the surplus area…

• Option space may need to start with padding
• OCS cannot be fixed at start of option space

Problem with OCS

9

• Redefine EOL as (EOL+OCS)
• Always placed at end of packet

• Makes option layout easier
• Reduces minimum option space Len by 1
• Option space becomes:
• OPT,OPT,(NOP,EOL+OCS)

Suggestion:

10

+---------+--------+
| Kind=0 | Ones8 |
+---------+--------+
 1 byte 1 byte

+---------+---------+--------+---------+
| NOP | Kind=0 | 16b OCS |
+---------+---------+--------+---------+
 1 byte 1 byte 2 bytes

Next Steps

• My implementation will be done in June
• Users?
• Other implementations?

11

Acknowledgement
NEAT is funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement
no. 644334.

12

13

void
in_delayed_cksum(struct mbuf *m)
{
 struct ip *ip;
 uint16_t csum, offset, ip_len;

 ip = mtod(m, struct ip *);
 offset = ip->ip_hl << 2 ;
 ip_len = ntohs(ip->ip_len);
 csum = in_cksum_skip(m, ip_len, offset);
 if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
 csum = 0xffff;
 offset += m->m_pkthdr.csum_data; /* checksum offset */
 /* find the mbuf in the chain where the checksum starts*/
 while ((m != NULL) && (offset >= m->m_len)) {
 offset -= m->m_len;
 m = m->m_next;
 }
 *(u_short *)(m->m_data + offset) = csum;
}

Possible end host breakage

