Priority Switching Scheduler draft-finzi-priority-switching-scheduler-01

Anaïs Finzi

Department of Computer Science ISAE-SUPAERO, University of Toulouse

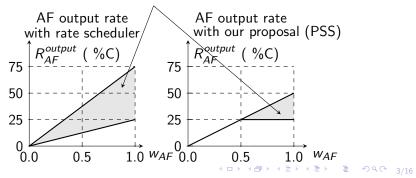
IETF 101 meeting, London, 03-22-2018

Context and Motivation

- Sharing the capacity of a link is an important issue for mixing traffics
- Many existing solutions: Weighted Fair Queuing (WFQ), Deficit Round Robin (DRR), ...
- But all are complex to configure and provide only soft guarantees

Objective of this new Priority Switching Scheduler (PSS): achieve a service closer to PGPS and obtain more predictable available capacities.

UseCase: DiffServ Architecture


Conclusion 0

Priority Switching Scheduler draft-finzi-priority-switching-scheduler-01

We propose the Priority Switching Scheduler (PSS), to **ensure more predictable output rates**.

Usecase example on 3-classes DiffServ core router (following RFC5865) within AF class, what we seek to obtain:

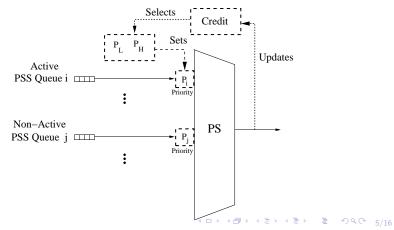
Range of AF output rate as a function of EF input rate and the rate scheduler weight

Draft Content

Introduction

- Context and Motivation
- Priority Switching Scheduler in a nutshell
- Priority Switching Scheduler
 - Specification
 - Implementation
- **③** Usecase: benefit of using PSS in a Diffserv core network
 - Motivation
 - New Service offered
- Security Considerations (TBC)

Priority	Switching	Scheduler
0000000		


UseCase: DiffServ Architecture 0000000

Conclusion O

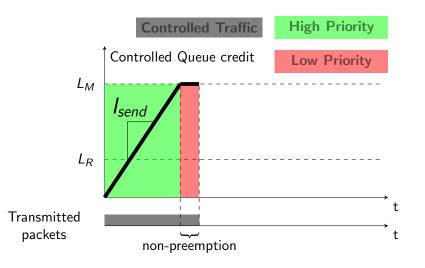
PSS in a nutshell

The PSS is a credit-based scheduler inspired by the Burst Limiting Shaper (BLS) proposed by the IEEE Time Sensitive Networking (TSN) task group.

Its key idea: a credit-depending priority change

PSS Parameters

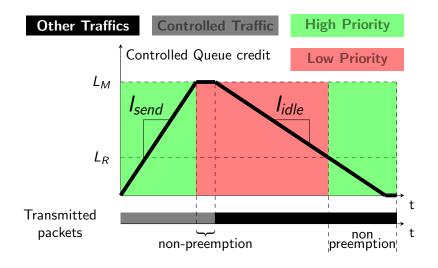
The PSS credit has 3 parameters per controlled queue:


- a Maximum Level (L_M)
- a Resume Level (L_R)
- a Reserved Bandwidth (BW)

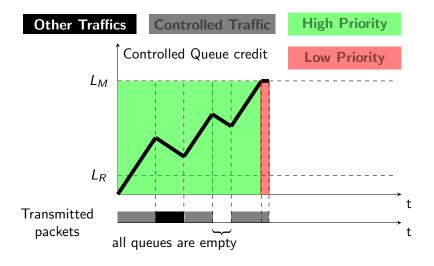
 BW is used with the output link capacity C to compute the credit slopes as follows:

- ullet the sending slope, $\mathit{I_{send}} = (1 \mathit{BW}) \cdot \mathit{C}$
- the idle slope, $I_{idle} = BW \cdot C$

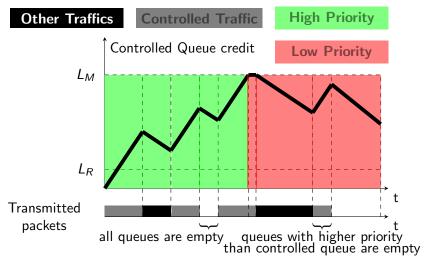
UseCase: DiffServ Architecture


PSS credit evolution

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 7/16


UseCase: DiffServ Architecture

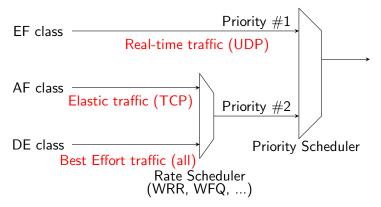
PSS credit evolution


UseCase: DiffServ Architecture

PSS credit evolution

UseCase: DiffServ Architecture

PSS credit evolution

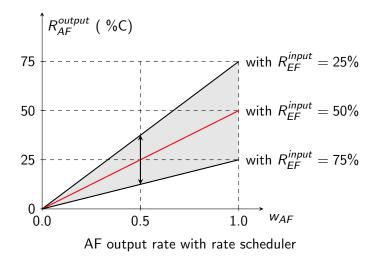


UseCase: DiffServ Architecture

Conclusion 0

UseCase: the DiffServ Architecture A Differentiated Services Code Point (DSCP) for Capacity-Admitted Traffic

Current core router architecture in RFC5865:



Rate Scheduler key feature: limits the capacity available to AF to prevent BE starvation and provide minimum service to both classes

UseCase: DiffServ Architecture

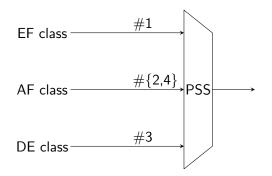
Conclusion 0

AF output rate R_{AF}^{output} with rate scheduler

UseCase: DiffServ Architecture

Conclusion O

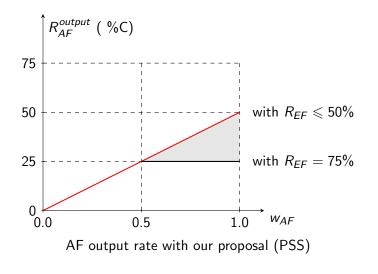
AF output rate R_{AF}^{output} with rate scheduler


R_{AF}^{output} uncertain when R_{EF}^{input} is unknown \Rightarrow our aim: make R_{AF}^{output} more predictable

UseCase: DiffServ Architecture

Conclusion 0

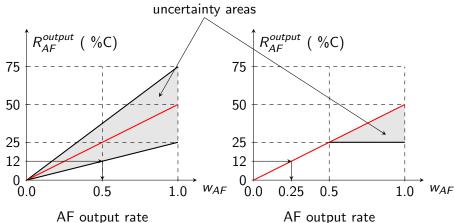
< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 12/16


Proposed core router architecture with 3 queues

UseCase: DiffServ Architecture

Conclusion 0

AF output rate R_{AF}^{output} with PSS



< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 13/16

UseCase: DiffServ Architecture

Conclusion 0

Better quantify AF output rate R_{AF}^{output}

with round robin like rate scheduler

AF output rate with our proposal (PSS)

Usecase: conclusion

- EF class not impacted by the proposed change
- When **EF input rate is known**: PSS and WRR have **same AF output rate**
- When EF input rate varies: the range of possible AF output rates is much narrower with PSS than with WRR
- These results have been corroborated by NS2 simulations (available here)

[1] A.Finzi, A.Mifdaoui, F.Frances, E.Lochin. Improving RFC5865 Core Network Scheduling with a Burst Limiting Shaper. IEEE Globecom, 2017

<ロト <回ト < 三ト < 三ト ミ の へ つ 16/16

Conclusion

To sum up:

- PSS improves the predictability of controlled queues available capacities
- hardware implementable
- can replace any kind pf round robin like scheduler

On-going real implementation

Interest from satellite company to test proposal