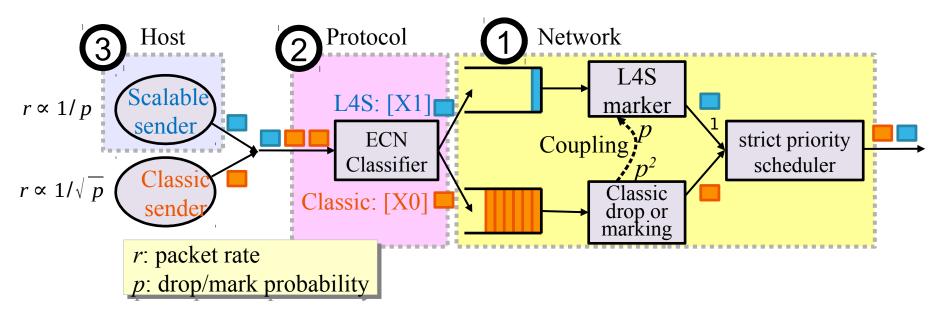
## L4S: Low Latency, Low Loss, Scalable Throughput Internet Service

draft-ietf-tsvwg-l4s-arch-02 draft-ietf-tsvwg-ecn-l4s-id-02 draft-ietf-tsvwg-aqm-dualq-coupled-04


#### Bob Briscoe, CableLabs Koen De Schepper, Nokia Bell Labs Marcelo Bagnulo, UC3M

#### IETF-101 Mar 2018

The authors were part-funded by the European Community under its Seventh Framework Programme through the Reducing Internet Transport Latency (RITE) project (ICT-317700). The views expressed here are solely those of the authors.

# Recap

- Motivation
  - Extremely low queuing delay for all Internet traffic
  - already 1-2 orders better than state of the art
  - 500 µs vs 5-15 ms (fq-CoDel or PIE)
- Architecture



# L4S Status Update (1/2)

• Landing page for code, specs, papers

https://riteproject.eu/dctth/

- Source Code
  - Dual Queue Coupled AQM, DualPI2 for Linux [UPDATE in progress]
  - Data Centre TCP (DCTCP) for Linux (in the mainline kernel), FreeBSD patch, ns2 patch.
  - Accurate ECN TCP Feedback for Linux [testing needed]
- Implementations
  - DualQ Coupled AQM: in at least one chipset aimed at the data centre environment [availability TBA]
  - L4S Scalable congestion control: rmcat SCReAM
  - BBRevo, evolution of BBR with L4S support [NEW, see iccrg Fri]
  - Whole L4S system in ns3 [complete but evolving, first release Jun'18 timeframe]

# L4S Status Update (2/2)

- IETF specs
  - Low Latency, Low Loss, Scalable Throughput (L4S) Internet Service: Architecture <draftietf-tsvwg-l4s-arch-02> [MINOR UPDATE]
  - A proposed new identifier for Low Latency, Low Loss, Scalable throughput (L4S) packets <draft-ietf-tsvwg-ecn-l4s-id-02> [MINOR UPDATE]
  - Dual-queue AQM: : <draft-ietf-tsvwg-aqm-dualq-coupled-04> [2 UPDATES] <see later</p>
  - Interactions of L4S with Diffserv <draft-briscoe-tsvwg-l4s-diffserv-00> [NEW] <see later
  - enabled by <RFC8311> [RFC published]
  - scalable TCP algorithms, e.g. Data Centre TCP (DCTCP) <RFC8257>, TCP Prague
  - Accurate ECN: <draft-ietf-tcpm-accurate-ecn-06> [UPDATED WGLC pending rvw(s)]
  - ECN++ Adding ECN to TCP control packets: <draft-ietf-tcpm-generalized-ecn-02>
    [Supporting measurement paper published in IEEECommMag]
  - ECN support in trill <draft-ietf-trill-ecn-support-07>, motivated by L4S [4 updates, RFC Ed Q]
  - ECN in QUIC <draft-johansson-quic-ecn-03>, motivated by L4S [DES TEAM FORMED]
- 3GPP Proposal
  - ECN visibility to Radio Link Control (RLC) layer, motivated by L4S [Rejected for R15; Retry for R16]

#### DualQ Coupled AQMs for L4S draft-ietf-tsvwg-aqm-dualq-coupled-04

- Two updates in this IETF cycle
- Overload handling
  - explained under security considerations (not just pseudocode in appendix A.2)
- Additional terminology for the control variables
- Un-deprecated WRR for inter-Q scheduler
- Added classifier flexibility, not only ECT(1):
  - addressing
  - protocols (e.g. DNS, LDAP, ARP)
  - or DSCP (see new draft next slides)

#### Interactions between Low Latency Low Loss Scalable throughput (L4S) and Diffserv

draft-briscoe-tsvwg-l4s-diffserv-00 Bob Briscoe, CableLabs IETF-101 Mar 2018

## Why is DualQ Coupled AQM different?

- Diffserv controls bandwidth
  - controls queue latency by allocating bandwidth
- Coupled DualQ: semi-permeable membrane:
  - latency: delay of L queue isolated<sup>1</sup> from C<sup>2</sup>
  - bandwidth: behaves as 1 pool of capacity
- Can add bandwidth allocation to DualQ
  - but typically unnecessary

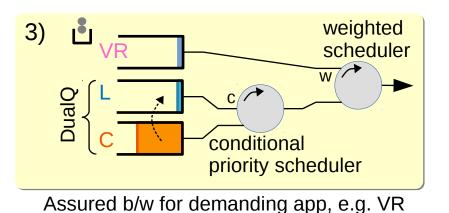
| I thing, 2 perspectives |               |  |  |  |  |  |  |
|-------------------------|---------------|--|--|--|--|--|--|
|                         | Latency L4S   |  |  |  |  |  |  |
|                         | Classic       |  |  |  |  |  |  |
|                         | Bandwidth C L |  |  |  |  |  |  |

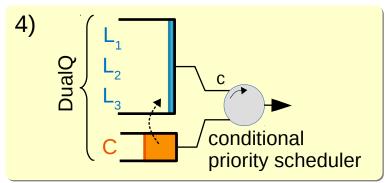
thing 0 normonat

<sup>&</sup>lt;sup>1:</sup> Lower latency is not at the expense of the C queue, C is for legacy

#### L4S-Diffserv: 4 types of interaction 1) None

typical


2) Codepoint mapping (next slide)


• in absence of additional Diffserv queues

3) Operator configures bandwidth alloc'n around DualQ

no different from any AQM + Diffserv

4) Operator configures bandwidth alloc'n within DualQ





Low latency for  $L_1-L_3$ More b/w per flow for  $L_1$  than  $L_3$ (like Diffserv Assured Forwarding)

# Mapping Diffserv Service Classes [RFC4594] to L4S (if operator solely offers Latency & Classic queues)

| Service Class Name    | DSCP Name                | DSCP Value          | App example                      | AQM   | LLD                    |
|-----------------------|--------------------------|---------------------|----------------------------------|-------|------------------------|
| Network Control       | CS7                      | 111000              | (Resv'd for) Network routing     | Y & N | L if ECT1              |
| Network Control       | CS6                      | 110000              | Internetwork routing             | Y & N | L if ECT1              |
| OAM                   | CS2                      | 010000              | Ops, admin, mgmt & provis'ng     | Y & N | L if ECT1              |
| Signalling            | CS5                      | 101000              | IP telephony signalling          | Ν     | L                      |
| Telephony             | EF                       | 101110              | IP telephony bearer              | Ν     | L                      |
|                       | Voice Admit <sup>1</sup> | 101100              | Admission-control'd IP telephony | Ν     | $L^1$                  |
| Real-Time Interactive | CS4                      | 100000              | Video conf & interactive gaming  | Ν     | L if ECT1              |
| MM Conferencing       | AF4x; x=1,2,3            | 100{01,10,11}0      | H.323/V2 video conf. (adaptive)  | Y     | L if ECT1              |
| Broadcast Video       | CS3                      | 011000              | Broadcast TV & live events       | Ν     | L if ECT1              |
| Multimedia Streaming  | AF3x; x=1,2,3            | 011{01,10,11}0      | Streamed video & audio           | Y     | L if ECT1              |
| Low Latency Data      | AF2x; x=1,2,3            | 010{01,10,11}0      | Client-server transactions, Web  | Y     | L if ECT1              |
| High Thrughput Data   | AF1x; x=1,2,3            | 001{01,10,11}0      | Store and forward applications   | Y     | L if ECT1 <sup>2</sup> |
| Standard              | DF (CS0)                 | 000000              | Undifferentiated applications    | Y     | L if ECT1              |
| Low Priority Data     | LE <sup>3</sup>          | 000001 <sup>3</sup> | Any flow with no b/w assurance   | Y     | L if ECT1 <sup>4</sup> |

- "L if ECT1" is not classifed into L 'cos of its DSCP
- Need to consider NTP (advice in RFC4594 n/a for LLD)
- 1. RFC5865 gives Voice Admit priority over EF

2. To take advantage of scalable congestion control

3. Less Effort [draft-ietf-tsvwg-le-phb] update to RFC4594

4. Flows using LE SHOULD also use LE congestion ctrl

# Status & Next Steps

- AQM: aqm-dualq-coupled: continual improvement
  - feedback from implementers (all offlist)
  - evaluation over other specific links besides DSL (DOCSIS, LTE/5G, DC) using ns3, Linux and prototype h/w implementations
- Architecture & Identifier: in holding pattern
  - I4s-arch, ecn-I4s-id





- TCP Prague: Pulling parts together
- aqm-dualq-coupled: more on policing / queue protection
- Review of relationship with Diffserv
- draft-briscoe-tsvwg-l4s-diffserv adoption?
  - loosely coupled to rest of L4S process?

draft-ietf-tsvwg-l4s-arch draft-ietf-tsvwg-ecn-l4s-id draft-ietf-tsvwg-aqm-dualq-coupled draft-briscoe-tsvwg-l4s-diffserv

# Q&A