
Network Working Group                                    B. E. Carpenter
Internet-Draft                                         Univ. of Auckland
Intended status: Informational                              L. Ciavaglia
Expires: 26 January 2021                                           Nokia
                                                                S. Jiang
                                            Huawei Technologies Co., Ltd
                                                               P. Peloso
                                                                   Nokia
                                                            25 July 2020

                Guidelines for Autonomic Service Agents
                draft-carpenter-anima-asa-guidelines-09

Abstract

   This document proposes guidelines for the design of Autonomic Service
   Agents for autonomic networks, as a contribution to describing an
   autonomic ecosystem.  It is based on the Autonomic Network
   Infrastructure outlined in the ANIMA reference model, using the
   Autonomic Control Plane and the Generic Autonomic Signaling Protocol.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 26 January 2021.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights

Carpenter, et al.        Expires 26 January 2021                [Page 1]



Internet-Draft               ASA Guidelines                    July 2020

   and restrictions with respect to this document.  Code Components
   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Logical Structure of an Autonomic Service Agent . . . . . . .   4
   3.  Interaction with the Autonomic Networking Infrastructure  . .   5
     3.1.  Interaction with the security mechanisms  . . . . . . . .   5
     3.2.  Interaction with the Autonomic Control Plane  . . . . . .   5
     3.3.  Interaction with GRASP and its API  . . . . . . . . . . .   6
     3.4.  Interaction with policy mechanism . . . . . . . . . . . .   7
   4.  Interaction with Non-Autonomic Components . . . . . . . . . .   7
   5.  Design of GRASP Objectives  . . . . . . . . . . . . . . . . .   8
   6.  Life Cycle  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     6.1.  Installation phase  . . . . . . . . . . . . . . . . . . .   9
       6.1.1.  Installation phase inputs and outputs . . . . . . . .  10
     6.2.  Instantiation phase . . . . . . . . . . . . . . . . . . .  11
       6.2.1.  Operator’s goal . . . . . . . . . . . . . . . . . . .  11
       6.2.2.  Instantiation phase inputs and outputs  . . . . . . .  12
       6.2.3.  Instantiation phase requirements  . . . . . . . . . .  12
     6.3.  Operation phase . . . . . . . . . . . . . . . . . . . . .  13
   7.  Coordination between Autonomic Functions  . . . . . . . . . .  14
   8.  Coordination with Traditional Management Functions  . . . . .  14
   9.  Robustness  . . . . . . . . . . . . . . . . . . . . . . . . .  14
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  15
   11. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  16
   12. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  16
   13. References  . . . . . . . . . . . . . . . . . . . . . . . . .  16
     13.1.  Normative References . . . . . . . . . . . . . . . . . .  16
     13.2.  Informative References . . . . . . . . . . . . . . . . .  17
   Appendix A.  Change log [RFC Editor: Please remove] . . . . . . .  19
   Appendix B.  Example Logic Flows  . . . . . . . . . . . . . . . .  20
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  25

1.  Introduction

   This document proposes guidelines for the design of Autonomic Service
   Agents (ASAs) in the context of an Autonomic Network (AN) based on
   the Autonomic Network Infrastructure (ANI) outlined in the ANIMA
   reference model [I-D.ietf-anima-reference-model].  This
   infrastructure makes use of the Autonomic Control Plane (ACP)
   [I-D.ietf-anima-autonomic-control-plane] and the Generic Autonomic
   Signaling Protocol (GRASP) [I-D.ietf-anima-grasp].  This document is
   a contribution to the description of an autonomic ecosystem,
   recognizing that a deployable autonomic network needs more than just

Carpenter, et al.        Expires 26 January 2021                [Page 2]



Internet-Draft               ASA Guidelines                    July 2020

   ACP and GRASP implementations.  It must achieve management goals that
   a Network Operations Center (NOC) cannot achieve manually, including
   at least a library of ASAs and corresponding GRASP objective
   definitions.  There must also be tools to deploy and oversee ASAs,
   and integration with existing operational mechanisms [RFC8368].
   However, this document focuses on the design of ASAs, with some
   reference to implementation and operational aspects.

   There is a considerable literature about autonomic agents with a
   variety of proposals about how they should be characterized.  Some
   examples are [DeMola06], [Huebscher08], [Movahedi12] and [GANA13].
   However, for the present document, the basic definitions and goals
   for autonomic networking given in [RFC7575] apply . According to RFC
   7575, an Autonomic Service Agent is "An agent implemented on an
   autonomic node that implements an autonomic function, either in part
   (in the case of a distributed function) or whole."

   ASAs must be distinguished from other forms of software component.
   They are components of network or service management; they do not in
   themselves provide services.  For example, the services envisaged for
   network function virtualisation [RFC8568] or for service function
   chaining [RFC7665] might be managed by an ASA rather than by
   traditional configuration tools.

   The reference model [I-D.ietf-anima-reference-model] expands this by
   adding that an ASA is "a process that makes use of the features
   provided by the ANI to achieve its own goals, usually including
   interaction with other ASAs via the GRASP protocol
   [I-D.ietf-anima-grasp] or otherwise.  Of course it also interacts
   with the specific targets of its function, using any suitable
   mechanism.  Unless its function is very simple, the ASA will need to
   handle overlapping asynchronous operations.  This will require either
   a multi-threaded implementation, or a logically equivalent event loop
   structure.  It may therefore be a quite complex piece of software in
   its own right, forming part of the application layer above the ANI."

   There will certainly be very simple ASAs that manage a single
   objective in a straightforward way and do not need asynchronous
   operations.  In such a case, many aspects of the current document do
   not apply.  However, in general a basic property of an ASA is that it
   is a relatively complex software component that will in many cases
   control and monitor simpler entities in the same host or elsewhere.
   For example, a device controller that manages tens or hundreds of
   simple devices might contain a single ASA.

   The remainder of this document offers guidance on the design of such
   ASAs.

Carpenter, et al.        Expires 26 January 2021                [Page 3]



Internet-Draft               ASA Guidelines                    July 2020

2.  Logical Structure of an Autonomic Service Agent

   As mentioned above, all but the simplest ASAs will need to suport
   asynchronous operations.  Not all programming environments explicitly
   support multi-threading.  In that case, an ’event loop’ style of
   implementation should be adopted, in which case each thread would be
   implemented as an event handler called in turn by the main loop.  For
   this, the GRASP API (Section 3.3) must provide non-blocking calls.
   If necessary, the GRASP session identifier will be used to
   distinguish simultaneous operations.

   A typical ASA will have a main thread that performs various initial
   housekeeping actions such as:

   *  Obtain authorization credentials.

   *  Register the ASA with GRASP.

   *  Acquire relevant policy parameters.

   *  Define data structures for relevant GRASP objectives.

   *  Register with GRASP those objectives that it will actively manage.

   *  Launch a self-monitoring thread.

   *  Enter its main loop.

   The logic of the main loop will depend on the details of the
   autonomic function concerned.  Whenever asynchronous operations are
   required, extra threads will be launched, or events added to the
   event loop.  Examples include:

   *  Repeatedly flood an objective to the AN, so that any ASA can
      receive the objective’s latest value.

   *  Accept incoming synchronization requests for an objective managed
      by this ASA.

   *  Accept incoming negotiation requests for an objective managed by
      this ASA, and then conduct the resulting negotiation with the
      counterpart ASA.

   *  Manage subsidiary non-autonomic devices directly.

   These threads or events should all either exit after their job is
   done, or enter a wait state for new work, to avoid blocking others
   unnecessarily.

Carpenter, et al.        Expires 26 January 2021                [Page 4]



Internet-Draft               ASA Guidelines                    July 2020

   According to the degree of parallelism needed by the application,
   some of these threads or events might be launched in multiple
   instances.  In particular, if negotiation sessions with other ASAs
   are expected to be long or to involve wait states, the ASA designer
   might allow for multiple simultaneous negotiating threads, with
   appropriate use of queues and locks to maintain consistency.

   The main loop itself could act as the initiator of synchronization
   requests or negotiation requests, when the ASA needs data or
   resources from other ASAs.  In particular, the main loop should watch
   for changes in policy parameters that affect its operation.  It
   should also do whatever is required to avoid unnecessary resource
   consumption, such as including an arbitrary wait time in each cycle
   of the main loop.

   The self-monitoring thread is of considerable importance.  Autonomic
   service agents must never fail.  To a large extent this depends on
   careful coding and testing, with no unhandled error returns or
   exceptions, but if there is nevertheless some sort of failure, the
   self-monitoring thread should detect it, fix it if possible, and in
   the worst case restart the entire ASA.

   Appendix B presents some example logic flows in informal pseudocode.

3.  Interaction with the Autonomic Networking Infrastructure

3.1.  Interaction with the security mechanisms

   An ASA by definition runs in an autonomic node.  Before any normal
   ASAs are started, such nodes must be bootstrapped into the autonomic
   network’s secure key infrastructure in accordance with
   [I-D.ietf-anima-bootstrapping-keyinfra].  This key infrastructure
   will be used to secure the ACP (next section) and may be used by ASAs
   to set up additional secure interactions with their peers, if needed.

   Note that the secure bootstrap process itself may include special-
   purpose ASAs that run in a constrained insecure mode.

3.2.  Interaction with the Autonomic Control Plane

   In a normal autonomic network, ASAs will run as users of the ACP,
   which will provide a fully secured network environment for all
   communication with other ASAs, in most cases mediated by GRASP (next
   section).

   Note that the ACP formation process itself may include special-
   purpose ASAs that run in a constrained insecure mode.

Carpenter, et al.        Expires 26 January 2021                [Page 5]



Internet-Draft               ASA Guidelines                    July 2020

3.3.  Interaction with GRASP and its API

   GRASP [I-D.ietf-anima-grasp] is expected to run as a separate process
   with its API [I-D.ietf-anima-grasp-api] available in user space.
   Thus ASAs may operate without special privilege, unless they need it
   for other reasons.  The ASA’s view of GRASP is built around GRASP
   objectives (Section 5), defined as data structures containing
   administrative information such as the objective’s unique name, and
   its current value.  The format and size of the value is not
   restricted by the protocol, except that it must be possible to
   serialise it for transmission in CBOR [RFC7049], which is no
   restriction at all in practice.

   The GRASP API should offer the following features:

   *  Registration functions, so that an ASA can register itself and the
      objectives that it manages.

   *  A discovery function, by which an ASA can discover other ASAs
      supporting a given objective.

   *  A negotiation request function, by which an ASA can start
      negotiation of an objective with a counterpart ASA.  With this,
      there is a corresponding listening function for an ASA that wishes
      to respond to negotiation requests, and a set of functions to
      support negotiating steps.

   *  A synchronization function, by which an ASA can request the
      current value of an objective from a counterpart ASA.  With this,
      there is a corresponding listening function for an ASA that wishes
      to respond to synchronization requests.

   *  A flood function, by which an ASA can cause the current value of
      an objective to be flooded throughout the AN so that any ASA can
      receive it.

   For further details and some additional housekeeping functions, see
   [I-D.ietf-anima-grasp-api].

   This API is intended to support the various interactions expected
   between most ASAs, such as the interactions outlined in Section 2.
   However, if ASAs require additional communication between themselves,
   they can do so using any desired protocol.  One option is to use
   GRASP discovery and synchronization as a rendez-vous mechanism
   between two ASAs, passing communication parameters such as a TCP port
   number via GRASP.  As noted above, either the ACP or in special cases
   the autonomic key infrastructure will be used to secure such
   communications.

Carpenter, et al.        Expires 26 January 2021                [Page 6]



Internet-Draft               ASA Guidelines                    July 2020

3.4.  Interaction with policy mechanism

   At the time of writing, the policy (or "Intent") mechanism for the
   ANI is undefined and is regarded as a research topic.  It is expected
   to operate by an information distribution mechanism (e.g.
   [I-D.liu-anima-grasp-distribution]) that can reach all autonomic
   nodes, and therefore every ASA.  However, each ASA must be capable of
   operating "out of the box" in the absence of locally defined policy,
   so every ASA implementation must include carefully chosen default
   values and settings for all policy parameters.

4.  Interaction with Non-Autonomic Components

   An ASA, to have any external effects, must also interact with non-
   autonomic components of the node where it is installed.  For example,
   an ASA whose purpose is to manage a resource must interact with that
   resource.  An ASA whose purpose is to manage an entity that is
   already managed by local software must interact with that software.
   For example, if such management is performed by NETCONF [RFC6241],
   the ASA must interact directly with the NETCONF server in the same
   node.  This is stating the obvious, and the details are specific to
   each case, but it has an important security implication.  The ASA
   might act as a loophole by which the managed entity could penetrate
   the security boundary of the ANI.  The ASA must be designed to avoid
   such loopholes, and should if possible operate in an unprivileged
   mode.

   In an environment where systems are virtualized and specialized using
   techniques such as network function virtualization or network
   slicing, there will be a design choice whether ASAs are deployed once
   per physical node or once per virtual context.  A related issue is
   whether the ANI as a whole is deployed once on a physical network, or
   whether several virtual ANIs are deployed.  This aspect needs to be
   considered by the ASA designer.

Carpenter, et al.        Expires 26 January 2021                [Page 7]



Internet-Draft               ASA Guidelines                    July 2020

5.  Design of GRASP Objectives

   The general rules for the format of GRASP Objective options, their
   names, and IANA registration are given in [I-D.ietf-anima-grasp].
   Additionally that document discusses various general considerations
   for the design of objectives, which are not repeated here.  However,
   we emphasize that the GRASP protocol does not provide transactional
   integrity.  In other words, if an ASA is capable of overlapping
   several negotiations for a given objective, then the ASA itself must
   use suitable locking techniques to avoid interference between these
   negotiations.  For example, if an ASA is allocating part of a shared
   resource to other ASAs, it needs to ensure that the same part of the
   resource is not allocated twice.  This might impact the design of the
   objective as well as the logic flow of the ASA.

   In particular, if ’dry run’ mode is defined for the objective, its
   specification, and every implementation, must consider what state
   needs to be saved following a dry run negotiation, such that a
   subsequent live negotiation can be expected to succeed.  It must be
   clear how long this state is kept, and what happens if the live
   negotiation occurs after this state is deleted.  An ASA that requests
   a dry run negotiation must take account of the possibility that a
   successful dry run is followed by a failed live negotiation.  Because
   of these complexities, the dry run mechanism should only be supported
   by objectives and ASAs where there is a significant benefit from it.

   The actual value field of an objective is limited by the GRASP
   protocol definition to any data structure that can be expressed in
   Concise Binary Object Representation (CBOR) [RFC7049].  For some
   objectives, a single data item will suffice; for example an integer,
   a floating point number or a UTF-8 string.  For more complex cases, a
   simple tuple structure such as [item1, item2, item3] could be used.
   Nothing prevents using other formats such as JSON, but this requires
   the ASA to be capable of parsing and generating JSON.  The formats
   acceptable by the GRASP API will limit the options in practice.  A
   fallback solution is for the API to accept and deliver the value
   field in raw CBOR, with the ASA itself encoding and decoding it via a
   CBOR library.

   Note that a mapping from YANG to CBOR is defined by
   [I-D.ietf-core-yang-cbor].  Subject to the size limit defined for
   GRASP messages, nothing prevents objectives using YANG in this way.

Carpenter, et al.        Expires 26 January 2021                [Page 8]



Internet-Draft               ASA Guidelines                    July 2020

6.  Life Cycle

   Autonomic functions could be permanent, in the sense that ASAs are
   shipped as part of a product and persist throughout the product’s
   life.  However, a more likely situation is that ASAs need to be
   installed or updated dynamically, because of new requirements or
   bugs.  Because continuity of service is fundamental to autonomic
   networking, the process of seamlessly replacing a running instance of
   an ASA with a new version needs to be part of the ASA’s design.

   The implication of service continuity on the design of ASAs can be
   illustrated along the three main phases of the ASA life-cycle, namely
   Installation, Instantiation and Operation.

                     +--------------+
   Undeployed ------>|              |------> Undeployed
                     |  Installed   |
                 +-->|              |---+
        Mandate  |   +--------------+   | Receives a
      is revoked |   +--------------+   |  Mandate
                 +---|              |<--+
                     | Instantiated |
                 +-->|              |---+
             set |   +--------------+   | set
            down |   +--------------+   | up
                 +---|              |<--+
                     |  Operational |
                     |              |
                     +--------------+

             Figure 1: Life cycle of an Autonomic Service Agent

6.1.  Installation phase

   Before being able to instantiate and run ASAs, the operator must
   first provision the infrastructure with the sets of ASA software
   corresponding to its needs and objectives.  The provisioning of the
   infrastructure is realized in the installation phase and consists in
   installing (or checking the availability of) the pieces of software
   of the different ASA classes in a set of Installation Hosts.

   There are 3 properties applicable to the installation of ASAs:

   The dynamic installation property  allows installing an ASA on
      demand, on any hosts compatible with the ASA.

Carpenter, et al.        Expires 26 January 2021                [Page 9]



Internet-Draft               ASA Guidelines                    July 2020

   The decoupling property  allows controlling resources of a NE from a
      remote ASA, i.e. an ASA installed on a host machine different from
      the resources’ NE.

   The multiplicity property  allows controlling multiple sets of
      resources from a single ASA.

   These three properties are very important in the context of the
   installation phase as their variations condition how the ASA class
   could be installed on the infrastructure.

6.1.1.  Installation phase inputs and outputs

   Inputs are:

   [ASA class of type_x]  that specifies which classes ASAs to install,

   [Installation_target_Infrastructure]  that specifies the candidate
      Installation Hosts,

   [ASA class placement function, e.g. under which criteria/
   constraints as defined by the operator]  that specifies how the
      installation phase shall meet the operator’s needs and objectives
      for the provision of the infrastructure.  In the coupled mode, the
      placement function is not necessary, whereas in the decoupled
      mode, the placement function is mandatory, even though it can be
      as simple as an explicit list of Installation hosts.

   The main output of the installation phase is an up-to-date directory
   of installed ASAs which corresponds to [list of ASA classes]
   installed on [list of installation Hosts].  This output is also
   useful for the coordination function and corresponds to the static
   interaction map (see next section).

   The condition to validate in order to pass to next phase is to ensure
   that [list of ASA classes] are well installed on [list of
   installation Hosts].  The state of the ASA at the end of the
   installation phase is: installed. (not instantiated).  The following
   commands or messages are foreseen: install(list of ASA classes,
   Installation_target_Infrastructure, ASA class placement function),
   and un-install (list of ASA classes).

Carpenter, et al.        Expires 26 January 2021               [Page 10]



Internet-Draft               ASA Guidelines                    July 2020

6.2.  Instantiation phase

   Once the ASAs are installed on the appropriate hosts in the network,
   these ASA may start to operate.  From the operator viewpoint, an
   operating ASA means the ASA manages the network resources as per the
   objectives given.  At the ASA local level, operating means executing
   their control loop/algorithm.

   But right before that, there are two things to take into
   consideration.  First, there is a difference between 1. having a
   piece of code available to run on a host and 2. having an agent based
   on this piece of code running inside the host.  Second, in a coupled
   case, determining which resources are controlled by an ASA is
   straightforward (the determination is embedded), in a decoupled mode
   determining this is a bit more complex (hence a starting agent will
   have to either discover or be taught it).

   The instantiation phase of an ASA covers both these aspects: starting
   the agent piece of code (when this does not start automatically) and
   determining which resources have to be controlled (when this is not
   obvious).

6.2.1.  Operator’s goal

   Through this phase, the operator wants to control its autonomic
   network in two things:

   1  determine the scope of autonomic functions by instructing which of
      the network resources have to be managed by which autonomic
      function (and more precisely which class e.g. 1. version X or
      version Y or 2. provider A or provider B),

   2  determine how the autonomic functions are organized by instructing
      which ASAs have to interact with which other ASAs (or more
      precisely which set of network resources have to be handled as an
      autonomous group by their managing ASAs).

   Additionally in this phase, the operator may want to set objectives
   to autonomic functions, by configuring the ASAs technical objectives.

   The operator’s goal can be summarized in an instruction to the ANIMA
   ecosystem matching the following pattern:

      [ASA of type_x instances] ready to control
      [Instantiation_target_Infrastructure] with
      [Instantiation_target_parameters]

Carpenter, et al.        Expires 26 January 2021               [Page 11]



Internet-Draft               ASA Guidelines                    July 2020

6.2.2.  Instantiation phase inputs and outputs

   Inputs are:

   [ASA of type_x instances]  that specifies which are the ASAs to be
      targeted (and more precisely which class e.g. 1. version X or
      version Y or 2. provider A or provider B),

   [Instantiation_target_Infrastructure]  that specifies which are the
      resources to be managed by the autonomic function, this can be the
      whole network or a subset of it like a domain a technology segment
      or even a specific list of resources,

   [Instantiation_target_parameters]  that specifies which are the
      technical objectives to be set to ASAs (e.g. an optimization
      target)

   Outputs are:

   [Set of ASAs - Resources relations]  describing which resources are
      managed by which ASA instances, this is not a formal message, but
      a resulting configuration of a set of ASAs,

6.2.3.  Instantiation phase requirements

   The instructions described in section 4.2 could be either:

   sent to a targeted ASA  In which case, the receiving Agent will have
      to manage the specified list of
      [Instantiation_target_Infrastructure], with the
      [Instantiation_target_parameters].

   broadcast to all ASAs  In which case, the ASAs would collectively
      determine from the list which Agent(s) would handle which
      [Instantiation_target_Infrastructure], with the
      [Instantiation_target_parameters].

   This set of instructions can be materialized through a message that
   is named an Instance Mandate (description TBD).

   The conclusion of this instantiation phase is a ready to operate ASA
   (or interacting set of ASAs), then this (or those) ASA(s) can
   describe themselves by depicting which are the resources they manage
   and what this means in terms of metrics being monitored and in terms
   of actions that can be executed (like modifying the parameters
   values).  A message conveying such a self description is named an
   Instance Manifest (description TBD).

Carpenter, et al.        Expires 26 January 2021               [Page 12]



Internet-Draft               ASA Guidelines                    July 2020

   Though the operator may well use such a self-description "per se",
   the final goal of such a description is to be shared with other ANIMA
   entities like:

   *  the coordination entities (see [I-D.ciavaglia-anima-coordination])

   *  collaborative entities in the purpose of establishing knowledge
      exchanges (some ASAs may produce knowledge or even monitor metrics
      that other ASAs cannot make by themselves why those would be
      useful for their execution)

6.3.  Operation phase

   Note: This section is to be further developed in future revisions of
   the document, especially the implications on the design of ASAs.

   During the Operation phase, the operator can:

      Activate/Deactivate ASA: meaning enabling those to execute their
      autonomic loop or not.

      Modify ASAs targets: meaning setting them different objectives.

      Modify ASAs managed resources: by updating the instance mandate
      which would specify different set of resources to manage (only
      applicable to decouples ASAs).

   During the Operation phase, running ASAs can interact the one with
   the other:

      in order to exchange knowledge (e.g. an ASA providing traffic
      predictions to load balancing ASA)

      in order to collaboratively reach an objective (e.g.  ASAs
      pertaining to the same autonomic function targeted to manage a
      network domain, these ASA will collaborate - in the case of a load
      balancing one, by modifying the links metrics according to the
      neighboring resources loads)

   During the Operation phase, running ASAs are expected to apply
   coordination schemes

      then execute their control loop under coordination supervision/
      instructions

   The ASA life-cycle is discussed in more detail in "A Day in the Life
   of an Autonomic Function" [I-D.peloso-anima-autonomic-function].

Carpenter, et al.        Expires 26 January 2021               [Page 13]



Internet-Draft               ASA Guidelines                    July 2020

7.  Coordination between Autonomic Functions

   Some autonomic functions will be completely independent of each
   other.  However, others are at risk of interfering with each other -
   for example, two different optimization functions might both attempt
   to modify the same underlying parameter in different ways.  In a
   complete system, a method is needed of identifying ASAs that might
   interfere with each other and coordinating their actions when
   necessary.  This issue is considered in "Autonomic Functions
   Coordination" [I-D.ciavaglia-anima-coordination].

8.  Coordination with Traditional Management Functions

   Some ASAs will have functions that overlap with existing
   configuration tools and network management mechanisms such as command
   line interfaces, DHCP, DHCPv6, SNMP, NETCONF, RESTCONF and YANG-based
   solutions.  Each ASA designer will need to consider this issue and
   how to avoid clashes and inconsistencies.  Some specific
   considerations for interaction with OAM tools are given in [RFC8368].
   As another example, [I-D.ietf-anima-prefix-management] describes how
   autonomic management of IPv6 prefixes can interact with prefix
   delegation via DHCPv6.  The description of a GRASP objective and of
   an ASA using it should include a discussion of any such interactions.

   A related aspect is that management functions often include a data
   model, quite likely to be expressed in a formal notation such as
   YANG.  This aspect should not be an afterthought in the design of an
   ASA.  To the contrary, the design of the ASA and of its GRASP
   objectives should match the data model; as noted above, YANG
   serialized as CBOR may be used directly as the value of a GRASP
   objective.

9.  Robustness

   It is of great importance that all components of an autonomic system
   are highly robust.  In principle they must never fail.  This section
   lists various aspects of robustness that ASA designers should
   consider.

   1.  If despite all precautions, an ASA does encounter a fatal error,
       it should in any case restart automatically and try again.  To
       mitigate a hard loop in case of persistent failure, a suitable
       pause should be inserted before such a restart.  The length of
       the pause depends on the use case.

   2.  If a newly received or calculated value for a parameter falls out
       of bounds, the corresponding parameter should be either left
       unchanged or restored to a safe value.

Carpenter, et al.        Expires 26 January 2021               [Page 14]



Internet-Draft               ASA Guidelines                    July 2020

   3.  If a GRASP synchronization or negotiation session fails for any
       reason, it may be repeated after a suitable pause.  The length of
       the pause depends on the use case.

   4.  If a session fails repeatedly, the ASA should consider that its
       peer has failed, and cause GRASP to flush its discovery cache and
       repeat peer discovery.

   5.  In any case, it may be prudent to repeat discovery periodically,
       depending on the use case.

   6.  Any received GRASP message should be checked.  If it is wrongly
       formatted, it should be ignored.  Within a unicast session, an
       Invalid message (M_INVALID) may be sent.  This function may be
       provided by the GRASP implementation itself.

   7.  Any received GRASP objective should be checked.  If it is wrongly
       formatted, it should be ignored.  Within a negotiation session, a
       Negotiation End message (M_END) with a Decline option (O_DECLINE)
       should be sent.  An ASA may log such events for diagnostic
       purposes.

   8.  If an ASA receives either an Invalid message (M_INVALID) or a
       Negotiation End message (M_END) with a Decline option
       (O_DECLINE), one possible reason is that the peer ASA does not
       support a new feature of either GRASP or of the objective in
       question.  In such a case the ASA may choose to repeat the
       operation concerned without using that new feature.

   9.  All other possible exceptions should be handled in an orderly
       way.  There should be no such thing as an unhandled exception
       (but see point 1 above).

10.  Security Considerations

   ASAs are intended to run in an environment that is protected by the
   Autonomic Control Plane [I-D.ietf-anima-autonomic-control-plane],
   admission to which depends on an initial secure bootstrap process
   [I-D.ietf-anima-bootstrapping-keyinfra].  In some deployments, a
   secure partition of the link layer might be used instead
   [I-D.carpenter-anima-l2acp-scenarios].  However, this does not
   relieve ASAs of responsibility for security.  In particular, when
   ASAs configure or manage network elements outside the ACP, they must
   use secure techniques and carefully validate any incoming
   information.  As noted above, this will apply in particular when an
   ASA interacts with a management component such as a NETCONF server.

Carpenter, et al.        Expires 26 January 2021               [Page 15]



Internet-Draft               ASA Guidelines                    July 2020

   As appropriate to their specific functions, ASAs should take account
   of relevant privacy considerations [RFC6973].

   Authorization of ASAs is a subject for future study.  At present,
   ASAs are trusted by virtue of being installed on a node that has
   successfully joined the ACP.  In the general case, a node may have
   mutltiple roles and a role may use multiple ASAs, each using multiple
   GRASP objectives.  Additional mechanisms for the authorization of
   nodes and ASAs to manipulate specific GRASP objectives could be
   designed.

11.  IANA Considerations

   This document makes no request of the IANA.

12.  Acknowledgements

   Useful comments were received from Michael Behringer Toerless Eckert,
   Alex Galis, Bing Liu, Michael Richardson, and other members of the
   ANIMA WG.

13.  References

13.1.  Normative References

   [I-D.ietf-anima-autonomic-control-plane]
              Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
              Control Plane (ACP)", Work in Progress, Internet-Draft,
              draft-ietf-anima-autonomic-control-plane-27, 2 July 2020,
              <https://tools.ietf.org/html/draft-ietf-anima-autonomic-
              control-plane-27>.

   [I-D.ietf-anima-bootstrapping-keyinfra]
              Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
              and K. Watsen, "Bootstrapping Remote Secure Key
              Infrastructures (BRSKI)", Work in Progress, Internet-
              Draft, draft-ietf-anima-bootstrapping-keyinfra-41, 8 April
              2020, <https://tools.ietf.org/html/draft-ietf-anima-
              bootstrapping-keyinfra-41>.

   [I-D.ietf-anima-grasp]
              Bormann, C., Carpenter, B., and B. Liu, "A Generic
              Autonomic Signaling Protocol (GRASP)", Work in Progress,
              Internet-Draft, draft-ietf-anima-grasp-15, 13 July 2017,
              <https://tools.ietf.org/html/draft-ietf-anima-grasp-15>.

Carpenter, et al.        Expires 26 January 2021               [Page 16]



Internet-Draft               ASA Guidelines                    July 2020

   [RFC7049]  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <https://www.rfc-editor.org/info/rfc7049>.

13.2.  Informative References

   [DeMola06] De Mola, F. and R. Quitadamo, "An Agent Model for Future
              Autonomic Communications", Proceedings of the 7th WOA 2006
              Workshop From Objects to Agents 51-59, September 2006.

   [GANA13]   "Autonomic network engineering for the self-managing
              Future Internet (AFI): GANA Architectural Reference Model
              for Autonomic Networking, Cognitive Networking and Self-
              Management.", April 2013,
              <http://www.etsi.org/deliver/etsi_gs/
              AFI/001_099/002/01.01.01_60/gs_afi002v010101p.pdf>.

   [Huebscher08]
              Huebscher, M. C. and J. A. McCann, "A survey of autonomic
              computing--degrees, models, and applications", ACM
              Computing Surveys (CSUR) Volume 40 Issue 3 DOI:
              10.1145/1380584.1380585, August 2008.

   [I-D.carpenter-anima-l2acp-scenarios]
              Carpenter, B. and B. Liu, "Scenarios and Requirements for
              Layer 2 Autonomic Control Planes", Work in Progress,
              Internet-Draft, draft-carpenter-anima-l2acp-scenarios-02,
              8 April 2020, <https://tools.ietf.org/html/draft-
              carpenter-anima-l2acp-scenarios-02>.

   [I-D.ciavaglia-anima-coordination]
              Ciavaglia, L. and P. Peloso, "Autonomic Functions
              Coordination", Work in Progress, Internet-Draft, draft-
              ciavaglia-anima-coordination-01, 21 March 2016,
              <https://tools.ietf.org/html/draft-ciavaglia-anima-
              coordination-01>.

   [I-D.ietf-anima-grasp-api]
              Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
              Autonomic Signaling Protocol Application Program Interface
              (GRASP API)", Work in Progress, Internet-Draft, draft-
              ietf-anima-grasp-api-06, 12 June 2020,
              <https://tools.ietf.org/html/draft-ietf-anima-grasp-api-
              06>.

   [I-D.ietf-anima-prefix-management]
              Jiang, S., Du, Z., Carpenter, B., and Q. Sun, "Autonomic
              IPv6 Edge Prefix Management in Large-scale Networks", Work

Carpenter, et al.        Expires 26 January 2021               [Page 17]



Internet-Draft               ASA Guidelines                    July 2020

              in Progress, Internet-Draft, draft-ietf-anima-prefix-
              management-07, 18 December 2017,
              <https://tools.ietf.org/html/draft-ietf-anima-prefix-
              management-07>.

   [I-D.ietf-anima-reference-model]
              Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
              and J. Nobre, "A Reference Model for Autonomic
              Networking", Work in Progress, Internet-Draft, draft-ietf-
              anima-reference-model-10, 22 November 2018,
              <https://tools.ietf.org/html/draft-ietf-anima-reference-
              model-10>.

   [I-D.ietf-core-yang-cbor]
              Veillette, M., Petrov, I., and A. Pelov, "CBOR Encoding of
              Data Modeled with YANG", Work in Progress, Internet-Draft,
              draft-ietf-core-yang-cbor-13, 4 July 2020,
              <https://tools.ietf.org/html/draft-ietf-core-yang-cbor-
              13>.

   [I-D.liu-anima-grasp-distribution]
              Liu, B., Xiao, X., Hecker, A., Jiang, S., and Z.
              Despotovic, "Information Distribution in Autonomic
              Networking", Work in Progress, Internet-Draft, draft-liu-
              anima-grasp-distribution-13, 12 December 2019,
              <https://tools.ietf.org/html/draft-liu-anima-grasp-
              distribution-13>.

   [I-D.peloso-anima-autonomic-function]
              Pierre, P. and L. Ciavaglia, "A Day in the Life of an
              Autonomic Function", Work in Progress, Internet-Draft,
              draft-peloso-anima-autonomic-function-01, 21 March 2016,
              <https://tools.ietf.org/html/draft-peloso-anima-autonomic-
              function-01>.

   [Movahedi12]
              Movahedi, Z., Ayari, M., Langar, R., and G. Pujolle, "A
              Survey of Autonomic Network Architectures and Evaluation
              Criteria", IEEE Communications Surveys & Tutorials Volume:
              14 , Issue: 2 DOI: 10.1109/SURV.2011.042711.00078,
              Page(s): 464 - 490, 2012.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

Carpenter, et al.        Expires 26 January 2021               [Page 18]



Internet-Draft               ASA Guidelines                    July 2020

   [RFC6973]  Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
              Morris, J., Hansen, M., and R. Smith, "Privacy
              Considerations for Internet Protocols", RFC 6973,
              DOI 10.17487/RFC6973, July 2013,
              <https://www.rfc-editor.org/info/rfc6973>.

   [RFC7575]  Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
              Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
              Networking: Definitions and Design Goals", RFC 7575,
              DOI 10.17487/RFC7575, June 2015,
              <https://www.rfc-editor.org/info/rfc7575>.

   [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
              Chaining (SFC) Architecture", RFC 7665,
              DOI 10.17487/RFC7665, October 2015,
              <https://www.rfc-editor.org/info/rfc7665>.

   [RFC8368]  Eckert, T., Ed. and M. Behringer, "Using an Autonomic
              Control Plane for Stable Connectivity of Network
              Operations, Administration, and Maintenance (OAM)",
              RFC 8368, DOI 10.17487/RFC8368, May 2018,
              <https://www.rfc-editor.org/info/rfc8368>.

   [RFC8568]  Bernardos, CJ., Rahman, A., Zuniga, JC., Contreras, LM.,
              Aranda, P., and P. Lynch, "Network Virtualization Research
              Challenges", RFC 8568, DOI 10.17487/RFC8568, April 2019,
              <https://www.rfc-editor.org/info/rfc8568>.

Appendix A.  Change log [RFC Editor: Please remove]

   draft-carpenter-anima-asa-guidelines-09, 2020-07-25:

   *  Additional text on future authorization.
   *  Editorial fixes

   draft-carpenter-anima-asa-guidelines-08, 2020-01-10:

   *  Introduced notion of autonomic ecosystem.
   *  Minor technical clarifications.
   *  Converted to v3 format.

   draft-carpenter-anima-asa-guidelines-07, 2019-07-17:

   *  Improved explanation of threading vs event-loop
   *  Other editorial improvements.

   draft-carpenter-anima-asa-guidelines-06, 2018-01-07:

Carpenter, et al.        Expires 26 January 2021               [Page 19]



Internet-Draft               ASA Guidelines                    July 2020

   *  Expanded and improved example logic flow.
   *  Editorial corrections.

   draft-carpenter-anima-asa-guidelines-05, 2018-06-30:

   *  Added section on relationshp with non-autonomic components.
   *  Editorial corrections.

   draft-carpenter-anima-asa-guidelines-04, 2018-03-03:

   *  Added note about simple ASAs.
   *  Added note about NFV/SFC services.
   *  Improved text about threading v event loop model
   *  Added section about coordination with traditional tools.
   *  Added appendix with example logic flow.

   draft-carpenter-anima-asa-guidelines-03, 2017-10-25:

   *  Added details on life cycle.
   *  Added details on robustness.
   *  Added co-authors.

   draft-carpenter-anima-asa-guidelines-02, 2017-07-01:

   *  Expanded description of event-loop case.
   *  Added note about ’dry run’ mode.

   draft-carpenter-anima-asa-guidelines-01, 2017-01-06:

   *  More sections filled in.

   draft-carpenter-anima-asa-guidelines-00, 2016-09-30:

   *  Initial version

Appendix B.  Example Logic Flows

   This appendix describes generic logic flows for an Autonomic Service
   Agent (ASA) for resource management.  Note that these are
   illustrative examples, and in no sense requirements.  As long as the
   rules of GRASP are followed, a real implementation could be
   different.  The reader is assumed to be familiar with GRASP
   [I-D.ietf-anima-grasp] and its conceptual API
   [I-D.ietf-anima-grasp-api].

   A complete autonomic function for a resource would consist of a
   number of instances of the ASA placed at relevant points in a
   network.  Specific details will of course depend on the resource

Carpenter, et al.        Expires 26 January 2021               [Page 20]



Internet-Draft               ASA Guidelines                    July 2020

   concerned.  One example is IP address prefix management, as specified
   in [I-D.ietf-anima-prefix-management].  In this case, an instance of
   the ASA would exist in each delegating router.

   An underlying assumption is that there is an initial source of the
   resource in question, referred to here as an origin ASA.  The other
   ASAs, known as delegators, obtain supplies of the resource from the
   origin, and then delegate quantities of the resource to consumers
   that request it, and recover it when no longer needed.

   Another assumption is there is a set of network wide policy
   parameters, which the origin will provide to the delegators.  These
   parameters will control how the delegators decide how much resource
   to provide to consumers.  Thus the ASA logic has two operating modes:
   origin and delegator.  When running as an origin, it starts by
   obtaining a quantity of the resource from the NOC, and it acts as a
   source of policy parameters, via both GRASP flooding and GRASP
   synchronization.  (In some scenarios, flooding or synchronization
   alone might be sufficient, but this example includes both.)

   When running as a delegator, it starts with an empty resource pool,
   it acquires the policy parameters by GRASP synchronization, and it
   delegates quantities of the resource to consumers that request it.
   Both as an origin and as a delegator, when its pool is low it seeks
   quantities of the resource by requesting GRASP negotiation with peer
   ASAs.  When its pool is sufficient, it hands out resource to peer
   ASAs in response to negotiation requests.  Thus, over time, the
   initial resource pool held by the origin will be shared among all the
   delegators according to demand.

   In theory a network could include any number of origins and any
   number of delegators, with the only condition being that each
   origin’s initial resource pool is unique.  A realistic scenario is to
   have exactly one origin and as many delegators as you like.  A
   scenario with no origin is useless.

   An implementation requirement is that resource pools are kept in
   stable storage.  Otherwise, if a delegator exits for any reason, all
   the resources it has obtained or delegated are lost.  If an origin
   exits, its entire spare pool is lost.  The logic for using stable
   storage and for crash recovery is not included in the pseudocode
   below.

   The description below does not implement GRASP’s ’dry run’ function.
   That would require temporarily marking any resource handed out in a
   dry run negotiation as reserved, until either the peer obtains it in
   a live run, or a suitable timeout expires.

Carpenter, et al.        Expires 26 January 2021               [Page 21]



Internet-Draft               ASA Guidelines                    July 2020

   The main data structures used in each instance of the ASA are:

   *  The resource_pool, for example an ordered list of available
      resources.  Depending on the nature of the resource, units of
      resource are split when appropriate, and a background garbage
      collector recombines split resources if they are returned to the
      pool.

   *  The delegated_list, where a delegator stores the resources it has
      given to consumers routers.

   Possible main logic flows are below, using a threaded implementation
   model.  The transformation to an event loop model should be apparent
   - each thread would correspond to one event in the event loop.

   The GRASP objectives are as follows:

   *  ["EX1.Resource", flags, loop_count, value] where the value depends
      on the resource concerned, but will typically include its size and
      identification.

   *  ["EX1.Params", flags, loop_count, value] where the value will be,
      for example, a JSON object defining the applicable parameters.

   In the outline logic flows below, these objectives are represented
   simply by their names.

Carpenter, et al.        Expires 26 January 2021               [Page 22]



Internet-Draft               ASA Guidelines                    July 2020

   <CODE BEGINS>

   MAIN PROGRAM:

   Create empty resource_pool (and an associated lock)
   Create empty delegated_list
   Determine whether to act as origin
   if origin:
       Obtain initial resource_pool contents from NOC
       Obtain value of EX1.Params from NOC
   Register ASA with GRASP
   Register GRASP objectives EX1.Resource and EX1.Params
   if origin:
       Start FLOODER thread to flood EX1.Params
       Start SYNCHRONIZER listener for EX1.Params
   Start MAIN_NEGOTIATOR thread for EX1.Resource
   if not origin:
       Obtain value of EX1.Params from GRASP flood or synchronization
       Start DELEGATOR thread
   Start GARBAGE_COLLECTOR thread
   do forever:
       good_peer = none
       if resource_pool is low:
           Calculate amount A of resource needed
           Discover peers using GRASP M_DISCOVER / M_RESPONSE
           if good_peer in peers:
               peer = good_peer
           else:
               peer =  #any choice among peers
               grasp.request_negotiate("EX1.Resource", peer)
               i.e., send M_REQ_NEG
               Wait for response (M_NEGOTIATE, M_END or M_WAIT)
               if OK:
                   if offered amount of resource sufficient:
                       Send M_END + O_ACCEPT #negotiation succeeded
                       Add resource to pool
                       good_peer = peer
                   else:
                       Send M_END + O_DECLINE #negotiation failed
       sleep() #sleep time depends on application scenario

   MAIN_NEGOTIATOR thread:

   do forever:
       grasp.listen_negotiate("EX1.Resource")
       i.e., wait for M_REQ_NEG
       Start a separate new NEGOTIATOR thread for requested amount A

Carpenter, et al.        Expires 26 January 2021               [Page 23]



Internet-Draft               ASA Guidelines                    July 2020

   NEGOTIATOR thread:

   Request resource amount A from resource_pool
   if not OK:
       while not OK and A > Amin:
           A = A-1
           Request resource amount A from resource_pool
   if OK:
       Offer resource amount A to peer by GRASP M_NEGOTIATE
       if received M_END + O_ACCEPT:
           #negotiation succeeded
       elif received M_END + O_DECLINE or other error:
           #negotiation failed
   else:
       Send M_END + O_DECLINE #negotiation failed

   DELEGATOR thread:

   do forever:
       Wait for request or release for resource amount A
       if request:
           Get resource amount A from resource_pool
           if OK:
               Delegate resource to consumer
               Record in delegated_list
           else:
               Signal failure to consumer
               Signal main thread that resource_pool is low
       else:
           Delete resource from delegated_list
           Return resource amount A to resource_pool

   SYNCHRONIZER thread:

   do forever:
       Wait for  M_REQ_SYN message for EX1.Params
       Reply with M_SYNCH message for EX1.Params

   FLOODER thread:

   do forever:
       Send M_FLOOD message for EX1.Params
       sleep() #sleep time depends on application scenario

Carpenter, et al.        Expires 26 January 2021               [Page 24]



Internet-Draft               ASA Guidelines                    July 2020

   GARBAGE_COLLECTOR thread:

   do forever:
       Search resource_pool for adjacent resources
       Merge adjacent resources
       sleep() #sleep time depends on application scenario

   <CODE ENDS>

Authors’ Addresses

   Brian Carpenter
   School of Computer Science
   University of Auckland
   PB 92019
   Auckland 1142
   New Zealand

   Email: brian.e.carpenter@gmail.com

   Laurent Ciavaglia
   Nokia
   Villarceaux
   91460 Nozay
   France

   Email: laurent.ciavaglia@nokia.com

   Sheng Jiang
   Huawei Technologies Co., Ltd
   Q14 Huawei Campus
   156 Beiqing Road
   Hai-Dian District
   Beijing
   100095
   China

   Email: jiangsheng@huawei.com

   Pierre Peloso
   Nokia
   Villarceaux
   91460 Nozay
   France

Carpenter, et al.        Expires 26 January 2021               [Page 25]



Internet-Draft               ASA Guidelines                    July 2020

   Email: pierre.peloso@nokia.com

Carpenter, et al.        Expires 26 January 2021               [Page 26]


