
Network Working Group B. E. Carpenter

Internet-Draft Univ. of Auckland

Intended status: Informational S. Jiang

Expires: 13 July 2020 B. Liu

 Huawei Technologies Co., Ltd

 10 January 2020

 Transferring Bulk Data over the GeneRic Autonomic Signaling Protocol

 (GRASP)

 draft-carpenter-anima-grasp-bulk-05

Abstract

 This document describes how bulk data may be transferred between

 Autonomic Service Agents via the GeneRic Autonomic Signaling Protocol

 (GRASP). Although not an equivalent of a file transfer protocol,

 such a technique may be used for non-urgent transfer of data too

 large to fit into a normal GRASP message.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 13 July 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Simplified BSD License text

Carpenter, et al. Expires 13 July 2020 [Page 1]

Internet-Draft Bulk data over GRASP January 2020

 as described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. General Method for Bulk Transfer 3

 3. Example for File Transfer 4

 4. Loss Detection . 7

 5. Maximum Transmission Unit 7

 6. Pipelining . 8

 7. Other Considerations . 8

 8. Possible Future Work . 8

 9. Implementation Status [RFC Editor: please remove] 9

 10. Security Considerations 9

 11. IANA Considerations . 9

 12. Acknowledgements . 9

 13. References . 9

 13.1. Normative References 9

 13.2. Informative References 9

 Appendix A. Change log [RFC Editor: Please remove] 10

 Authors’ Addresses . 11

1. Introduction

 The document [I-D.liu-anima-grasp-distribution] discusses how

 information may be distributed within the secure Autonomic Networking

 Infrastructure (ANI) [I-D.ietf-anima-reference-model]. Specifically,

 it describes using the Synchronization and Flood Synchronization

 mechanisms of the GeneRic Autonomic Signaling Protocol (GRASP)

 [I-D.ietf-anima-grasp] for this purpose as well as proposing GRASP

 extensions to support a publish/subscribe model. However, those

 mechanisms are limited to distributing GRASP Objective Options

 contained in messages that cannot exceed the GRASP maximum message

 size of 2048 bytes. This places a limit on the size of data that can

 be transferred in a Synchronization or Flood operation.

 There are scenarios in autonomic networks where this restriction is a

 problem. One example is the distribution of network policy in

 lengthy formats such as YANG or JSON. Another case might be an

 Autonomic Service Agent (ASA) uploading a log file to the Network

 Operations Center (NOC). A third case might be a supervisory system

 downloading a software upgrade to an autonomic node. A related case

 might be installing the code of a new or updated ASA to a target node

 (see the discussion of ASA life cycles in

 [I-D.carpenter-anima-asa-guidelines]).

Carpenter, et al. Expires 13 July 2020 [Page 2]

Internet-Draft Bulk data over GRASP January 2020

 Naturally, an existing solution such as a secure file transfer

 protocol or secure HTTP might be used for this. Other management

 protocols such as syslog [RFC5424] or NETCONF [RFC6241] might also be

 used for related purposes, or might be mapped directly over GRASP.

 The present document, however, applies to any scenario where it is

 preferable to re-use the autonomic networking infrastructure itself

 to transfer a significant amount of data, rather than install and

 configure an additional mechanism. The basic model is to use the

 GRASP Negotiation process to transfer and acknowledge multiple blocks

 of data in successive negotiation steps, thereby overcoming the GRASP

 message size limitation.

 The emphasis is placed on simplicity rather than efficiency, high

 throughput, or advanced functionality. For example, if a transfer

 gets out of step or data packets are lost, the strategy is to abort

 the transfer and try again. In an enterprise network with low bit

 error rates, and with GRASP running over TCP, this is not considered

 a serious issue. Clearly, a more sophisticated approach could be

 designed but if the application requires that, existing protocols

 could be used, as indicated in the preceding paragraph.

 This is an informational description of a class of solutions.

 Standards track solutions could be published as detailed

 specifications of the corresponding GRASP objectives.

2. General Method for Bulk Transfer

 As for any GRASP operation, the two participants are considered to be

 Autonomic Service Agents (ASAs) and they communicate using a specific

 GRASP Objective Option, containing its own name, some flag bits, a

 loop count, and a value. In bulk transfer, we can model the ASA

 acting as the source of the transfer as a download server, and the

 destination as a download client. No changes or extensions are

 required to GRASP itself, but compared to a normal GRASP negotiation,

 the communication pattern is slightly asymmetric:

 1. The client first discovers the server by the GRASP discovery

 mechanism (M_DISCOVERY and M_RESPONSE messages).

 2. The client then sends a GRASP negotiation request (M_REQ_NEG

 message). The value of the objective expresses the requested

 item (e.g., a file name - see the next section for a detailed

 example).

 3. The server replies with a negotiation step (M_NEGOTIATE message).

 The value of the objective is the first section of the requested

 item (e.g., the first block of the requested file as a raw byte

 string).

Carpenter, et al. Expires 13 July 2020 [Page 3]

Internet-Draft Bulk data over GRASP January 2020

 4. The client replies with a negotiation step (M_NEGOTIATE message).

 The value of the objective is a simple acknowledgement (e.g., the

 text string ’ACK’).

 The last two steps repeat until the transfer is complete. The server

 signals the end by transferring an empty byte string as the final

 value. In this case the client responds with a normal end to the

 negotiation (M_END message with an O_ACCEPT option).

 Errors of any kind are handled with the normal GRASP mechanisms, in

 particular by an M_END message with an O_DECLINE option in either

 direction. In this case the GRASP session terminates. It is then

 the client’s choice whether to retry the operation from the start, as

 a new GRASP session, or to abandon the transfer.

 The block size must be chosen such that each step does not exceed the

 GRASP message size limit of 2048 bits.

 This approach is safe since each block must be positively

 acknowledged, and data transfer errors will be detected by TCP. If a

 future variant of GRASP runs over UDP, the mandatory UDP checksum for

 IPv6 will detect such errors. The method does not specify

 retransmission for failed blocks, so the ASA that detects the error

 must signal the error as above.

 An observant reader will notice that the GRASP loop count mechanism,

 intended to terminate endless negotiations, will cause a problem for

 large transfers. For this reason, both the client and server must

 artificially increment the loop count by 1 before each negotiation

 step, cancelling out the normal decrement at each step.

 If network load is a concern, the data rate can be limited by

 inserting a delay before each negotiation step, with the GRASP

 timeout set accordingly. Either the server or the client, or both,

 could insert such a delay. Also, either side could use the GRASP

 Confirm Waiting (M_WAIT) message to slow the other side down.

 The description above concerns bulk download from a server

 (responding ASA) to a client (requesting ASA). The data transfer

 could also be in the opposite (upload) direction with minor

 modifications to the procedure: the client would send the file name

 and the data blocks, and the server would send acknowledgements.

3. Example for File Transfer

 This example describes a client ASA requesting a file download from a

 server ASA.

Carpenter, et al. Expires 13 July 2020 [Page 4]

Internet-Draft Bulk data over GRASP January 2020

 Firstly we define a GRASP objective informally:

 ["411:mvFile", 3, 6, value]

 The formal CDDL definition [RFC8610] is:

 mvfile-objective = ["411:mvFile", objective-flags, loop-count, value]

 objective-flags = ; as in the GRASP specification

 loop-count = ; as in the GRASP specification

 value = any

 The objective-flags field is set to indicate negotiation.

 Dry run mode must not be used.

 The loop-count is set to a suitable value to limit the scope of

 discovery. A suggested default value is 6.

 The value takes the following forms:

 * In the initial request from the client, a UTF-8 string containing

 the requested file name (with file path if appropriate).

 * In negotiation steps from the server, a byte string containing at

 most 1024 bytes. However:

 - If the file does not exist, the first negotiation step will

 return an M_END, O_DECLINE response.

 - After sending the last block, the next and final negotiation

 step will send an empty byte string as the value.

 * In negotiation steps from the client, the value is the UTF-8

 string ’ACK’.

 Note that the block size of 1024 is chosen to guarantee not only that

 each GRASP message is below the size limit, but also that only one

 TCP data packet will be needed, even on an IPv6 network with a

 minimum link MTU.

 We now present outline pseudocode for the client and the server ASA.

 The API documented in [I-D.ietf-anima-grasp-api] is used in a

 simplified way, and error handling is not shown in detail.

 Pseudo code for client ASA (request and receive a file):

Carpenter, et al. Expires 13 July 2020 [Page 5]

Internet-Draft Bulk data over GRASP January 2020

 requested_obj = objective(’411:mvFile’)

 locator = discover(requested_obj)

 requested_obj.value = ’etc/test.pdf’

 received_obj = request_negotiate(requested_obj, locator)

 if error_code == declined:

 #no such file

 exit

 file = open(requested_obj.value)

 file.write(received_obj.value) #write to file

 eof = False

 while not eof:

 received_obj.value = ’ACK’

 received_obj.loop_count = received_obj.loop_count + 1

 received_obj = negotiate_step(received_obj)

 if received_obj.value == null:

 end_negotiate(True)

 file.close()

 eof = True

 else:

 file.write(received_obj.value) #write to file

 #file received

 exit

 Pseudo code for server ASA (await request and send a file):

 supported_obj = objective(’411:mvFile’)

 requested_obj = listen_negotiate(supported_obj)

 file = open(requested_obj.value) #open the source file

 if no such file:

 end_negotiate(False) #decline negotiation

 exit

 eof = False

 while not eof:

 chunk = file.read(1024) #next block of file

 requested_obj.value = chunk

 requested_obj.loop_count = requested_obj.loop_count + 1

 requested_obj = negotiate_step(requested_obj)

 if chunk == null:

 file.close()

 eof = True

 end_negotiate(True)

 exit

 if requested_obj.value != ’ACK’:

 #unexpected reply...

Carpenter, et al. Expires 13 July 2020 [Page 6]

Internet-Draft Bulk data over GRASP January 2020

4. Loss Detection

 The above description and example assume that GRASP is implemented

 over a reliable transport layer such as TCP, such that lost or

 corrupted messages are not likely. Rarely, an error might be

 detected via a missing ACK, in which case the transfer would be

 aborted and restarted. In the event that GRASP is implemented over

 an unreliable transport layer such as UDP, it would be possible to

 add a block number to both the data block and acknowledgement

 objectives, so that missing blocks can be retransmitted, or duplicate

 blocks can be ignored. For example, the objective in Section 3 would

 become:

 mvfile-objective = ["411:mvFile", objective-flags, loop-count, value]

 objective-flags = ; as in the GRASP specification

 loop-count = ; as in the GRASP specification

 value = [block-number, any]

 block-number = uint

 It would also be necessary for the transport layer to detect data

 errors, for example by enabling UDP checksums.

5. Maximum Transmission Unit

 In an IPv6 environment, a minimal MTU of 1280 bytes can be assumed,

 and assuming that high throughput is not a requirement, bulk

 transfers can be designed to match that MTU. However, there are

 environments where the underlying physical MTU is much smaller. For

 example, on an IEEE 802.15.4 network it may be less than 100 bytes

 [RFC4944]. Even in a 5G network, the Transport Block Size may be

 quite small, depending on the radio parameters. In such a case, a

 bulk transfer solution has several choices:

 1. Accept the overhead of fragmentation in an adaptation layer, and

 therefore assume a network-layer MTU of 1280 bytes. Indeed, the

 presence of such an adaptation layer may be impossible to detect.

 2. Attempt to determine the actual MTU available without lower-layer

 fragmentation. This however will be impossible without using

 low-level functions of the socket interface.

 3. Attempt to determine a message size that provides optimum

 performance, by some sort of trial-and-error solution.

 These complexities suggest that using a GRASP-based mechanism is

 unlikely to be optimal in environments with a very small physical

 MTU.

Carpenter, et al. Expires 13 July 2020 [Page 7]

Internet-Draft Bulk data over GRASP January 2020

6. Pipelining

 The above description and example descibe a simple handshake model

 where each block is acknowledged before the next block is sent. For

 the scenarios discussed in Section 1, this should be acceptable.

 Therefore we do not suggest adding a pipelining or windowing

 mechanism. If high throughput is required, a conventional file

 transfer protocol should be used.

7. Other Considerations

 If multiple transfers are requested simultaneously, each one will

 proceed as a separate GRASP negotiation session. The ASA acting as

 the server must be coded accordingly, like any ASA that needs to

 handle simultaneous sessions [I-D.carpenter-anima-asa-guidelines].

 Bulk transfer might become a utility function for use by various

 ASAs, such as those supporting YANG or JSON distribution, log file

 uploads, or code downloads. In this case some form of user space API

 for bulk transfer will be required. This could be in the form of an

 inter-process communication call between the ASA in question and the

 ASA implementing the bulk transfer mechanism. The details are out of

 scope for this document.

8. Possible Future Work

 The simple file transfer mechanism described above is only an

 example. Other application scenarios should be developed.

 The mechanism described in this document is suitable for simple

 unicast scenarios where GRASP runs over TCP and can be treated as a

 reliable protocol. A more sophisticated approach would be needed in

 at least two cases:

 1. A scenario where GRASP runs over UDP, where error detection and

 retransmission would be essential.

 2. A scenario where multicast data distribution is required, so that

 a mechanism such as Trickle [RFC6206] would be appropriate.

 These solutions might also require extensions to the GRASP protocol

 itself.

Carpenter, et al. Expires 13 July 2020 [Page 8]

Internet-Draft Bulk data over GRASP January 2020

9. Implementation Status [RFC Editor: please remove]

 A prototype open source Python implementation of simple file transfer

 has been used to verify the mechanism described above. It may be

 found at https://github.com/becarpenter/graspy/blob/master/getter.py

 and https://github.com/becarpenter/graspy/blob/master/pusher.py .

10. Security Considerations

 All GRASP transactions are secured by the mandatory security

 substrate required by [I-D.ietf-anima-grasp]. No additional security

 issues are created by the application of GRASP described in this

 document.

11. IANA Considerations

 This document makes no request of the IANA.

12. Acknowledgements

 Thanks to Joel Halpern and other members of the ANIMA WG.

13. References

13.1. Normative References

 [I-D.ietf-anima-grasp]

 Bormann, C., Carpenter, B., and B. Liu, "A Generic

 Autonomic Signaling Protocol (GRASP)", Work in Progress,

 Internet-Draft, draft-ietf-anima-grasp-15, 13 July 2017,

 <https://tools.ietf.org/html/draft-ietf-anima-grasp-15>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

 Definition Language (CDDL): A Notational Convention to

 Express Concise Binary Object Representation (CBOR) and

 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

13.2. Informative References

 [I-D.carpenter-anima-asa-guidelines]

 Carpenter, B., Ciavaglia, L., Jiang, S., and P. Pierre,

 "Guidelines for Autonomic Service Agents", Work in

 Progress, Internet-Draft, draft-carpenter-anima-asa-

 guidelines-07, 6 July 2019, <https://tools.ietf.org/html/

 draft-carpenter-anima-asa-guidelines-07>.

Carpenter, et al. Expires 13 July 2020 [Page 9]

Internet-Draft Bulk data over GRASP January 2020

 [I-D.ietf-anima-grasp-api]

 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic

 Autonomic Signaling Protocol Application Program Interface

 (GRASP API)", Work in Progress, Internet-Draft, draft-

 ietf-anima-grasp-api-04, 6 October 2019,

 <https://tools.ietf.org/html/draft-ietf-anima-grasp-api-

 04>.

 [I-D.ietf-anima-reference-model]

 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,

 and J. Nobre, "A Reference Model for Autonomic

 Networking", Work in Progress, Internet-Draft, draft-ietf-

 anima-reference-model-10, 22 November 2018,

 <https://tools.ietf.org/html/draft-ietf-anima-reference-

 model-10>.

 [I-D.liu-anima-grasp-distribution]

 Liu, B., Xiao, X., Hecker, A., Jiang, S., and Z.

 Despotovic, "Information Distribution in Autonomic

 Networking", Work in Progress, Internet-Draft, draft-liu-

 anima-grasp-distribution-13, 12 December 2019,

 <https://tools.ietf.org/html/draft-liu-anima-grasp-

 distribution-13>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,

 "Transmission of IPv6 Packets over IEEE 802.15.4

 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,

 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC5424] Gerhards, R., "The Syslog Protocol", RFC 5424,

 DOI 10.17487/RFC5424, March 2009,

 <https://www.rfc-editor.org/info/rfc5424>.

 [RFC6206] Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,

 "The Trickle Algorithm", RFC 6206, DOI 10.17487/RFC6206,

 March 2011, <https://www.rfc-editor.org/info/rfc6206>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

Appendix A. Change log [RFC Editor: Please remove]

 draft-carpenter-anima-grasp-bulk-05, 2020-01-10:

 * Minor technical clarifications.

 * Converted to v3 format.

Carpenter, et al. Expires 13 July 2020 [Page 10]

Internet-Draft Bulk data over GRASP January 2020

 draft-carpenter-anima-grasp-bulk-04, 2019-07-03:

 * Updated description of very small link-layer MTU issue.

 * Clarified informational status, updated reference.

 draft-carpenter-anima-grasp-bulk-03, 2019-01-07:

 * Added future work section, implementation status.

 draft-carpenter-anima-grasp-bulk-02, 2018-06-30:

 * Update reference, fix TBDs.

 draft-carpenter-anima-grasp-bulk-01, 2018-03-03:

 * Updates after IETF100 discussion.

 draft-carpenter-anima-grasp-bulk-00, 2017-09-12:

 * Initial version.

Authors’ Addresses

 Brian Carpenter

 School of Computer Science

 University of Auckland

 PB 92019

 Auckland 1142

 New Zealand

 Email: brian.e.carpenter@gmail.com

 Sheng Jiang

 Huawei Technologies Co., Ltd

 Q14 Huawei Campus

 156 Beiqing Road

 Hai-Dian District

 Beijing

 100095

 China

 Email: jiangsheng@huawei.com

 Bing Liu

 Huawei Technologies Co., Ltd

 Q14 Huawei Campus

Carpenter, et al. Expires 13 July 2020 [Page 11]

Internet-Draft Bulk data over GRASP January 2020

 156 Beiqing Road

 Hai-Dian District

 Beijing

 100095

 China

 Email: leo.liubing@huawei.com

Carpenter, et al. Expires 13 July 2020 [Page 12]

