
Network Working Group A. Dekok
Internet-Draft Network RADIUS SARL
Updates: 5880 (if approved) M. Jethanandani
Intended status: Standards Track Kloud Services
Expires: 7 August 2024 S. Agarwal
 Cisco Systems, Inc
 A. Mishra
 Aalyria Technologies
 A. Saxena
 Ciena Corporation
 4 February 2024

 Meticulous Keyed ISAAC for BFD Authentication
 draft-ietf-bfd-secure-sequence-numbers-13

Abstract

 This document describes a new BFD Authentication mechanism,
 Meticulous Keyed ISAAC. This mechanism can be used to authenticate
 BFD packets with less CPU time cost than using MD5 or SHA1, with the
 tradeoff of decreased security. This mechanism cannot be used to
 signal state changes, but it can be used as an authenticated signal
 to maintain a session in the the "Up" state.

 This document updates RFC 5880.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 7 August 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Dekok, et al. Expires 7 August 2024 [Page 1]

Internet-Draft ISAAC Authentication February 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirements Language . 3
 3. Updating RFC 5880 . 3
 4. Architecture of the Auth Type Method 4
 5. Meticulous Keyed ISAAC Authentication Format 5
 6. Meticulous Keyed ISAAC Authentication 6
 7. New State variables for Meticulous Keyed ISAAC 8
 8. Secret Key . 9
 9. Transition to using ISAAC 10
 10. Seeding ISAAC . 11
 10.1. Sender Variable Initialization 12
 10.2. Receiver Variable Initialization 13
 11. Operation . 14
 11.1. Page Flipping . 15
 12. Transition away from using ISAAC 16
 13. IANA Considerations . 17
 14. Security Considerations 17
 14.1. Spoofing . 18
 14.2. Re-Use of keys . 18
 15. Acknowledgements . 19
 16. References . 19
 16.1. Normative References 19
 16.2. Informative References 19
 Authors’ Addresses . 19

1. Introduction

 BFD [RFC5880] (Section 6.7.2) defines a number of authentication
 mechanisms, including Simple Password, and various other methods
 based on MD5 and SHA1 hashes. The benefit of using cryptographic
 hashes is that they are secure. The downside to cryptographic hashes
 is that they are expensive and time consuming on resource-constrained
 hardware.

 When BFD packets are unauthenticated, it is possible for an attacker
 to forge, modify, and/or replay packets on a link. These attacks
 have a number of side effects. They can cause parties to believe

Dekok, et al. Expires 7 August 2024 [Page 2]

Internet-Draft ISAAC Authentication February 2024

 that a link is down, or they can cause parties to believe that the
 link is up when it is, in fact, down. The goal of this specification
 is to use a simple method to prevent spoofing of the BFD session
 being "Up". We therefore define a fast Auth Type method which allows
 parties securely signal that they are still in the Up state.

 This document proposes the use of an Authentication method which
 provides meticulous keying, but which has less impact on resource
 constrained systems. The algorithm chosen is a seeded pseudo-random
 number generator named ISAAC [ISAAC]. ISAAC has been subject to
 significant cryptanalysis in the past thirty years, and has not yet
 been broken. It requires only a few CPU operations per generated
 32-bit number, can take a large secret key as a seed, and it has an
 extremely long period. These properties make it ideal for use in
 BFD.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Updating RFC 5880

 Some of the state variables in BFD [RFC5880] (Section 6.8.1), are
 related to the authentication type being used for a particular
 session. However, the definitions given in BFD [RFC5880] are
 specific to Keyed MD5 or SHA1 Authentication, which limit their
 utility for new authentication types. This specification updates the
 definition of some of the state variables as given below.

 These updated definitions are entirely compatible with the
 definitions given in BFD [RFC5880] (Section 6.8.1), and require no
 changes to existing configurations or implementations. Instead, the
 updated definitions clarify that the state variables apply to the
 current authentication type, no matter what it is.

 These updated definitions also mean that Authentication Sections
 SHOULD include a Sequence Number field. Where a Sequence Number is
 not used (as with Simple Password) the variables bfd.RcvAuthSeq and
 bfd.XmitAuthSeq MUST be set to zero.

 bfd.AuthType:

Dekok, et al. Expires 7 August 2024 [Page 3]

Internet-Draft ISAAC Authentication February 2024

 The current authentication type in use for this session, as
 defined in BFD [RFC5880] (Section 4.1), or zero if no
 authentication is in use. Note that the session MAY change
 AuthType during a session. For example, where the session
 transitions from a more secure AuthType to a less secure one, or
 vice versa.

 Packets which indicate a state transition SHOULD use a secure
 AuthType. Where the bfd.SessionState value is Up, packets MAY use
 a less secure AuthType, such as Meticulous Keyed ISAAC.

 bfd.RcvAuthSeq:
 A 32-bit unsigned integer containing the last sequence number for
 the current Authentication Section that was received. The initial
 value is unimportant.

 bfd.XmitAuthSeq:
 A 32-bit unsigned integer containing the next sequence number for
 for the Authentication Section which will be transmitted. This
 variable MUST be initialized to a random 32-bit value.

 bfd.AuthSeqKnown:
 Set to 1 if the next expected Authentication Section has a
 sequence number which is known, or 0 if it is not known. This
 variable MUST be initialized to zero.

 This variable MUST be set to zero after no packets have been
 received on this session for at least twice the Detection Time.
 This ensures that the sequence number can be resynchronized if the
 remote system restarts.

4. Architecture of the Auth Type Method

 When BFD uses authentication, methods using MD5 or SHA1 are CPU
 intensive, and can negatively impact systems with limited
 computational power.

 However, once the session transitions into the Up state, there is no
 need to authenticate every packet. An optimized authentication
 mechanism as described in Optimizing BFD Authentication
 [I-D.ietf-bfd-optimizing-authentication], permits BFD to use a
 relaxed authentication, that satisfies the ability to provde a less
 expensive authentication, but strong enough that periodic
 reauthentication is not strictly required to prevent a person-in-the-
 middle attack.

Dekok, et al. Expires 7 August 2024 [Page 4]

Internet-Draft ISAAC Authentication February 2024

 We use ISAAC here as a way to generate an infinite stream of pseudo-
 random numbers, referred to here as "Auth-Key"s. With Meticulous
 Keyed ISAAC, these Auth Keys are used as a signal that the sending
 party is authentic. That is, only the sending party can generate the
 correct Auth-Keys. Therefore if the receiving party sees a correct
 Auth-Key, then only the sending party could have generated it. The
 sender is therefore authentic, even if the packet contents have
 potentially been modified in transit.

 Note that with this Auth Type method, the full packet contents are
 not signed or authenticated. Therefore, the Meticulous Keyed ISAAC
 method MUST NOT be used to signal BFD state changes. For BFD state
 changes, and a more optimized way to authenticate packets, please
 refer to BFD Authentication [I-D.ietf-bfd-optimizing-authentication].
 Instead, the packets containing Meticulous Keyed ISAAC are only a
 signal that the sending party is still alive, and that the sending
 party is authentic. That is, this Auth Type method must only be used
 when bfd.SessionState=Up, and the State (Sta) field equals 3 (Up).

5. Meticulous Keyed ISAAC Authentication Format

 If the Authentication Present (A) bit is set in the header, and the
 State (Sta) field equals 3 (Up), and the Authentication Type field
 contains TBD1 (Meticulous Keyed ISAAC), the Authentication
 Section has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Auth Type | Auth Len | Auth Key ID | Reserved |
 +-+
 | Sequence Number |
 +-+
 | Seed |
 +-+
 | Auth-Key |
 +-+

 Auth Type:
 The Authentication Type, which in this case is TBD1 (Meticulous
 Keyed ISAAC). If the State (Sta) field value is not 3 (Up), then
 Meticulous Keyed ISAAC MUST NOT be used.

 Auth Len:
 The length of the Authentication Section, in bytes. For
 Meticulous Keyed ISAAC authentication, the length is 16.

Dekok, et al. Expires 7 August 2024 [Page 5]

Internet-Draft ISAAC Authentication February 2024

 Auth Key ID:
 The authentication key ID in use for this packet. This allows
 multiple secret keys to be active simultaneously.

 Reserved:
 This field MUST be set to zero on transmit, and ignored on
 receipt.

 Sequence Number:
 The sequence number for this packet. For Meticulous Keyed ISAAC
 Authentication, this value is incremented once for each successive
 packet transmitted for a session. This provides protection
 against replay attacks.

 Seed:
 A 32-bit (4 octet) seed which is used in conjunction with the
 shared key in order to configure and initialize the ISAAC pseudo-
 random-number-generator (PRNG). It is used to identify and secure
 different "streams" of random numbers which are generated by
 ISAAC.

 Auth-Key:
 This field carries the 32-bit (4 octet) ISAAC output which is
 associated with the Sequence Number. The ISAAC PRNG MUST be
 configured and initialized as given in Section 10, below.

 Note that the Auth-Key here does not include any summary or hash
 of the packet. The packet itself is completely unauthenticated.

 When the receiving party receives a BFD packet with an expected
 sequence number and the correct corresponding ISAAC output in the
 Auth Key field, it knows that only the authentic sending party could
 have sent that message. The sending party is therefore "Up", and is
 the only one who could have sent the message.

6. Meticulous Keyed ISAAC Authentication

 In this method of authentication, one or more secret keys (with
 corresponding key IDs) are configured in each system. One of the
 keys is used to seed the ISAAC PRNG. The output of ISAAC is used to
 signal that the sender is authentic. To help avoid replay attacks, a
 sequence number is also carried in each packet. For Meticulous Keyed
 ISAAC, the sequence number is incremented on every packet.

Dekok, et al. Expires 7 August 2024 [Page 6]

Internet-Draft ISAAC Authentication February 2024

 The receiving system accepts the packet if the key ID matches one of
 the configured Keys, and the Auth-Key derived from the selected Key,
 Seed, and Sequence Number matches the Auth-Key carried in the packet,
 and the sequence number is strictly greater than the last sequence
 number received (modulo wrap at 2^32)

 Transmission Using Meticulous Keyed ISAAC Authentication

 The Auth Type field MUST be set to TBD1 (Meticulous Keyed ISAAC).
 The Auth Len field MUST be set to 16. The Auth Key ID field MUST
 be set to the ID of the current authentication key. The Sequence
 Number field MUST be set to bfd.XmitAuthSeq.

 The Seed field MUST be set to the value of the current seed used
 for this session.

 The Auth-Key field MUST be set to the output of ISAAC, which
 depends on the secret Key, the current Seed, and the Sequence
 Number.

 For Meticulous Keyed ISAAC, bfd.XmitAuthSeq MUST be incremented on
 each packet, in a circular fashion (when treated as an unsigned
 32-bit value). The bfd.XmitAuthSeq MUST NOT be incremented by
 more than one for a packet.

 Receipt using Meticulous Keyed ISAAC Authentication

 If the received BFD Control packet does not contain an
 Authentication Section, or the Auth Type is not correct (TBD1 for
 Meticulous Keyed ISAAC), then the received packet MUST be
 discarded.

 If the Auth Key ID field does not match the ID of a configured
 authentication key, the received packet MUST be discarded.

 If the Auth Len field is not equal to 16, the packet MUST be
 discarded.

 If bfd.AuthSeqKnown is 1, examine the Sequence Number field. For
 Meticulous keyed ISAAC, if the sequence number lies outside of the
 range of bfd.RcvAuthSeq+1 to bfd.RcvAuthSeq+(3*Detect Mult)
 inclusive (when treated as an unsigned 32-bit circular number
 space) the received packet MUST be discarded.

 If bfd.MetKeyIsaacRcvKeyKnown is "true" and the Seed field does
 not match the current Seed value, bfd.MetKeyIsaacRcvAuthSeed, the
 packet MUST be discarded.

Dekok, et al. Expires 7 August 2024 [Page 7]

Internet-Draft ISAAC Authentication February 2024

 Calculate the current expected output of ISAAC, which depends on
 the secret Key, the current Seed, and the Sequence Number. If the
 value does not matches the Auth-Key field, then the packet MUST be
 discarded.

 If bfd.MetKeyIsaacRcvKeyKnown is "false", the ISAAC related
 variables are initialized as per Section 10.2 using the contents
 of the packet.

 Note that in some cases, calculating the expected output of ISAAC
 will result in the creation of a new "page" of 256 numbers. This
 process will irreversible, and will destroy the current "page".
 As a result, if the generation of a new output will create a new
 "page", the receiving party MUST save a copy of the entire ISAAC
 state before proceeding with this calculation. If the outputs
 match, then the saved copy can be discarded, and the new ISAAC
 state is used. If the outputs do not match, then the saved copy
 MUST be restored, and the modified copy discarded, or cached for
 later use.

7. New State variables for Meticulous Keyed ISAAC

 This document defines a few new state variables for use with
 Meticulous Keyed ISAAC.

 bfd.MetKeyIsaacRcvKeyKnown:
 A boolean value which indicates whether or not the system knows
 the receive key for the Meticulous Keyed ISAAC Auth Type method.
 The initial value is "false". This value is changed to "true"
 when a party verifies that the other party has started to use the
 Meticulous Keyed ISAAC Auth Type method, with an authenticated
 Auth Key.

 bfd.MetKeyIsaacRcvAuthBase:
 A 32-bit unsigned integer containing a copy of the bfd.RcvAuthSeq
 number which is associated with the current ISAAC "page" for
 authenticating received packets.

 bfd.MetKeyIsaacRcvAuthIndex:
 An 8-bit number used to index within a particular "page" of
 pseudo-random numbers.

 bfd.MetKeyIsaacRcvAuthSeed:
 A 32-bit unsigned integer containing a copy of the Seed associated
 with received packets.

Dekok, et al. Expires 7 August 2024 [Page 8]

Internet-Draft ISAAC Authentication February 2024

 bfd.MetKeyIsaacRcvAuthData:
 A data structure which contains the ISAAC data for the received
 Auth Type method.

 bfd.MetKeyIsaacXmitKeyKnown:
 A boolean value which indicates whether or not the system knows
 the xmit key for the Meticulous Keyed ISAAC Auth Type method. The
 initial value is "false". This value is changed to "true" when a
 party starts to transmit using the Meticulous Keyed ISAAC Auth
 Type method.

 bfd.MetKeyIsaacXmitAuthBase:
 A 32-bit unsigned integer containing a copy of the bfd.XmitAuthSeq
 number which is associated with the current ISAAC "page" for
 authenticating sent packets.

 bfd.MetKeyIsaacXmitAuthIndex:
 An 8-bit number used to index within a particular "page" of
 pseudo-random numbers.

 bfd.MetKeyIsaacXmitAuthSeed:
 A 32-bit unsigned integer containing a copy of the Seed associated
 with sent packets.

 bfd.MetKeyIsaacXmitAuthData:
 A data structure which contains the ISAAC data for the sending
 Auth Type method.

8. Secret Key

 The security of this Auth Type depends on the Secret Key. The Secret
 Key is mixed with a per-session Seed as discussed below. The result
 is used to initialize a stream of pseudo-random numbers using the
 ISAAC random number generator

 A particular Secret Key is identified via the Auth Key ID field.
 This Auth Key ID is either placed in the packet by the sender, or
 verified by the receiver. The Meticulous Keyed ISAAC authentication
 method permits systems to have multiple Secret Keys configured, but
 we do not discuss how those keys are managed or used. We do,
 however, require that a session MUST NOT change the Auth Key ID for
 Meticulous Keyed ISAAC, during a session. There is no defined way to
 re-sync or re-initialize an ongoing session with a different Auth Key
 ID and correspondingly different Secret Key

Dekok, et al. Expires 7 August 2024 [Page 9]

Internet-Draft ISAAC Authentication February 2024

 If this Auth Type method was defined as being initialized without a
 per-session Seed, then an attacker could pre-compute the ISAAC states
 for many keys, and perform an off-line dictionary attack. The use of
 the Seed makes these attacks infeasable.

 For interoperability, the management interface by which the key is
 configured MUST accept ASCII strings, and SHOULD also allow for the
 configuration of any arbitrary binary string in hexadecimal form.
 Other configuration methods MAY be supported.

 The Secret Key MUST be at least eight (8) octets in length, and
 SHOULD NOT be more than 128 octets in length.

 There are no known issues with using the same secret Key for multiple
 Auth Type methods. However, it is RECOMMENDED that adminsitrators
 different Secret Keys for each Auth Type.

9. Transition to using ISAAC

 Once a session transitions to the Up state, the packets MAY contain
 AuthType of Meticulous Keyed ISAAC. A system receiving such a packet
 will initialize the ISAAC PRNG state using the Seed from the packet.
 A system originating such a packet will generate a Seed, and place it
 into the packet which is then sent. Further discussion of
 initialization is below in Section 10.1 and Section 10.2.

 There is no negotiation when using this Auth Type method. A sending
 system simply starts sending packets which contain Auth Type of
 Meticulous Keyed ISAAC.

 Similarly, a receiving system sees that it has received a packet
 contains AuthType of Meticulous Keyed ISAAC when
 bfd.MetKeyIsaacRcvKeyKnown variable is "false". The receiving system
 then initializes its variables, and authenticates the received
 packet, by comparing the Auth Key in the packet with the key it
 generated itself.

 Note that switch to a different AuthType method does not affect the
 values of the bfd.RcvAuthSeq or bfd.XmitAuthSeq variables. The
 variables MUST continue using their previous values which were using
 the previous AuthType method.

 However, the operation of those variables MUST now satisfy the
 requirements of the new AuthType method. For example, the AuthType
 could change from Keyed SHA1 (where the variables were not updated on
 every packet) to Meticulous Keyed ISAAC (where the variables are
 updated on every packet).

Dekok, et al. Expires 7 August 2024 [Page 10]

Internet-Draft ISAAC Authentication February 2024

 That is, when changing AuthTypes in a session, the current value of
 the bfd.RcvAuthSeq and bfd.XmitAuthSeq variables is used as the
 initial value(s) for the new AuthType.

 When there is a transition to using ISAAC the first time, the initial
 state has to be seeded. The next section describes this seeding
 process.

10. Seeding ISAAC

 The Seed field is used to is used to identify and secure different
 "streams" of random numbers which are generated by ISAAC. Each
 session uses a different Seed, which is used along with the "Your
 Discriminator" field, and the Secret Key, to initialize ISAAC.

 The value of the Seed field MUST be derived from a secure source.
 Exactly how this can be done is outside of the scope of this
 document.

 A new Seed value MUST be created every time a BFD session transitions
 into the "Up" state. In order to prevent continuous rekeying, once
 the session is in the "Up" state, the Seed for a session MUST NOT be
 changed until another state transition occurs.

 The data used to initialize the ISAAC PRNG is taken from the
 following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Seed |
 +-+
 | Your Discriminator |
 +-+
 | Secret Key ... |
 +-+

 Where the "Your Discriminator" field is taken from the BFD packet
 defined in RFC5880 Section 4.1 [RFC5880]. This field is taken from
 the respective values used by a sending system. For receiving
 systems, the field are taken from the received packet. The length of
 the Secret Key MUST be 1016 octets or less.

 The data is padded to 1024 octets using zeroes, and then is processed
 throught the "randinit()" function of ISAAC. Pseudo-random numbers
 are then produced by calling the "isaac()" function.

Dekok, et al. Expires 7 August 2024 [Page 11]

Internet-Draft ISAAC Authentication February 2024

 For the sender, this calculation can be done outside of the BFD "fast
 path" as soon as the "Your Discriminator" value is known. For the
 receiver, this calculation can only be done when the Seed is received
 from the sender, and therefore needs to be done in the BFD "fast
 path".

 The following figure give Seed and Your-Discriminator as 32-bit hex
 values, and the Secret Key as an eleven-character string. The
 subsequent figure shows the first eight Sequence numbers and
 corresponding Auth Key values which were generated using the above
 initial values.

 Seed 0x0bfd5eed
 Y-Disc 0x4002d15c
 Key RFC5880June

 Sequence Auth Key
 00000000 739ba88a
 00000001 901e5075
 00000002 8e84991c
 00000003 93e534cd
 00000004 fc213b4b
 00000005 f78fc6e6
 00000006 3a44db86
 00000007 7dda6e6a

 Note that this construct requires that the "Your Discriminator" field
 not change during a session. However, it does allow the "My
 Discriminator" field to change as permitted by RFC5880 Section 6.3
 [RFC5880]

 This construct provides for 64 bits of entropy, of which 32 bits is
 controlled by each party in a BFD session. For security, each
 implemention SHOULD randomize their discrimator fields at the start
 of a session, as discussed in RFC5880 Section 10 [RFC5880].

 There is no way to signal or negotiate Seed changes. The receiving
 party MUST remember the current Seed value, and then detect if the
 Seed changes. Note that the Seed value MUST NOT change unless
 sending party has signalled a BFD state change with a a packet that
 is authenticated using a more secure Auth Type method.

10.1. Sender Variable Initialization

 A system which sends packets initializes ISAAC as described above.
 The ISAAC related variables are initialized as follows:

Dekok, et al. Expires 7 August 2024 [Page 12]

Internet-Draft ISAAC Authentication February 2024

 bfd.MetKeyIsaacXmitKeyKnown:
 This variable transitions from "false" to "true" when the sender
 decides to start using ISAAC. The sender also initializes the
 other variables at the same time.

 bfd.MetKeyIsaacXmitAuthBase:
 The sender copies the bfd.XmitAuthSeq number from the current
 packet to be sent into this variable.

 bfd.MetKeyIsaacXmitAuthIndex:
 The sender sets this variable to zero.

 bfd.MetKeyIsaacXmitAuthSeed:
 The sender copies the current Seed value into this variable. This
 variable is then copied into the "Seed" field of each Auth Type
 packet.

 bfd.MetKeyIsaacXmitAuthData:
 The ISAAC state for sending is encapsulated in this variable.

10.2. Receiver Variable Initialization

 When a system receives packets with the Meticulous Keyed ISAAC
 authentication type and is able to authenticate such a packet the
 first time, the ISAAC related variables are initialized as follows:

 bfd.MetKeyIsaacRcvKeyKnown:
 This variable transitions from "false" to "true" when the receiver
 sees that the sender has started using Meticulous Keyed ISAAC
 authentication. The receiver also initializes the other variables
 at the same time.

 bfd.MetKeyIsaacRcvAuthBase:
 The sender the bfd.RcvAuthSeq number from the current packet to be
 sent into this variable.

 bfd.MetKeyIsaacRcvAuthIndex:
 The receiver sets this value to zero

 bfd.MetKeyIsaacRcvAuthSeed:
 The receiver copies the Seed value from the received packet into
 this variable. Note that this copy only occurs when the
 bfd.MetKeyIsaacXmitKeyKnown variable transitions from "false" to
 true"

 bfd.MetKeyIsaacRcvAuthData:
 The ISAAC state for receiving is encapsulated in this variable.

Dekok, et al. Expires 7 August 2024 [Page 13]

Internet-Draft ISAAC Authentication February 2024

 As there may be packet loss, the reciever has to take special care to
 initialize the bfd.MetKeyIsaacRcvAuthBase variable. If there has
 been no packet loss, the bfd.MetKeyIsaacRcvAuthBase is taken directly
 from the bfd.RcvAuthSeq variable, and the bfd.MetKeyIsaacRcvAuthIndex
 is set to zero

 If, however, the packet’s Sequence Number differs from the expected
 value, then the the difference "N" indicates how many packets were
 lost. The receive then has to search through the first "N" Auth Keys
 derived from its calculated ISAAC state in order to find one which
 matches. If no key matches the Auth Key in the packets, the packet
 is deemed to be inauthentic, and is discarded.

 If a calculated key at index "I" does match the Auth Key in the
 packet, then the bfd.MetKeyIsaacRcvAuthIndex field is initialized to
 this value. The bfd.MetKeyIsaacRcvAuthBase field is then initialized
 to contain the value of bfd.RcvAuthSeq, minus the value of
 bfd.MetKeyIsaacRcvAuthIndex. This process allows the pseudo-random
 stream to be re-synchronized in the event of lost packets.

 That is, the value for bfd.MetKeyIsaacRcvAuthBase is the Sequence
 Number for first Auth Key used in this session. This value may be
 from a lost packet, but can never the less be calculated by the
 receiver from a later packet.

 This document does not make provisions for dealing with the case of
 losing more than 256 packets. Implementors should limit the value of
 "Detect Multi" to a small number in order to keep the number of lost
 packets within an acceptable limit.

11. Operation

 Once the variables have been initialized, ISAAC will be able to
 produce 256 random numbers to use as Auth Keys, at near-zero cost.
 The "AuthIndex" field is incremented by one for every new Auth Key
 generated. Each new value of the Sequence Number field (sent or
 received) is then calculated by adding the relevant "AuthBase" and
 "AuthIndex" fields.

 When all 256 numbers are consumed the "AuthIndex" field will wrap to
 zero. The ISAAC mixing function is then run, which then results in
 another set of 256 random numbers. The "AuthBase" variable is then
 incremented by 256, to indicate that 256 Auth Keys have been
 consumed. This process then continues until a BFD state change.

 ISAAC can be thought of here as producing an infinite stream of
 numbers, based on a secret key, where the numbers are produced in
 "pages" of 256 32-bit values. This property of ISAAC allows for

Dekok, et al. Expires 7 August 2024 [Page 14]

Internet-Draft ISAAC Authentication February 2024

 essentially zero-cost "seeking" within a page. The expensive
 operation of mixing is performed only once per 256 packets, which
 means that most BFD packet exchanges can be fast and efficient.

 The receiving party can then look at the Sequence Number to determine
 which particular PRNG value is being used in the packet. By
 subtracting the bfd.MetKeyIsaacAuthBase from the Sequence Number
 (with possible wrapping), an expected "Index" can be derived, and a
 corresponding Auth Key found. This process thus permits the two
 parties to synchronize if/when a packet or packets are lost.

 Incrementing the Sequence Number for every packet also prevents the
 re-use of any individual pseudo-random number which was derived from
 ISAAC.

 The Sequence Number can increment without bounds, though it can wrap
 once it reaches the limit of the 32-bit counter field. ISAAC has a
 cycle length of 2^8287, so there is no issue with using more than
 2^32 values from it.

 The result of the above operation is an infinite series of numbers
 which are unguessable, and which can be used to authenticate the
 sending party.

 Each system sending BFD packets chooses its own seed, and generates
 its own sequence of pseudo-random numbers using ISAAC, and place
 those values into the Auth Key field. Each system receiving BFD
 packets runs a separate pseudo-random number generator, and verifies
 that the received packets contain the expected Auth Key.

11.1. Page Flipping

 Once all 256 Auth Keys from the current page have been used, the
 "next" page is calculated by calling the isaac() function. This
 function processes the current "page" to create the "next" page, and
 is inherently destructive. In order to prevent issues, care should
 be taken to perform this process correctly.

 It is RECOMMENDED that implementations keep both a "current" page,
 and a "next" page associated with the ISAAC state. The "next" can be
 calculated by making a copy of the "current" page, and then calling
 the isaac() function.c. Both pages should be maintained at all
 times.

 This process has a number of benefits. First, the "next" can be
 calculated asynchronously, and does not have to be done in the BFD
 "fast path". At 60 packets per second, the system has approximately
 four (4) seconds to calculate the "next" page.

Dekok, et al. Expires 7 August 2024 [Page 15]

Internet-Draft ISAAC Authentication February 2024

 Second, having the "next" page always available means that an
 attacker cannot spoof BFD packets, and force the received to spend
 significant resources calculating a "next" page on the BFD "fast
 path". Instead, the receiver can simply check the "next" page at
 near-zero cost, and discard the spoofed packet.

 When the receiver determines that it needs to move to the "next"
 page, it can simply swap the "current" and "next" pages (updating the
 BFD variables as appropriate), and then notify an asynchronous system
 to calculate the "next" page. Such asynchronous calculations are
 preferable to calculating the next page in the BFD fast path.

12. Transition away from using ISAAC

 There are two ways to transition away from using ISAAC. One way is
 via state changes: the link either goes down due to an fault, or one
 party signals a state change via a packet signed with a strong Auth
 Type. The second situation is where one party wishes to temporarily
 signal that it is still Up, using a strong Auth Type.

 Since the Meticulous Keyed ISAAC authentication method does not
 provide for full packet integrity checks, it may be desirable for a
 party to periodically use a strong Auth Type. The switch to a
 different Auth Type can be done at any time during a session. The
 different Auth Type can signal that the session is still in the Up
 state.

 It is RECOMMENDED that implementations periodically use a strong Auth
 Type for packets which maintain the session in an Up state. See BFD
 Authentication [I-D.ietf-bfd-optimizing-authentication] for
 appropriate procedures.

 The nature of the Meticulous Keyed ISAAC method means that there is
 no issue with this switch, so long as it is for a small number of
 packets. From the point of view of the Meticulous Keyed ISAAC state
 machine, this switch can be handled similarly to a lost packet. The
 state machine simply notices that instead of Sequence Number value
 being one more than the last value used for ISAAC, it is larger by
 two. The ISAAC state machine then calculates the index into the
 current "page", and uses the found number to validate (or send) the
 Auth Key.

 If the non-ISAAC Auth Type instead runs for extended periods of time,
 then the ISAAC process must continue "in the background" in order to
 maintain synchronization. This process is needed because this method
 does not provide for a way to reinitialize the ISAAC method with new
 Seed value.

Dekok, et al. Expires 7 August 2024 [Page 16]

Internet-Draft ISAAC Authentication February 2024

13. IANA Considerations

 For IANA Consideration, please refer to the IANA Considerations
 section of Optimizing BFD Authentication
 [I-D.ietf-bfd-optimizing-authentication].

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

14. Security Considerations

 The security of this proposal depends strongly on the length of the
 Secret Key, and on its entropy. It is RECOMMENDED that the key be 16
 octets in length or more.

 The dependency on the Secret Key for security is mitigated through
 the use of two 32-bit random numbers, with one generated by each
 party to the BFD session. An attacker cannot simply perform an off-
 line brute-force dictionary attack to discover the key. Instead, any
 analysis has to include the particular 64 bits of entropy used for a
 particular session. As a result, dictionary attacks are more
 difficult than they would be if the PRNG generator depended on
 nothing more than the Secret Key.

 The security of this proposal depends strongly on ISAAC. This
 generator has been analyzed for almost three decades, and has not
 been broken. Research shows that there are few other CSRNGs which
 are as simple and as fast as ISAAC. For example, many other
 generators are based on AES, which is infeasibe for resource
 constrained systems.

 In a keyed algorithm, the key is shared between the two systems.
 Distribution of this key to all the systems at the same time can be
 quite a cumbersome task. BFD sessions running a fast rate may
 require these keys to be refreshed often, which poses a further
 challenge. Therefore, it is difficult to change the keys during the
 operation of a BFD session without affecting the stability of the BFD
 session. Therefore, it is recommended to administratively disable
 the BFD session before changing the keys.

 That is, while the Auth Key ID field provides for the use of multiple
 keys simultaneously, there is no way for each party to signal which
 Key IDs are supported.

Dekok, et al. Expires 7 August 2024 [Page 17]

Internet-Draft ISAAC Authentication February 2024

 The Auth Type method defined here allows the BFD end-points to detect
 a malicious packet, as the calculated hash value will not match the
 value found in the packet. The behavior of the session, when such a
 packet is detected, is based on the implementation. A flood of such
 malicious packets may cause a BFD session to be operationally down.

14.1. Spoofing

 When Meticulous Keyed ISAAC is used, it is possible for an attacker
 who can see the packets to observe a particular Auth Key value, and
 then copy it to a different packet as a "man-in-the-middle" attack.
 However, the usefulness of such an attack is limited by the
 requirements that these packets must not signal state changes in the
 BFD session, and that the Auth Key changes on every packet.

 Performing such an attack would require an attacker to have the
 following information and capabilities:

 This is man-in-the-middle active attack.

 The attacker has the contents of a stable packet

 The attacker has managed to deduce the ISAAC key and knows which
 per-packet key is being used.

 The attack is therefore limited to keeping the BFD session up when it
 would otherwise drop.

 However, the usual actual attack which we are protecting BFD from is
 availability. That is, the attacker is trying to shut down then
 connection when the attacked parties are trying to keep it up. As a
 result, the attacks here seem to be irrelevant in practice.

14.2. Re-Use of keys

 The strength of the Auth-Type methods is significantly different
 between the strong one like SHA-1 and ISAAC. While ISAAC has had
 cryptanalysis, and has not been shown to be broken, that analysis is
 limited. The question then is whether or not it is safe to use the
 same key for both Auth Type methods (SHA1 and ISAAC), or should we
 require different keys for each method?

Dekok, et al. Expires 7 August 2024 [Page 18]

Internet-Draft ISAAC Authentication February 2024

 If we recommend different keys, then it is possible for the two keys
 to be configured differently on each side of a BFD link. For
 example, a correctly configured key could allow to the BFD state
 machine to advance to Up. Then when the session switches to using to
 weaker Auth Type with a different key, that key may not match, and
 the session would immediatly drop. Requiring instead that the keys
 be identical means that no such misconfiguration is possible.

 We believe that the use of the same key is acceptable, as the Auth
 Type defined for ISAAC depends on 64 bits of random data. The use of
 this randomness increases the difficulty of breaking the key, and
 makes off-line dictionary attacks infeasible.

15. Acknowledgements

 The authors would like to thank Jeff Haas and Reshad Rahman for their
 reviews of and suggestions for the document.

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
 (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
 <https://www.rfc-editor.org/info/rfc5880>.

16.2. Informative References

 [I-D.ietf-bfd-optimizing-authentication]
 Jethanandani, M., Mishra, A., Saxena, A., and M. Bhatia,
 "Optimizing BFD Authentication", Work in Progress,
 Internet-Draft, draft-ietf-bfd-optimizing-authentication-
 13, 1 August 2021, <https://datatracker.ietf.org/doc/html/
 draft-ietf-bfd-optimizing-authentication-13>.

 [ISAAC] Jenkins, R. J., "ISAAC",
 http://www.burtleburtle.net/bob/rand/isaac.html, 1996.

Authors’ Addresses

Dekok, et al. Expires 7 August 2024 [Page 19]

Internet-Draft ISAAC Authentication February 2024

 Alan DeKok
 Network RADIUS SARL
 100 Centrepointe Drive #200
 Ottawa ON K2G 6B1
 Canada
 Email: aland@freeradius.org

 Mahesh Jethanandani
 Kloud Services
 Email: mjethanandani@gmail.com

 Sonal Agarwal
 Cisco Systems, Inc
 170 W. Tasman Drive
 San Jose, CA 95070
 United States of America
 Email: agarwaso@cisco.com
 URI: www.cisco.com

 Ashesh Mishra
 Aalyria Technologies
 Email: ashesh@aalyria.com

 Ankur Saxena
 Ciena Corporation
 3939 North First Street
 San Jose, CA 95134
 United States of America
 Email: ankurpsaxena@gmail.com

Dekok, et al. Expires 7 August 2024 [Page 20]

