
DNS Operations T. Finch
Internet-Draft University of Cambridge
Intended status: Standards Track E. Hunt
Expires: January 9, 2020 ISC
 P. van Dijk
 PowerDNS
 A. Eden
 DNSimple
 W. Mekking
 ISC
 July 8, 2019

 Address-specific DNS aliases (ANAME)
 draft-ietf-dnsop-aname-04

Abstract

 This document defines the "ANAME" DNS RR type, to provide similar
 functionality to CNAME, but only for address queries. Unlike CNAME,
 an ANAME can coexist with other record types. The ANAME RR allows
 zone owners to make an apex domain name into an alias in a standards
 compliant manner.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 1.1. Overview
 1.2. Terminology
 2. The ANAME resource record
 2.1. Presentation and wire format

 2.2. Coexistence with other types
 3. Substituting ANAME sibling address records
 4. ANAME processing by primary masters
 4.1. Zone transfers
 4.2. DNSSEC
 4.3. TTLs
 5. ANAME processing by resolvers
 6. Query processing
 6.1. Authoritative servers
 6.1.1. Address queries
 6.1.2. ANAME queries
 6.2. Resolvers
 6.2.1. Address queries
 6.2.2. ANAME queries
 7. IANA considerations
 8. Security considerations
 9. Acknowledgments
 10. Changes since the last revision
 10.1. Version -04
 10.2. Version -03
 10.3. Version -02
 11. References
 11.1. Normative References
 11.2. Informative References
 11.3. URIs
 Appendix A. Implementation status
 Appendix B. Historical note
 Appendix C. On preserving TTLs
 C.1. Query bunching
 C.2. Upstream caches
 C.3. ANAME chains
 C.4. ANAME substitution inside the name server
 C.5. TTLs and zone transfers
 Appendix D. Alternative setups
 D.1. Reducing query volume
 D.2. Zone transfer scalability
 D.3. Tailored responses
 Appendix E. ANAME loops
 Authors’ Addresses

1. Introduction

 It can be desirable to provide web sites (and other services) at a
 bare domain name (such as "example.com") as well as a service-
 specific subdomain ("www.example.com").

 If the web site is hosted by a third-party provider, the ideal way to
 provision its name in the DNS is using a CNAME record, so that the
 third party provider retains control over the mapping from names to
 IP address(es). It is now common for name-to-address mappings to be
 highly dynamic, dependent on client location, server load, etc.

 However, CNAME records cannot coexist with other records with the
 same owner name. (The reason why is explored in Appendix B). This
 restriction means they cannot appear at a zone apex (such as
 "example.com") because of the SOA, NS, and other records that have to
 be present there. CNAME records can also conflict at subdomains, for
 example, if "department.example.edu" has separately hosted mail and
 web servers.

 Redirecting website lookups to an alternate domain name via SRV or
 URI resource records would be an effective solution from the DNS
 point of view, but to date, browser vendors have not accepted this
 approach.

 As a result, the only widely supported and standards-compliant way to
 publish a web site at a bare domain is to place address records (A

 and/or AAAA) at the zone apex. The flexibility afforded by CNAME is
 not available.

 This document specifies a new RR type "ANAME", which provides similar
 functionality to CNAME, but only for address queries (i.e., for type
 A or AAAA). The basic idea is that the address records next to an
 ANAME record are automatically copied from and kept in sync with the
 ANAME target’s address records. The ANAME record can be present at
 any DNS node, and can coexist with most other RR types, enabling it
 to be present at a zone apex, or any other name where the presence of
 other records prevents the use of a CNAME record.

 Similar authoritative functionality has been implemented and deployed
 by a number of DNS software vendors and service providers, using
 names such as ALIAS, ANAME, apex CNAME, CNAME flattening, and top-
 level redirection. These mechanisms are proprietary, which hinders
 the ability of zone owners to have the same data served from multiple
 providers or to move from one provider to another. None of these
 proprietary implementations includes a mechanism for resolvers to
 follow the redirection chain themselves.

1.1. Overview

 The core functionality of this mechanism allows zone administrators
 to start using ANAME records unilaterally, without requiring
 secondary servers or resolvers to be upgraded.

 o The resource record definition in Section 2 is intended to provide
 zone data portability between standards-compliant DNS servers and
 the common core functionality of existing proprietary ANAME-like
 facilities.

 o The zone maintenance mechanism described in Section 4 keeps the
 ANAME’s sibling address records in sync with the ANAME target.

 This definition is enough to be useful by itself. However, it can be
 less than optimal in certain situations: for instance, when the ANAME
 target uses clever tricks to provide different answers to different
 clients to improve latency or load balancing. The query processing
 rules in Section 6 require to include the ANAME record so that
 resolvers can use this information (as described in Section 5) to
 obtain answers that are tailored to the resolver rather than to the
 zone’s primary master.

 Resolver support for ANAME is not necessary, since ANAME-oblivious
 resolvers can get working answers from authoritative servers. It’s
 just an optimization that can be rolled out incrementally, and that
 will help ANAME to work better the more widely it is deployed.

1.2. Terminology

 An "address record" is a DNS resource record whose type is A or AAAA.
 These are referred to as "address types". "Address query" refers to
 a DNS query for any address type.

 When talking about "address records" we mean the entire RRset,
 including owner name and TTL. We treat missing address records (i.e.
 NXDOMAIN or NODATA) the same successfully resolving as a set of zero
 address records, and distinct from "failure" which covers error
 responses such as SERVFAIL or REFUSED.

 The "sibling address records" of an ANAME record are the address
 records at the same owner name as the ANAME, which are subject to
 ANAME substitution.

 The "target address records" of an ANAME record are the address
 records obtained by resolving the ultimate target of the ANAME (see

 Section 3).

 During the process of looking up the target address records, one or
 more CNAME or ANAME records may be encountered. These records are
 not the final target address records, and are referred in this
 document as "intermediate records". The target name must be replaced
 with the new name provided in the RDATA and the new target is
 resolved.

 Other DNS-related terminology can be found in [RFC8499].

 The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be
 interpreted as described in [RFC2119].

2. The ANAME resource record

 This document defines the "ANAME" DNS resource record type, with RR
 TYPE value [TBD].

2.1. Presentation and wire format

 The ANAME presentation format is identical to that of CNAME
 [RFC1033]:

 owner ttl class ANAME target

 The wire format is also identical to CNAME [RFC1035], except that
 name compression is not permitted in ANAME RDATA, per [RFC3597].

2.2. Coexistence with other types

 Only one ANAME <target> can be defined per <owner>. An ANAME RRset
 MUST NOT contain more than one resource record.

 An ANAME’s sibling address records are under the control of ANAME
 processing (see Section 4) and are not first-class records in their
 own right. They MAY exist in zone files, but they can subsequently
 be altered by ANAME processing.

 An ANAME record MAY freely coexist at the same owner name with other
 RR types, except they MUST NOT coexist with CNAME or any other RR
 type that restricts the types with which it can itself coexist. That
 means An ANAME record can coexist at the same owner name with A and
 AAAA records. These are the sibling address records that are updated
 with the target addresses that are retrieved through the ANAME
 substitution process Section 3.

 Like other types, An ANAME record can coexist with DNAME records at
 the same owner name; in fact, the two can be used cooperatively to
 redirect both the owner name address records (via ANAME) and
 everything under it (via DNAME).

3. Substituting ANAME sibling address records

 This process is used by both primary masters (see Section 4) and
 resolvers (see Section 5), though they vary in how they apply the
 edit described in the final step. However, this process is not
 exclusively used by primary masters and resolvers: it may be executed
 as a bump in the wire, as part of the query lookup, or at any other
 point during query resolution.

 The following steps MUST be performed for each address type:

 1. Starting at the ANAME owner, follow the chain of ANAME and/or
 CNAME records as far as possible to find the ultimate target.

 2. If a loop is detected, continue with an empty RRset, otherwise
 get the ultimate target’s address records. (Ignore any sibling
 address records of intermediate ANAMEs.)

 3. Stop if resolution failed. (Note that NXDOMAIN and NODATA count
 as successfully resolving an empty RRset.)

 4. If one or more address records are found, replace the owner of
 the target address records with the owner of the ANAME record.
 Set the TTL to the minimum of the ANAME TTL, the TTL of each
 intermediate record, and the TTL of the target address records.
 Drop any RRSIG records.

 5. Stop if this modified RRset is the same as the sibling RRset
 (ignoring any RRSIG records). The comparison MAY treat nearly-
 equal TTLs as the same.

 6. Delete the sibling address RRset (if any) and replace it with the
 modified RRset.

 At this point, the substituted RRset is not signed. A primary master
 will proceed to sign the substituted RRset, whereas resolvers can
 only use the substituted RRset when an unsigned answer is
 appropriate. This is explained in more detail in the following
 sections.

4. ANAME processing by primary masters

 Each ANAME’s sibling address records are kept up-to-date as if by the
 following process, for each address type:

 o Perform ANAME sibling address record substitution as described in
 Section 3. Any edit performed in the final step is applied to the
 ANAME’s zone. A primary server MAY use Dynamic Updates (DNS
 UPDATE) [RFC2136] to update the zone.

 o If resolution failed, wait for a period before trying again. This
 retry time SHOULD be configurable.

 o Otherwise, wait until the target address RRset TTL has expired or
 is close to expiring, then repeat.

 It may be more efficient to manage the polling per ANAME target
 rather than per ANAME as specified (for example if the same ANAME
 target is used by multiple zones).

 Sibling address records are committed to the zone and stored in
 nonvolatile storage. This allows a server to restart without delays
 due to ANAME processing, use offline DNSSEC signing, and not
 implement special ANAME processing logic when handling a DNS query.

 Appendix D describes how ANAME would fit in different DNS
 architectures that use online signing or tailored responses.

4.1. Zone transfers

 ANAME is no more special than any other RRtype and does not introduce
 any special processing related to zone transfers.

 A zone containing ANAME records that point to frequently-changing
 targets will itself change frequently, and may see an increased
 number of zone transfers. Or if a very large number of zones are
 sharing the same ANAME target, and that changes address, that may
 cause a great volume of zone transfers. Guidance on dealing with
 ANAME in large scale implementations is provided Appendix D.

 Secondary servers rely on zone transfers to obtain sibling address

 records, just like the rest of the zone, and serve them in the usual
 way (see Section 6). A working DNS NOTIFY [RFC1996] setup is
 recommended to avoid extra delays propagating updated sibling address
 records when they change.

4.2. DNSSEC

 A zone containing ANAME records that will update address records has
 to do so before signing the zone with DNSSEC [RFC4033] [RFC4034]
 [RFC4035]. This means that for traditional DNSSEC signing the
 substitution of sibling address records must be done before signing
 and loading the zone into the name server. For servers that support
 online signing, the substitution may happen as part of the name
 server process, after loading the zone.

 DNSSEC signatures on sibling address records are generated in the
 same way as for normal (dynamic) updates.

4.3. TTLs

 Sibling address records are served from authoritative servers with a
 fixed TTL. Normally this TTL is expected to be the same as the
 target address records’ TTL; however the exact mechanism for
 obtaining the target is unspecified, so cache effects, following
 ANAME and CNAME chains, or deliberate policies might make the sibling
 TTL smaller.

 This means that when adding address records into the zone as a result
 of ANAME processing, the TTL to use is at most that of the TTL of the
 address target records. If you use a higher value, this will stretch
 the TTL which is undesired.

 TTL stretching is hard to avoid when implementing ANAME substitution
 at the primary: The target address records’ TTL influences the update
 rate of the zone, while the sibling address records’ TTL determine
 how long a resolver may cache the address records. Thus, the end-to-
 end TTL (from the authoritative servers for the target address
 records to end-user DNS caches) is nearing twice the target address
 record TTL. There is a more extended discussion of TTL handling in
 Appendix C.

5. ANAME processing by resolvers

 When a resolver makes an address query in the usual way, it might
 receive a response containing ANAME information in the Answer
 section, as described in Section 6. This informs the resolver that
 it MAY resolve the ANAME target address records to get answers that
 are tailored to the resolver rather than the ANAME’s primary master.

 In order to provide tailored answers to clients that are ANAME-
 oblivious, the resolver MAY perform sibling address record
 substitution in the following situations:

 o The resolver’s client queries with DO=0. (As discussed in
 Section 8, if the resolver finds it would downgrade a secure
 answer to insecure, it MAY choose not to substitute the sibling
 address records.)

 o The resolver’s client queries with DO=1 and the ANAME and sibling
 address records are unsigned. (Note that this situation does not
 apply when the records are signed but insecure: the resolver might
 not be able to validate them because of a broken chain of trust,
 but its client could have an extra trust anchor that does allow it
 to validate them; if the resolver substitutes the sibling address
 records they will become bogus.)

 In these first two cases, the resolver MAY perform ANAME sibling

 address record substitution as described in Section 3. Any edit
 performed in the final step is applied to the Answer section of the
 response.

 If the resolver’s client is querying using an API such as
 "getaddrinfo" [RFC3493] that does not support DNSSEC validation, the
 resolver MAY perform ANAME sibling address record substitution as
 described in Section 3. Any edits performed in the final step are
 applied to the addresses returned by the API. (This case is for
 validating stub resolvers that query an upstream recursive server
 with DO=1, so they cannot rely on the recursive server to do ANAME
 substitution for them.)

6. Query processing

6.1. Authoritative servers

6.1.1. Address queries

 When a server receives an address query for a name that has an ANAME
 record, the response’s Answer section MUST contain the ANAME record,
 in addition to the sibling address queries. The ANAME record
 indicates to a client that it might wish to resolve the target
 address records itself.

6.1.2. ANAME queries

 When a server receives an query for type ANAME, regardless of whether
 the ANAME record exists on the queried domain, any sibling address
 records SHOULD be added to the Additional section. Note that the
 sibling address records may have been substituted already.

 When adding address records to the Additional section, if not all
 address types are present and the zone is signed, the server SHOULD
 include a DNSSEC proof of nonexistence for the missing address types.

6.2. Resolvers

6.2.1. Address queries

 When a server receives an address query for a name that has an ANAME
 record, the response’s Answer section MUST contain the ANAME record,
 in addition to the sibling address queries.

 The Additional section MAY contain the target address records that
 match the query type (or the corresponding proof of nonexistence), if
 they are available in the cache and the target address RDATA fields
 differ from the sibling address RRset.

 An ANAME target MAY resolve to address records via a chain of CNAME
 and/or ANAME records; any CNAME/ANAME chain MUST be included when
 adding target address records to a response’s Additional section.

6.2.2. ANAME queries

 When a resolver receives an query for type ANAME, any sibling address
 records SHOULD be added to the Additional section. Just like with an
 authoritative server, when adding address records to the Additional
 section, if not all address types are present and the zone is signed,
 the resolver SHOULD include a DNSSEC proof of nonexistence for the
 missing address types.

7. IANA considerations

 IANA is requested to assign a DNS RR TYPE value for ANAME resource
 records under the "Resource Record (RR) TYPEs" subregistry under the
 "Domain Name System (DNS) Parameters" registry.

 IANA might wish to consider the creation of a registry of address
 types; addition of new types to such a registry would then implicitly
 update this specification.

8. Security considerations

 When a primary master updates an ANAME’s sibling address records to
 match its target address records, it uses its own best information as
 to the correct answer. The primary master might sign the updated
 records, but that is not a guarantee of the actual correctness of the
 answer. This signing can have the effect of promoting an insecure
 response from the ANAME <target> to a signed response from the
 <owner>, which can then appear to clients to be more trustworthy than
 it should. DNSSEC validation SHOULD be used when resolving the ANAME
 <target> to mitigate this possible harm. Primary masters MAY refuse
 to substitute ANAME sibling address records unless the <target> node
 is both signed and validated.

 When a resolver substitutes an ANAME’s sibling address records, it
 can find that the sibling address records are secure but the target
 address records are insecure. Going ahead with the substitution will
 downgrade a secure answer to an insecure one. However this is likely
 to be the counterpart of the situation described in the previous
 paragraph, so the resolver is downgrading an answer that the ANAME’s
 primary master upgraded. A resolver will only downgrade an answer in
 this way when its client is security-oblivious; however the client’s
 path to the resolver is likely to be practically safer than the
 resolver’s path to the ANAME target’s servers. Resolvers MAY choose
 not to substitute sibling address records when they are more secure
 than the target address records.

9. Acknowledgments

 Thanks to Mark Andrews, Ray Bellis, Stefan Buehler, Paul Ebersman,
 Richard Gibson, Tatuya JINMEI, Hakan Lindqvist, Mattijs Mekking,
 Stephen Morris, Bjorn Mott, Richard Salts, Mukund Sivaraman, Job
 Snijders, Jan Vcelak, Paul Vixie, Duane Wessels, and Paul Wouters,
 Olli Vanhoja, Brian Dickson for discussion and feedback.

10. Changes since the last revision

 [This section is to be removed before publication as an RFC.]

 The full history of this draft and its issue tracker can be found at
 https://github.com/each/draft-aname [1]

10.1. Version -04

 o Split up section about Additional Section processing.

 o Update Additional Section processing requirements.

 o Clarify when ANAME resolution may happen [#43].

 o Revisit TTL considerations [#30, #34].

 o ANAME goes into the Answer section when QTYPE=A|AAAA [#62].

 o Update alternative setups section with concerns (Brian Dickson)
 [#68].

 o Add section on ANAME loops (open issue [#45]).

10.2. Version -03

 o Grammar improvements (Olli Vanhoja)

 o Split up Implications section, clarify text on zone transfers and
 dynamic updates [#39].

 o Rewrite Alternative setup section and move to Appendix, add text
 on zone transfer scalibility concerns and GeoIP.

10.3. Version -02

 Major revamp, so authoritative servers (other than primary masters)
 now do not do any special ANAME processing, just Additional section
 processing.

11. References

11.1. Normative References

 [RFC1033] Lottor, M., "Domain Administrators Operations Guide",
 RFC 1033, DOI 10.17487/RFC1033, November 1987,
 <https://www.rfc-editor.org/info/rfc1033>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC3597] Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, DOI 10.17487/RFC3597, September
 2003, <https://www.rfc-editor.org/info/rfc3597>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC7871] Contavalli, C., van der Gaast, W., Lawrence, D., and W.
 Kumari, "Client Subnet in DNS Queries", RFC 7871,
 DOI 10.17487/RFC7871, May 2016,
 <https://www.rfc-editor.org/info/rfc7871>.

 [RFC8499] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
 January 2019, <https://www.rfc-editor.org/info/rfc8499>.

11.2. Informative References

 [RFC0882] Mockapetris, P., "Domain names: Concepts and facilities",
 RFC 882, DOI 10.17487/RFC0882, November 1983,

 <https://www.rfc-editor.org/info/rfc882>.

 [RFC0973] Mockapetris, P., "Domain system changes and observations",
 RFC 973, DOI 10.17487/RFC0973, January 1986,
 <https://www.rfc-editor.org/info/rfc973>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1996] Vixie, P., "A Mechanism for Prompt Notification of Zone
 Changes (DNS NOTIFY)", RFC 1996, DOI 10.17487/RFC1996,
 August 1996, <https://www.rfc-editor.org/info/rfc1996>.

 [RFC2065] Eastlake 3rd, D. and C. Kaufman, "Domain Name System
 Security Extensions", RFC 2065, DOI 10.17487/RFC2065,
 January 1997, <https://www.rfc-editor.org/info/rfc2065>.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",
 RFC 3493, DOI 10.17487/RFC3493, February 2003,
 <https://www.rfc-editor.org/info/rfc3493>.

11.3. URIs

 [1] https://github.com/each/draft-aname

 [2] https://github.com/each/draft-aname/issues/45

Appendix A. Implementation status

 PowerDNS currently implements a similar authoritative-only feature
 using "ALIAS" records, which are expanded by the primary server and
 transfered as address records to secondaries.

 [TODO: Add discussion of DNSimple, DNS Made Easy, EasyDNS,
 Cloudflare, Amazon, Dyn, and Akamai.]

Appendix B. Historical note

 In the early DNS [RFC0882], CNAME records were allowed to coexist
 with other records. However this led to coherency problems: if a
 resolver had no cache entries for a given name, it would resolve
 queries for un-cached records at that name in the usual way; once it
 had cached a CNAME record for a name, it would resolve queries for
 un-cached records using CNAME target instead.

 For example, given the zone contents below, the original CNAME
 behaviour meant that if you asked for "alias.example.com TXT" first,
 you would get the answer "owner", but if you asked for
 "alias.example.com A" then "alias.example.com TXT" you would get the
 answer "target".

 alias.example.com. TXT "owner"
 alias.example.com. CNAME canonical.example.com.
 canonical.example.com. TXT "target"
 canonical.example.com. A 192.0.2.1

 This coherency problem was fixed in [RFC0973] which introduced the
 inconvenient rule that a CNAME acts as an alias for all other RR
 types at a name, which prevents the coexistence of CNAME with other
 records.

 A better fix might have been to improve the cache’s awareness of
 which records do and do not coexist with a CNAME record. However
 that would have required a negative cache mechanism which was not
 added to the DNS until later [RFC1034] [RFC2308].

 While [RFC2065] relaxed the restriction by allowing coexistence of
 CNAME with DNSSEC records, this exception is still not applicable to
 other resource records. RRSIG and NSEC exist to prove the integrity
 of the CNAME record; they are not intended to associate arbitrary
 data with the domain name. DNSSEC records avoid interoperability
 problems by being largely invisible to security-oblivious resolvers.

 Now that the DNS has negative caching, it is tempting to amend the
 algorithm for resolving with CNAME records to allow them to coexist
 with other types. Although an amended resolver will be compatible
 with the rest of the DNS, it will not be of much practical use
 because authoritative servers which rely on coexisting CNAMEs will
 not interoperate well with older resolvers. Practical experiments
 show that the problems are particularly acute when CNAME and MX try
 to coexist.

Appendix C. On preserving TTLs

 An ANAME’s sibling address records are in an unusual situation: they
 are authoritative data in the owner’s zone, so from that point of
 view the owner has the last say over what their TTL should be; on the
 other hand, ANAMEs are supposed to act as aliases, in which case the
 target should control the address record TTLs.

 However there are some technical constraints that make it difficult
 to preserve the target address record TTLs.

 The following subsections conclude that the end-to-end TTL (from the
 authoritative servers for the target address records to end-user DNS
 caches) is nearing twice the target address record TTL.

C.1. Query bunching

 If the times of end-user queries for a domain name are well
 distributed, then (typically) queries received by the authoritative
 servers for that domain are also well distributed. If the domain is
 popular, a recursive server will re-query for it once every TTL
 seconds, but the periodic queries from all the various recursive
 servers will not be aligned, so the queries remain well distributed.

 However, imagine that the TTLs of an ANAME’s sibling address records
 are decremented in the same way as cache entries in recursive
 servers. Then all the recursive servers querying for the name would
 try to refresh their caches at the same time when the TTL reaches
 zero. They would become synchronized, and all the queries for the
 domain would be bunched into periodic spikes.

 This specification says that ANAME sibling address records have a
 normal fixed TTL derived from (e.g. equal or nearly equal to) the
 target address records’ original TTL. There is no cache-like
 decrementing TTL, so there is no bunching of queries.

C.2. Upstream caches

 There are two straightforward ways to get an RRset’s original TTL:

 o by directly querying an authoritative server;

 o using the original TTL field from the RRset’s RRGIG record(s).

 However, not all zones are signed, and a primary master might not be
 able to query other authoritative servers directly (e.g. if it is a

 hidden primary behind a strict firewall). Instead it might have to
 obtain an ANAME’s target address records via some other recursive
 server.

 Querying via a separate recursive server means the primary master
 cannot trivially obtain the target address records’ original TTLs.
 Fortunately this is likely to be a self-correcting problem for
 similar reasons to the query-bunching discussed in the previous
 subsection. The primary master can inspect the target address
 records just after the TTL expires when its upstream cache has just
 refreshed them, so the TTL will be nearly equal to the original TTL.

 A related consideration is that the primary master cannot in general
 refresh its copies of an ANAME’s target address records more
 frequently than their TTL, without privileged control over its
 resolver cache.

 Combined with the requirement that sibling address records are served
 with a fixed TTL, this means that the end-to-end TTL will be the
 target address record TTL (which determines when the sibling address
 records are updated) plus the sibling address record TTL (which
 determines when end-user caches are updated). Since the sibling
 address record TTL is derived from the target address records’
 original TTL, the end-to-end TTL will be nearing twice the target
 address record TTL.

C.3. ANAME chains

 ANAME sibling address record substitution is made slightly more
 complicated by the requirement to follow chains of ANAME and/or CNAME
 records. The TTL of the substituted address records is the minimum
 of TTLs of the ANAME, all the intermediate records, and target
 records. This stops the end-to-end TTL from being inflated by each
 ANAME in the chain.

 With CNAME records, repeat queries for "cname.example. CNAME
 target.example." must not be fully answered from cache after its TTL
 expires, but must instead be sent to name servers authoritative for
 "cname.example" in case the CNAME has been updated or removed.
 Similarly, an ANAME at "aname.example" means that repeat queries for
 "aname.example" must not be fully answered from cache after its TTL
 expire, but must instead be sent to name servers authoritative for
 aname.example in case the ANAME has been updated or removed.

C.4. ANAME substitution inside the name server

 When ANAME substitution is performed inside the authoritative name
 server (as described in #alternatives) or in the resolver (as
 described in #resolver) the end-to-end TTL will actually be just the
 target address record TTL.

 An authoritative server that has control over its resolver can use a
 cached target address RRset and decremented TTL in the response to
 the client rather than using the original target address records’
 TTL. It SHOULD however not use TTLs in the response that are nearing
 zero to avoid query bunching Appendix C.1.

 A resolver that performs ANAME substitution is able to get the
 original TTL from the authoritative name server and use its own cache
 to store the substituted address records with the appropriate TTL,
 thereby honoring the TTL of target address records.

C.5. TTLs and zone transfers

 When things are working properly (with secondary name servers
 responding to NOTIFY messages promptly) the authoritative servers
 will follow changes to ANAME target address records according to

 their TTLs. As a result the end-to-end TTL is unchanged from the
 previous subsection.

 If NOTIFY doesn’t work, the TTLs can be stretched by the zone’s SOA
 refresh timer. More serious breakage can stretch them up to the zone
 expiry time.

Appendix D. Alternative setups

 If you are a large scale DNS provider, ANAME may introduce some
 operational concerns.

D.1. Reducing query volume

 When doing ANAME target lookups, an authoritative server might want
 to use longer TTLs to reduce query volume, for ANAME values that do
 not change frequently. This is the same concern a recursive resolver
 may be exposed to when receiving answers with short TTLs. An
 authoritative server doing ANAME target lookups therefor could use
 the same mitigation as a recursive nameserver, that is set a
 configured minimum TTL usage. This may however contribute to TTL
 stretching as described in Section 4.3 so the configured minimum
 should not be too low.

D.2. Zone transfer scalability

 A frequently changing ANAME target, or a ANAME target that changes
 its address and is used for many zones, can lead to an increased
 number of zone transfers. Such DNS architectures may want to
 consider a zone transfer mechanism outside the DNS.

 Another way to deal with zone transfer scalability is to move the
 ANAME processing (Section 3) inside the name server daemon. This is
 not a requirement for ANAME to work, but may be a better solution in
 large scale implementations. These implementations usually already
 rely on online DNSSEC signing for similar reasons. If ANAME
 processing occurs inside the name server daemon, it MUST be done
 before any DNSSEC online signing happens.

 For example, some existing ANAME-like implementations are based on a
 DNS server architecture, in which a zone’s published authoritative
 servers all perform the duties of a primary master in a distributed
 manner: provisioning records from a non-DNS back-end store,
 refreshing DNSSEC signatures, and so forth. They don’t use standard
 standard zone transfers, and already implement their ANAME-like
 processing inside the name server daemon, substituting ANAME sibling
 address records on demand.

D.3. Tailored responses

 Some DNS providers will tailor responses based on information in the
 client request. Such implementations will use the source IP address
 or EDNS Client Subnet [RFC7871] information and use geographical data
 (GeoIP) or network latency measurements to decide what the best
 answer is for a given query. Such setups won’t work with traditional
 DNSSEC and provide DNSSEC support usually through online signing.
 Similar such setups should provide ANAME support through substituting
 ANAME sibling records on demand.

 Also, an authoritative server that uses the client address to tailor
 the response should obviously not use its own address when looking up
 ANAME targets, or it could direct clients to a suboptimal server
 (e.g. a wrong language, or regional restricted content). Instead the
 authoritative server should look up the ANAME targets on behalf of
 the client address. It could use for example EDNS Client Subnet for
 this.

 In short, the exact mechanism for obtaining the target address
 records in such setups is unspecified; typically they will be
 resolved in the DNS in the usual way, but if an ANAME implementation
 has special knowledge of the target it can short-cut the substitution
 process, or it can use clever tricks such as client-dependant answers
 to make the answer more optimal.

Appendix E. ANAME loops

 The ANAME sibling address substitution algorithm in Section 3 poses a
 challenge of detecting a loop between two or more ANAME records.
 Imagine this setup: two authoritative servers X and Y performing
 ANAME sibling address substition on the fly (i.e. they attempt to
 resolve the ANAME target when the client query arrives). If server X
 gets a query for FOO.TEST which is an ANAME to BAR.TEST, it will send
 a query to server Y for BAR.TEST which is an ANAME to FOO.TEST.
 Server Y will then start a new query to server X, which has no way to
 know that it is regarding the original FOO.TEST lookup.

 The only indicator of the presence of the loop in the described setup
 is the network timeout. Ideally we would recognize the loop
 explicitly based on the exchanged DNS messages.

 On-the-fly ANAME substitution is allowed and it’s just the most
 obvious scenario where the problem can be demonstrated, but this loop
 can also be encountered in other situations. The root cause is that
 when the server gets a query it doesn’t know why and that the server
 always attempts to fully resolve the ANAME target before sending the
 response.

 TODO: Solve this issue [https://github.com/each/draft-aname/issues/45
 [2]]

Authors’ Addresses

 Tony Finch
 University of Cambridge
 University Information Services
 Roger Needham Building
 7 JJ Thomson Avenue
 Cambridge CB3 0RB
 England

 Email: dot@dotat.at

 Evan Hunt
 ISC
 950 Charter St
 Redwood City, CA 94063
 USA

 Email: each@isc.org

 Peter van Dijk
 PowerDNS.COM B.V.
 Den Haag
 The Netherlands

 Email: peter.van.dijk@powerdns.com

 Anthony Eden
 DNSimple
 Boston, MA USA

 Email: anthony.eden@dnsimple.com
 URI: https://dnsimple.com/

 Matthijs Mekking
 ISC
 950 Charter St
 Redwood City, CA 94063
 USA

 Email: matthijs@isc.org

