
DNSOP Working Group J. Woodworth
Internet-Draft D. Ballew
Updates: 2308, 4033, 4034, 4035 (if CenturyLink, Inc.
 approved) S. Bindinganaveli Raghavan
Intended status: Informational Hughes Network Systems
Expires: January 22, 2020 D. Lawrence
 Oracle
 July 21, 2019

 BULK DNS Resource Records
 draft-woodworth-bulk-rr-09

Abstract

 The BULK DNS resource record type defines a method of pattern-based
 creation of DNS resource records based on numeric substrings of query
 names. The intent of BULK is to simplify generic assignments in a
 memory-efficient way that can be easily shared between the primary
 and secondary nameservers for a zone.

Ed note

 Text inside square brackets ([]) is additional background
 information, answers to frequently asked questions, general musings,
 etc. They will be removed before publication. This document is
 being collaborated on in GitHub at <https://github.com/ioneyez/bulk-
 rr>. The most recent version of the document, open issues, etc
 should all be available here. The authors gratefully accept pull
 requests.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 22, 2020.

Woodworth, et al. Expires January 22, 2020 [Page 1]

Internet-Draft BULK RR July 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Background and Terminology 4
 2. The BULK Resource Record 4
 2.1. BULK RDATA Wire Format 4
 2.2. The BULK RR Presentation Format 6
 3. BULK Replacement . 7
 3.1. Matching the Domain Name Pattern 7
 3.2. Record Generation using Replacement Pattern 7
 3.2.1. Delimiters . 8
 3.2.2. Delimiter intervals 8
 3.2.3. Padding length 9
 3.2.4. Final processing 9
 4. Known Limitations . 9
 4.1. Unsupported Nameservers 10
 5. Security Considerations 10
 5.1. DNSSEC Signature Strategies 10
 5.1.1. On-the-fly Signatures 10
 5.1.2. Alternative Signature Scheme 11
 5.1.3. Non-DNSSEC Zone Support Only 11
 5.2. DDOS Attack Vectors and Mitigation 11
 5.3. Implications of Large-Scale DNS Records 11
 6. Privacy Considerations 12
 7. IANA Considerations . 12
 8. Acknowledgments . 12
 9. References . 12
 9.1. Normative References 12
 9.2. Informative References 13
 Appendix A. BULK Examples 14
 A.1. Example 1 . 14
 A.2. Example 2 . 14
 A.3. Example 3 . 15

Woodworth, et al. Expires January 22, 2020 [Page 2]

Internet-Draft BULK RR July 2019

 A.4. Example 4 . 15
 A.5. Example 5 . 15
 Authors’ Addresses . 16

1. Introduction

 The BULK DNS resource record defines a pattern-based method for on-
 the-fly resource record generation. It is essentially an enhanced
 wildcard mechanism, constraining generated resource record owner
 names to those that match a pattern of variable numeric substrings.
 It is also akin to the $GENERATE master file directive [bind-arm]
 without being limited to numeric values and without creating all
 possible records in the zone data.

 For example, consider the following record:

 example.com. 86400 IN BULK A (
 pool-A-[0-255]-[0-255].example.com.
 10.55.${1}.${2}
)

 It will answer requests for pool-A-0-0.example.com through pool-
 A-255-255.example.com with the IPv4 addresses 10.55.0.0 through
 10.55.255.255.

 Much larger record sets can be defined while minimizing the
 associated requirements for server memory and zone transfer network
 bandwidth.

 This record addresses a number of real-world operational problems
 that authoritative DNS service providers experience. For example,
 operators who host many large reverse lookup zones, even for only
 IPv4 space in in-addr.arpa, would benefit from the disk space, memory
 size, and zone transfer efficiencies that are gained by encapsulating
 a simple record-generating algorithm versus enumerating all of the
 individual records to cover the same space.

 Production zones of tens of thousands of pattern-generated records
 currently exist, that could be reduced to just one BULK RR. These
 zones can look deceptively small on the primary nameserver and
 balloon to 100MB or more when expanded,

 BULK also allows administrators to more easily deal with singletons,
 records in the pattern space that are an exception to the normal data
 generation rules. Whereas a mechanism like $GENERATE may need to be
 adjusted to account for these individual records, the processing
 rules for BULK have explicit records more naturally override the
 dynamically generated ones. This collision problem is not just a

Woodworth, et al. Expires January 22, 2020 [Page 3]

Internet-Draft BULK RR July 2019

 theoretical concern, but a real source of support calls for
 providers.

 Pattern-generated records are also not only for the reverse DNS
 space. Forward zones also occasionally have entries that follow
 patterns that would be well-addressed by the BULK RR.

1.1. Background and Terminology

 The reader is assumed to be familiar with the basic DNS and DNSSEC
 concepts described in [RFC1034], [RFC1035], [RFC4033], [RFC4034], and
 [RFC4035]; subsequent RFCs that update them in [RFC2181] and
 [RFC2308]; and DNS terms in [RFC7719].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] when, and only when, they appear in all capitals, as shown
 here.

2. The BULK Resource Record

 The BULK resource record enables an authoritative nameserver to
 generate RRs for other types based upon the query received.

 The Type value for the BULK RR type is TBD.

 The BULK RR is class-independent.

2.1. BULK RDATA Wire Format

 The RDATA for a BULK RR is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Match Type | /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Domain Name Pattern /
 / /
 +-+
 / /
 / Replacement Pattern /
 / /
 +-+

 Match Type identifies the type of the RRset to be generated by this
 BULK record. It is two octets corresponding to an RR TYPE code as
 specified in [RFC1035], Section 3.2.1.

Woodworth, et al. Expires January 22, 2020 [Page 4]

Internet-Draft BULK RR July 2019

 Domain Name Pattern consists of a pattern encoded as a wire-format
 fully qualified domain name. The full name is used so that numeric
 substrings above the zone cut can be captured in addition to those in
 the zone. It needs no length indicator for the entire field because
 the root label marks its end.

 Special characters are interpreted as per the following Augmented
 Backus-Naur Form (ABNF) notation from [RFC5234].

 match = 1*(range / string)

 range = "[" [decnum "-" decnum] "]" /
 "<" [hexnum "-" hexnum] ">"
 ; create references for substitution
 ; limit of 32 references
 ; [] is syntactic sugar for 0-255
 ; <> is syntactic sugar for 00-ff

 string = 1*(ctext / quoted-char)

 decnum = 1*decdigit
 ; constrained to 65535 maximum.

 hexnum = 1*hexdigit
 ; constrained to ffff maximum.

 octet = %x00-FF

 decdigit = %x30-39
 ; 0-9
 hexdigit = decdigit / 0x41-0x46 / 0x61-66
 ; 0-9, A-F, a-f

 ctext = <any octet excepting "\">

 quoted-char = "\" octet
 ; to allow special characters as literals

 Interpretation of the Domain Name Pattern is described in detail in
 the "BULK Replacement" section. Note that quoted-char must be stored
 in the wire format to preserve its semantics when the BULK RR is
 interpreted by nameservers.

 The limit of 32 references is meant to simplify implementation
 details. It is largely but not entirely arbitrary, as it could
 capture every individual character of the text representation of a
 full IPv6 address.

Woodworth, et al. Expires January 22, 2020 [Page 5]

Internet-Draft BULK RR July 2019

 Replacement Pattern describes how the answer RRset MUST be generated
 for the matching query. It needs no length indicator because its end
 can be derived from the RDATA length minus Match Type and Domain Name
 Pattern lengths. It uses the following additional ABNF elements:

 replace = 1*(reference / string)

 reference = "$" "{" (positions / "*") [options] "}"

 positions = (position / posrange) 0*("," (position / posrange))

 posrange = position "-" position

 position = 1*decnum

 options = delimiter [interval [padding]]

 delimiter = "|" 0*(ctext | quoted-char)
 ; "\|" to use "|" as delimiter
 ; "\\" to use "\" as delimiter

 interval = "|" *2decdigit

 padding = "|" *2decdigit

 [Is the formatting complexity beyond simple ${1}, ${2}, etc, really
 worth it? I definitely see how it could make for shorter replacement
 patterns, but does it enhance their clarity and usability, adding a
 feature someone really wants?]

 The Replacement Pattern MUST end in the root label if it is intended
 to represent a fully qualified domain name.

2.2. The BULK RR Presentation Format

 Match Type is represented as an RR type mnemonic or with [RFC3597]’s
 generic TYPE mechanism.

 Domain Name Pattern is represented as a fully qualified domain name
 as per [RFC1035] Section 5.1 rules for encoding whitespace and other
 special characters.

 Replacement Pattern is represented by the standard <character-string>
 text rules for master files as per [RFC1035] section 5.1.

Woodworth, et al. Expires January 22, 2020 [Page 6]

Internet-Draft BULK RR July 2019

 It is suggested that lines longer than 80 characters be wrapped with
 parenthetical line continuation, per [RFC1035] Section 5.1, starting
 after Match Type and ending after Replacement Pattern.

3. BULK Replacement

 When a BULK-aware authoritative nameserver receives a query for which
 it does not have a matching name or a covering wildcard, it MUST then
 look for BULK RRs at the zone apex, selecting all BULK RRs with a
 Match Type that matches the query type and a Domain Name Pattern that
 matches the query name. Note that query type ANY will select all
 Match Types, and all query types match a CNAME or DNAME Match Type.
 One or more answer RRs will be generated per the replacement rules
 below. Examples are provided in an appendix.

 By only triggering the BULK algorithm when the query name does not
 exist, administrators are given the flexibility to explicitly
 override the behaviour of specific names that would otherwise match
 the BULK record’s Domain Name Pattern. This is unlike BIND’s
 $GENERATE directive, which adds the generated RRs to any existing
 names.

3.1. Matching the Domain Name Pattern

 A query name matches the Domain Name Pattern if the characters that
 appear outside the numeric ranges match exactly and those within
 numeric ranges have values that fall within the range. Numeric
 matches MUST be of the appropriate decimal or hexadecimal type as
 specified by the delimiters in the pattern. For example, if a range
 is given as [0-255], then FF does not match even though its value as
 a hexadecimal number is within the range. Leading zeros in the
 numeric part(s) of the qname MUST be ignored; for example,
 001.example.com, 01.example.com and 1.example.com would all match
 [].example.com.

 When a query name matches a Domain Name Pattern, the value in each
 numeric range is stored for use by the Replacement Pattern, with
 reference numbers starting at 1 and counting from the left. For
 example, matching the query name host-24-156 against
 host-[0-255]-[0-255] assigns 24 to ${1} and 156 to ${2}.

3.2. Record Generation using Replacement Pattern

 The Replacement Pattern generates the record data by replacing the
 ${...} references with data captured from the query name, and copying
 all other characters literally.

Woodworth, et al. Expires January 22, 2020 [Page 7]

Internet-Draft BULK RR July 2019

 The simplest form of reference uses only the reference number between
 the braces, "{" and "}". The value of the reference is simply copied
 directly from the matching position of the query name.

 The next form of reference notation uses the asterisk, "*". With
 ${*}, all captured values in order of ascending position, delimited
 by its default delimiter (described below), are placed in the answer.
 The commercial-at, "@" symbol captures in the same way only in order
 of descending position.

 Numeric range references, such as ${1-4}, replaces all values
 captured by those references, in order, delimited by the default
 delimiter described below. To reverse the order in which they are
 copied, reverse the upper and lower values, such as ${4-1}. This is
 useful for generating PTR records from query names in which the
 address is encoded in network order.

 Similar to range references, separating positions by commas creates
 sets for replacement. For example, ${1,4} would be replaced by the
 first and fourth captured values, delimited its default delimiter.
 This notation may be combined with the numeric range form, such as
 ${3,2,1,8-4}.

3.2.1. Delimiters

 A reference can specify a delimiter to use by following a vertical
 bar, "|", with zero or more characters. Zero characters, such as in
 ${1-3|}, means no delimiter is used, while other characters up to an
 unescaped vertical bar or closing brace are copied between position
 values in the replacement. The default delimiter is the hyphen, "-".

3.2.2. Delimiter intervals

 A second vertical bar in the reference options introduces a delimiter
 interval. The default behavior of a multi-position reference is to
 combine each captured value specified with a delimiter between each.
 With a delimiter interval the delimiters are only added between every
 Nth value. For example, ${*|-|4} adds a hyphen between every group
 of four captured positions. This can be a handy feature in the IPv6
 reverse namespace where every nibble is captured as a separate value
 and generated hostnames include sets of 4 nibbles. An empty or 0
 value for the delimiter interval MUST be interpreted as the default
 value of 1.

Woodworth, et al. Expires January 22, 2020 [Page 8]

Internet-Draft BULK RR July 2019

3.2.3. Padding length

 The fourth and final reference option determines the field width of
 the copied value. Shorter values MUST be padded with leading zeroes
 ("0") and longer values MUST be truncated to the width.

 The default behavior, and that of an explicit empty padding length,
 is that the captured query name substring is copied exactly. A width
 of zero "0" is a signal to "unpad", and any leading zeros MUST be
 removed. [Unnecessary complexity?]

 If a delimiter interval greater than 1 is used, captured values
 between the intervals will be concatenated and the padding or
 unpadding applied as a unit and not individually. An example of this
 would be ${*||4|4} which would combine each range of 4 captured
 values and pad or truncate them to a width of 4 characters.

 [If this is kept, the element/feature should probably be renamed
 from "padding" since it is just as likely to truncate.]

3.2.4. Final processing

 The string that results from all replacements is converted to the
 appropriate RDATA format for the record type. If the conversion
 fails, the SERVFAIL rcode MUST be set on the response, representing a
 misconfiguration that the server was unable to perform. [The EDNS
 extended-error code would be useful here.]

 The TTL of each RR generated by a BULK RR is the TTL of the
 corresponding BULK record itself. [BULK should probably have its
 own TTL field because using that of the record itself feels like bad
 design. On the other hand, if BULK is never meant to be queried for
 directly and only appears in authoritative data, its own TTL is
 pretty useless normally.]

 The class for the RRSet is the class of the BULK RR.

 If the generated record type is one that uses domain names in its
 resource record data, such as CNAME, a relative domain names MUST be
 fully qualified with the origin domain of the BULK RR.

4. Known Limitations

 This section defines known limitations of the BULK resource type.

Woodworth, et al. Expires January 22, 2020 [Page 9]

Internet-Draft BULK RR July 2019

4.1. Unsupported Nameservers

 Authoritative nameservers that do not understand the semantics of the
 new record type will not be able to deliver the intended answers even
 when the type appears in their zone data This significantly affects
 the interoperability of primary versus secondary authorities that are
 not all running the same software. Adding new RRs which affect
 handling by authoritative servers, or being unable to add them, is an
 issue that needs to be explored more thoroughly within dnsop.

5. Security Considerations

 Two known security considerations exist for the BULK resource record,
 DNSSEC and DDOS attack vectors.

5.1. DNSSEC Signature Strategies

 DNSSEC was designed to provide validation for DNS resource records,
 requiring each tuple of owner, class, and type to have its own
 signature. This essentially defeats the purpose of providing large
 generated blocks of RRs in a single RR as each generated RR would
 require its own legitimate RRSIG record.

 In the following sections several options are discussed to address
 this issue. Of the options, on-the-fly provides the most secure
 solution and NPN [npn-draft] provides the most flexible.

5.1.1. On-the-fly Signatures

 A significant design goal of DNSSEC was to be able to do offline
 cryptographic signing of zone contents, keeping the key material more
 secure.

 On-the-fly processing requires authoritative nameservers to sign
 generated records as they are created. Not all authoritative
 nameserver implementations offer on-the-fly signatures, and even with
 those that do not all operators will want to keep signing keys
 online. This solution would either require all implementations to
 support on-the-fly signing or be ignored by implementations which can
 not or will not comply.

 One possibly mitigation for addressing the risk of keeping the zone
 signing key online would be to continue to keep the key for signing
 positive answers offline and introduce a second key for online
 signing of negative answers.

 No changes to validating resolvers is required to support this
 solution.

Woodworth, et al. Expires January 22, 2020 [Page 10]

Internet-Draft BULK RR July 2019

5.1.2. Alternative Signature Scheme

 Previous versions of this draft proposed a new signature scheme using
 a Numeric Pattern Normalization (NPN) RR. It was a method to support
 offline signatures for BULK records, with the drawback that is
 required updates to DNSSEC-aware resolvers.

 That mechanism is not specific to BULK and has been removed from the
 current draft. If there is further interest in pursuing it, it can
 be reopened as a separate draft.

5.1.3. Non-DNSSEC Zone Support Only

 As a final option zones which wish to remain entirely without DNSSEC
 support may serve such zones without either of the above solutions
 and records generated based on BULK RRs will require zero support
 from recursive resolvers.

5.2. DDOS Attack Vectors and Mitigation

 As an additional defense against Distributed Denial Of Service (DDOS)
 attacks against recursive (resolving) nameservers it is highly
 recommended shorter TTLs be used for BULK RRs than others. While
 disabling caching with a zero TTL is not recommended, as this would
 only result in a shift of the attack target, a balance will need to
 be found. While this document uses 24 hours (86400 seconds) in its
 examples, values between 300 to 900 seconds are likely more
 appropriate and is RECOMMENDED. What is ultimately deemed
 appropriate may differ from zone to zone and administrator to
 administrator.

 [I am unclear how this helps DDOS mitigation against anyone at all,
 and suspect this section should be removed..]

5.3. Implications of Large-Scale DNS Records

 The production of such large-scale records in the wild may have some
 unintended side-effects. These side-effects could be of concern or
 add unexpected complications to DNS based security offerings or
 forensic and anti-spam measures. While outside the scope of this
 document, implementers of technology relying on DNS resource records
 for critical decision making must take into consideration how the
 existence of such a volume of records might impact their technology.

 Solutions to the magnitude problem for BULK generated RRs are
 expected be similar if not identical to that of existing wildcard
 records, the core difference being the resultant RDATA will be unique
 for each requested Domain Name within its scope.

Woodworth, et al. Expires January 22, 2020 [Page 11]

Internet-Draft BULK RR July 2019

 The authors of this document are confident that by careful
 consideration, negative_side-effects produced by implementing the
 features described in this document can be eliminated from any such
 service or product.

6. Privacy Considerations

 The BULK record does not introduce any new privacy concerns to DNS
 data.

7. IANA Considerations

 IANA is requested to assign numbers for the BULK RR.

8. Acknowledgments

 This document was created as an extension to the DNS infrastructure.
 As such, many people over the years have contributed to its creation
 and the authors are appreciative to each of them even if not thanked
 or identified individually.

 A special thanks is extended for the kindness, wisdom and technical
 advice of Robert Whelton (CenturyLink, Inc.) and Gary O’Brien
 (Secure64 Software Corp).

9. References

9.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

Woodworth, et al. Expires January 22, 2020 [Page 12]

Internet-Draft BULK RR July 2019

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC2317] Eidnes, H., de Groot, G., and P. Vixie, "Classless IN-
 ADDR.ARPA delegation", BCP 20, RFC 2317,
 DOI 10.17487/RFC2317, March 1998,
 <https://www.rfc-editor.org/info/rfc2317>.

 [RFC3597] Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, DOI 10.17487/RFC3597, September
 2003, <https://www.rfc-editor.org/info/rfc3597>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

9.2. Informative References

 [bind-arm]
 Internet Systems Consortium, "BIND 9 Configuration
 Reference", 2016,
 <https://ftp.isc.org/isc/bind9/cur/9.9/doc/arm/
 Bv9ARM.html>.

 [npn-draft]
 Internet Systems Consortium, "Numeric Pattern
 Normalization (NPN)", 2019,
 <https://github.com/ioneyez/npn>.

Woodworth, et al. Expires January 22, 2020 [Page 13]

Internet-Draft BULK RR July 2019

 [RFC7719] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", RFC 7719, DOI 10.17487/RFC7719, December
 2015, <https://www.rfc-editor.org/info/rfc7719>.

Appendix A. BULK Examples

A.1. Example 1

 $ORIGIN 2.10.in-addr.arpa.
 @ 86400 IN BULK PTR (
 [0-255].[0-255].[0-255].[0-255].in-addr.arpa.
 pool-${4-1}.example.com.
)

 A query received for the PTR of 4.3.2.10.in-addr.arpa will create the
 references ${1} through ${4} with the first four labels of the query
 name. The ${4-1} reference in the replacement pattern will then
 substitute them in reverse with the default delimiter of hyphen
 between every character and no special field width modifications.
 The TTL of the BULK RR is used for the generated record, making the
 response:

 4.3.2.10.in-addr.arpa 86400 IN PTR pool-10-2-3-4.example.com.

A.2. Example 2

 $ORIGIN 2.10.in-addr.arpa.
 @ 86400 IN BULK PTR (
 [0-255].[0-255].[0-255].[0-255].in-addr.arpa.
 pool-${2,1|||3}.example.com.
)

 Example 2 is similar to Example 1, except that it modifies the
 replacement pattern. The empty option after the first vertical bar
 causes no delimiters to be inserted, while the second empty option
 that would keep the delimiter interval as 1. The latter is relevant
 because the final value, padding of 3, is applied over each delimiter
 interval even when no delimiter is used. Not all captures from the
 substring are required to be used in the response.

 The result is that a query for the PTR of 4.3.2.10.in-addr.arpa
 generates this response:

 4.3.2.10.in-addr.arpa 86400 IN PTR pool-003004.example.com.

 [Admittedly you can’t do this very effectively without the field
 width complexity. Is this sort of name common? Does it need

Woodworth, et al. Expires January 22, 2020 [Page 14]

Internet-Draft BULK RR July 2019

 support? Admittedly $GENERATE had the feature, but is that reason
 enough?]

 [Change this to a hex matching example?]

A.3. Example 3

 $ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
 @ 86400 IN BULK PTR (
 <>.<>.<>.<>.<>.<>.<>.<>.<>.<>.<>.<>.<>.<>.<>.<>
 poolAA-${16-8|-|4}.example.com.
)

 This example introduces IPv6 where 16 individual nibbles are captured
 and the last 8 are combined into 2 blocks of 4, separated by a
 hyphen.

 A query for the IP of 2001:db8::dead:beef results in a PTR RR with
 the value of poolAA-dead-beef.example.com.

A.4. Example 4

 $ORIGIN example.com.
 @ 86400 IN BULK AAAA (
 poolAA-<0-ffff>-<0-ffff>.example.com.
 ${@|.|1}.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
)

 This example performs the reverse of example 3, where a query of
 poolAA-dead-beef.example.com captures "dead" and "beef", reversing
 the nibbles and using a dot (.) as the delimiter to form a valid AAAA
 record.

A.5. Example 5

 This example contains a classless IPv4 delegation on the /22 CIDR
 boundary as defined by [RFC2317]. The network for this example is
 "10.2.0/22" delegated to a nameserver "ns1.sub.example.com.". RRs
 for this example are defined as:

 $ORIGIN 2.10.in-addr.arpa.
 @ 7200 IN BULK CNAME [0-255].[0-3] ${*|.}.0-3
 0-3 86400 IN NS ns1.sub.example.com.

 A query for the PTR of 25.2.2.10.in-addr.arpa is received and the
 BULK record with the CNAME Match Type matches all query types. 25
 and 2 are captured as references, and joined in the answer by the
 period (".") character as a delimiter, with ".0-3" then appended

Woodworth, et al. Expires January 22, 2020 [Page 15]

Internet-Draft BULK RR July 2019

 literally and fully qualified by the origin domain. The final
 synthesized record is:

 25.2.2.10.in-addr.arpa 7200 IN CNAME 25.2.0-3.2.10.in-addr.arpa.

 [Without $* and options complexity, the pattern to get the same
 result is just ${1}.{$2}.0-3 which is not really significantly
 onerous to enter, and slightly less arcane looking to comprehend.]

Authors’ Addresses

 John Woodworth
 CenturyLink, Inc.
 4250 N Fairfax Dr
 Arlington VA 22203
 USA

 Email: John.Woodworth@CenturyLink.com

 Dean Ballew
 CenturyLink, Inc.
 2355 Dulles Corner Blvd, Ste 200 300
 Herndon VA 20171
 USA

 Email: Dean.Ballew@CenturyLink.com

 Shashwath Bindinganaveli Raghavan
 Hughes Network Systems
 11717 Exploration Lane
 Germantown MD 20876
 USA

 Email: shashwath.bindinganaveliraghavan@hughes.com

 David C Lawrence
 Oracle

 Email: tale@dd.org

Woodworth, et al. Expires January 22, 2020 [Page 16]

