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Abstract

   DNS-SD (DNS Service Discovery) normally discloses information about
   devices offering and requesting services.  This information includes
   host names, network parameters, and possibly a further description of
   the corresponding service instance.  Especially when mobile devices
   engage in DNS Service Discovery over Multicast DNS at a public
   hotspot, serious privacy problems arise.  We analyze the requirements
   of a privacy respecting discovery service.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 31, 2018.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
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   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   DNS-SD [RFC6763] over mDNS [RFC6762] enables zero-configuration
   service discovery in local networks.  It is very convenient for
   users, but it requires the public exposure of the offering and
   requesting identities along with information about the offered and
   requested services.  Parts of the published information can seriously
   breach the user’s privacy.  These privacy issues and potential
   solutions are discussed in [KW14a], [KW14b] and [K17].

   There are cases when nodes connected to a network want to provide or
   consume services without exposing their identity to the other parties
   connected to the same network.  Consider for example a traveler
   wanting to upload pictures from a phone to a laptop when connected to
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   the Wi-Fi network of an Internet cafe, or two travelers who want to
   share files between their laptops when waiting for their plane in an
   airport lounge.

   We expect that these exchanges will start with a discovery procedure
   using DNS-SD [RFC6763] over mDNS [RFC6762].  One of the devices will
   publish the availability of a service, such as a picture library or a
   file store in our examples.  The user of the other device will
   discover this service, and then connect to it.

   When analyzing these scenarios in Section 3, we find that the DNS-SD
   messages leak identifying information such as the instance name, the
   host name or service properties.

1.1.  Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  DNS-SD Discovery Scenarios

   DNS-Based Service Discovery (DNS-SD) is defined in [RFC6763].  It
   allows nodes to publish the availability of an instance of a service
   by inserting specific records in the DNS ([RFC1033], [RFC1034],
   [RFC1035]) or by publishing these records locally using multicast DNS
   (mDNS) [RFC6762].  Available services are described using three types
   of records:

   PTR Record:  Associates a service type in the domain with an
      "instance" name of this service type.

   SRV Record:  Provides the node name, port number, priority and weight
      associated with the service instance, in conformance with
      [RFC2782].

   TXT Record:  Provides a set of attribute-value pairs describing
      specific properties of the service instance.

   In the remaining sections, we review common discovery scenarios
   provided by DNS-SD and discuss their privacy requirements.

2.1.  Private client and public server

   Perhaps the simplest private discovery scenario involves a single
   client connecting to a public server through a public network.  A
   common example would be a traveler using a publicly available printer
   in a business center, in an hotel or at an airport.
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                                        ( Taking notes:
                                        ( David is printing
                                        ( a document
                                         ˜˜˜˜˜˜˜˜˜˜˜
                                                     o
            ___                                        o   ___
           /   \                                         _|___|_
           |   |                                          |* *|
            \_/      __                                    \_/
             |      / /   Discovery   +----------+          |
            /|\    /_/  <-----------> |  +----+  |         /|\
           / | \__/                   +--|    |--+        / | \
          /  |                           |____/          /  |  \
         /   |                                          /   |   \
            / \                                            / \
           /   \                                          /   \
          /     \                                        /     \
         /       \                                      /       \
        /         \                                    /         \

   In that scenario, the server is public and wants to be discovered,
   but the client is private.  The adversary will be listening to the
   network traffic, trying to identify the visitors’ devices and their
   activity.  Identifying devices leads to identifying people, either
   just for tracking people or as a preliminary to targeted attacks.

   The requirement in that scenario is that the discovery activity
   should not disclose the identity of the client.

2.2.  Private client and private server

   The second private discovery scenario involves private client
   connecting to a private server.  A common example would be two people
   engaging in a collaborative application in a public place, such as
   for example an airport’s lounge.
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                                           ( Taking notes:
                                           ( David is meeting
                                           ( with Stuart
                                             ˜˜˜˜˜˜˜˜˜˜˜
                                                        o
            ___                               ___         o   ___
           /   \                             /   \          _|___|_
           |   |                             |   |           |* *|
            \_/      __               __      \_/             \_/
             |      / /   Discovery   \ \      |               |
            /|\    /_/  <----------->  \_\    /|\             /|\
           / | \__/                       \__/ | \           / | \
          /  |                                 |  \         /  |  \
         /   |                                 |   \       /   |   \
            / \                               / \             / \
           /   \                             /   \           /   \
          /     \                           /     \         /     \
         /       \                         /       \       /       \
        /         \                       /         \     /         \

   In that scenario, the collaborative application on one of the device
   will act as server, and the application on the other device will act
   as client.  The server wants to be discovered by the client, but has
   no desire to be discovered by anyone else.  The adversary will be
   listening to network traffic, attempting to discover the identity of
   devices as in the first scenario, and also attempting to discover the
   patterns of traffic, as these patterns reveal the business and social
   interactions between the owners of the devices.

   The requirement in that scenario is that the discovery activity
   should not disclose the identity of either the client or the server.

2.3.  Wearable client and server

   The third private discovery scenario involves wearable devices.  A
   typical example would be the watch on someone’s wrist connecting to
   the phone in their pocket.
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                                        ( Taking notes:
                                        ( David’ is here. His watch is
                                        ( talking to his phone
                                          ˜˜˜˜˜˜˜˜˜˜˜
                                                      o
            ___                                         o  ___
           /   \                                         _|___|_
           |   |                                          |* *|
            \_/                                            \_/
             |     _/                                       |
            /|\   //                                       /|\
           / | \__/  ^                                    / | \
          /  |__     | Discovery                         /  |  \
         /   |\ \    v                                  /   |   \
            / \\_\                                         / \
           /   \                                          /   \
          /     \                                        /     \
         /       \                                      /       \
        /         \                                    /         \

   This third scenario is in many ways similar to the second scenario.
   It involves two devices, one acting as server and the other acting as
   client, and it leads to the same requirement that the discovery
   traffic not disclose the identity of either the client or the server.
   The main difference is that the devices are managed by a single
   owner, which can lead to different methods for establishing secure
   relations between the device.  There is also an added emphasis in
   hiding the type of devices that the person wears.

   In addition to tracking the identity of the owner of the devices, the
   adversary is interested by the characteristics of the devices, such
   as type, brand, and model.  Identifying the type of device can lead
   to further attacks, from theft to device specific hacking.  The
   combination of devices worn by the same person will also provide a
   "fingerprint" of the person, allowing identification.

3.  Privacy Considerations

   The discovery scenarios in Section Section 2 illustrate three
   separate privacy requirements that vary based on use case:

   1.  Client identity privacy: Client identities are not leaked during
       service discovery or use.

   2.  Multi-owner, mutual client and server identity privacy: Neither
       client nor server identities are leaked during service discovery
       or use.
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   3.  Single-owner, mutual client and server identity privacy:
       Identities of clients and servers owned and managed by the same
       application, device, or user are not leaked during service
       discovery or use.

   In the remaining subsections, we describe aspects of DNS-SD that make
   these requirements difficult to achieve in practice.

3.1.  Privacy Implication of Publishing Service Instance Names

   In the first phase of discovery, client obtain all PTR records
   associated with a service type in a given naming domain.  Each PTR
   record contains a Service Instance Name defined in Section 4 of
   [RFC6763]:

     Service Instance Name = <Instance> . <Service> . <Domain>

   The <Instance> portion of the Service Instance Name is meant to
   convey enough information for users of discovery clients to easily
   select the desired service instance.  Nodes that use DNS-SD over mDNS
   [RFC6762] in a mobile environment will rely on the specificity of the
   instance name to identify the desired service instance.  In our
   example of users wanting to upload pictures to a laptop in an
   Internet Cafe, the list of available service instances may look like:

   Alice’s Images         . _imageStore._tcp . local
   Alice’s Mobile Phone   . _presence._tcp   . local
   Alice’s Notebook       . _presence._tcp   . local
   Bob’s Notebook         . _presence._tcp   . local
   Carol’s Notebook       . _presence._tcp   . local

   Alice will see the list on her phone and understand intuitively that
   she should pick the first item.  The discovery will "just work".

   However, DNS-SD/mDNS will reveal to anybody that Alice is currently
   visiting the Internet Cafe.  It further discloses the fact that she
   uses two devices, shares an image store, and uses a chat application
   supporting the _presence protocol on both of her devices.  She might
   currently chat with Bob or Carol, as they are also using a _presence
   supporting chat application.  This information is not just available
   to devices actively browsing for and offering services, but to
   anybody passively listening to the network traffic.

3.2.  Privacy Implication of Publishing Node Names

   The SRV records contain the DNS name of the node publishing the
   service.  Typical implementations construct this DNS name by
   concatenating the "host name" of the node with the name of the local
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   domain.  The privacy implications of this practice are reviewed in
   [RFC8117].  Depending on naming practices, the host name is either a
   strong identifier of the device, or at a minimum a partial
   identifier.  It enables tracking of both the device, and, by
   extension, the device’s owner.

3.3.  Privacy Implication of Publishing Service Attributes

   The TXT record’s attribute-value pairs contain information on the
   characteristics of the corresponding service instance.  This in turn
   reveals information about the devices that publish services.  The
   amount of information varies widely with the particular service and
   its implementation:

   o  Some attributes like the paper size available in a printer, are
      the same on many devices, and thus only provide limited
      information to a tracker.

   o  Attributes that have freeform values, such as the name of a
      directory, may reveal much more information.

   Combinations of attributes have more information power than specific
   attributes, and can potentially be used for "fingerprinting" a
   specific device.

   Information contained in TXT records does not only breach privacy by
   making devices trackable, but might directly contain private
   information about the user.  For instance the _presence service
   reveals the "chat status" to everyone in the same network.  Users
   might not be aware of that.

   Further, TXT records often contain version information about services
   allowing potential attackers to identify devices running exploit-
   prone versions of a certain service.

3.4.  Device Fingerprinting

   The combination of information published in DNS-SD has the potential
   to provide a "fingerprint" of a specific device.  Such information
   includes:

   o  List of services published by the device, which can be retrieved
      because the SRV records will point to the same host name.

   o  Specific attributes describing these services.

   o  Port numbers used by the services.
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   o  Priority and weight attributes in the SRV records.

   This combination of services and attributes will often be sufficient
   to identify the version of the software running on a device.  If a
   device publishes many services with rich sets of attributes, the
   combination may be sufficient to identify the specific device.

   A sometimes heard argument is that devices providing services can be
   identified by observing the local traffic, and that trying to hide
   the presence of the service is futile.  This argument, however, does
   not carry much weight because

   1.  Proving privacy at the discovery layer is of the essence for
       enabling automatically configured privacy-preserving network
       applications.  Application layer protocols are not forced to
       leverage the offered privacy, but if device tracking is not
       prevented at the deeper layers, including the service discovery
       layer, obfuscating a certain service’s protocol at the
       application layer is futile.

   2.  Further, even if the application layer does not protect privacy,
       it is hard to record and analyse the unicast traffic (which most
       applications will generate) compared to just listening to the
       multicast messages sent by DNS-SD/mDNS.

   The same argument can be extended to say that the pattern of services
   offered by a device allows for fingerprinting the device.  This may
   or may not be true, since we can expect that services will be
   designed or updated to avoid leaking fingerprints.  In any case, the
   design of the discovery service should avoid making a bad situation
   worse, and should as much as possible avoid providing new
   fingerprinting information.

3.5.  Privacy Implication of Discovering Services

   The consumers of services engage in discovery, and in doing so reveal
   some information such as the list of services they are interested in
   and the domains in which they are looking for the services.  When the
   clients select specific instances of services, they reveal their
   preference for these instances.  This can be benign if the service
   type is very common, but it could be more problematic for sensitive
   services, such as for example some private messaging services.

   One way to protect clients would be to somehow encrypt the requested
   service types.  Of course, just as we noted in Section 3.4, traffic
   analysis can often reveal the service.
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4.  Security Considerations

   For each of the operations described above, we must also consider
   security threats we are concerned about.

4.1.  Authenticity, Integrity & Freshness

   Can we trust the information we receive?  Has it been modified in
   flight by an adversary?  Do we trust the source of the information?
   Is the source of information fresh, i.e., not replayed?  Freshness
   may or may not be required depending on whether the discovery process
   is meant to be online.  In some cases, publishing discovery
   information to a shared directory or registry, rather than to each
   online recipient through a broadcast channel, may suffice.

4.2.  Confidentiality

   Confidentiality is about restricting information access to only
   authorized individuals.  Ideally this should only be the appropriate
   trusted parties, though it can be challenging to define who are "the
   appropriate trusted parties."  In some uses cases, this may mean that
   only mutually authenticated and trusting clients and servers can read
   messages sent for one another.  The "Discover" operation in
   particular is often used to discover new entities that the device did
   not previously know about.  It may be tricky to work out how a device
   can have an established trust relationship with a new entity it has
   never previously communicated with.

4.3.  Resistance to Dictionary Attacks

   It can be tempting to use (publicly computable) hash functions to
   obscure sensitive identifiers.  This transforms a sensitive unique
   identifier such as an email address into a "scrambled" (but still
   unique) identifier.  Unfortunately simple solutions may be vulnerable
   to offline dictionary attacks.

4.4.  Resistance to Denial-of-Service Attack

   In any protocol where the receiver of messages has to perform
   cryptographic operations on those messages, there is a risk of a
   brute-force flooding attack causing the receiver to expend excessive
   amounts of CPU time (and battery power) just processing and
   discarding those messages.
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4.5.  Resistance to Sender Impersonation

   Sender impersonation is an attack wherein messages such as service
   offers are forged by entities who do not possess the corresponding
   secret key material.  These attacks may be used to learn the identity
   of a communicating party, actively or passively.

4.6.  Sender Deniability

   Deniability of sender activity, e.g., of broadcasting a discovery
   request, may be desirable or necessary in some use cases.  This
   property ensures that eavesdroppers cannot prove senders issued a
   specific message destined for one or more peers.

5.  Operational Considerations

5.1.  Power Management

   Many modern devices, especially battery-powered devices, use power
   management techniques to conserve energy.  One such technique is for
   a device to transfer information about itself to a proxy, which will
   act on behalf of the device for some functions, while the device
   itself goes to sleep to reduce power consumption.  When the proxy
   determines that some action is required which only the device itself
   can perform, the proxy may have some way (such as Ethernet "Magic
   Packet") to wake the device.

   In many cases, the device may not trust the network proxy
   sufficiently to share all its confidential key material with the
   proxy.  This poses challenges for combining private discovery that
   relies on per-query cryptographic operations, with energy-saving
   techniques that rely on having (somewhat untrusted) network proxies
   answer queries on behalf of sleeping devices.

5.2.  Protocol Efficiency

   Creating a discovery protocol that has the desired security
   properties may result in a design that is not efficient.  To perform
   the necessary operations the protocol may need to send and receive a
   large number of network packets.  This may consume an unreasonable
   amount of network capacity (particularly problematic when it’s shared
   wireless spectrum), cause an unnecessary level of power consumption
   (particularly problematic on battery devices) and may result in the
   discovery process being slow.

   It is a difficult challenge to design a discovery protocol that has
   the property of obscuring the details of what it is doing from
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   unauthorized observers, while also managing to do that quickly and
   efficiently.

5.3.  Secure Initialization and Trust Models

   One of the challenges implicit in the preceding discussions is that
   whenever we discuss "trusted entities" versus "untrusted entities",
   there needs to be some way that trust is initially established, to
   convert an "untrusted entity" into a "trusted entity".

   One way to establish trust between two entities is to trust a third
   party to make that determination for us.  For example, the X.509
   certificates used by TLS and HTTPS web browsing are based on the
   model of trusting a third party to tell us who to trust.  There are
   some difficulties in using this model for establishing trust for
   service discovery uses.  If we want to print our tax returns or
   medical documents on "our" printer, then we need to know which
   printer on the network we can trust be be "our" printer.  All of the
   printers we discover on the network may be legitimate printers made
   by legitimate printer manufacturers, but not all of them are "our"
   printer.  A third-party certificate authority cannot tell us which
   one of the printers is ours.

   Another common way to establish a trust relationship is Trust On
   First Use (TOFU), as used by ssh.  The first usage is a Leap Of
   Faith, but after that public keys are exchanged and at least we can
   confirm that subsequent communications are with the same entity.  In
   today’s world, where there may be attackers present even at that
   first use, it would be preferable to be able to establish a trust
   relationship without requiring an initial Leap Of Faith.

   Techniques now exist for securely establishing a trust relationship
   without requiring an initial Leap Of Faith.  Trust can be established
   securely using a short passphrase or PIN with cryptographic
   algorithms such as Secure Remote Password (SRP) [RFC5054] or a
   Password Authenticated Key Exchange like J-PAKE [RFC8236] using a
   Schnorr Non-interactive Zero-Knowledge Proof [RFC8235].

   Such techniques require a user to enter the correct passphrase or PIN
   in order for the cryptographic algorithms to establish working
   communication.  This avoids the human tendency to simply press the
   "OK" button when asked if they want to do something on their
   electronic device.  It removes the human fallibility element from the
   equation, and avoids the human users inadvertently sabotaging their
   own security.

   Using these techniques, if a user tries to print their tax return on
   a printer they’ve never used before (even though the name looks
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   right) they’ll be prompted to enter a pairing PIN, and the user
   *cannot* ignore that warning.  They can’t just press an "OK" button.
   They have to walk to the printer and read the displayed PIN and enter
   it.  And if the intended printer is not displaying a pairing PIN, or
   is displaying a different pairing PIN, that means the user may be
   being spoofed, and the connection will not succeed, and the failure
   will not reveal any secret information to the attacker.  As much as
   the human desires to "just give me an OK button to make it print"
   (and the attacker desires them to click that OK button too) the
   cryptographic algorithms do not give the user the ability to opt out
   of the security, and consequently do not give the attacker any way to
   persuade the user to opt out of the security protections.

5.4.  External Dependencies

   Trust establishment may depend on external, and optionally online,
   parties.  Systems which have such a dependency may be attacked by
   interfering with communication to external dependencies.  Where
   possible, such dependencies should be minimized.  Local trust models
   are best for secure initialization in the presence of active
   attackers.

6.  IANA Considerations

   This draft does not require any IANA action.
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Abstract

   DNS-SD (DNS Service Discovery) normally discloses information about
   both the devices offering services and the devices requesting
   services.  This information includes host names, network parameters,
   and possibly a further description of the corresponding service
   instance.  Especially when mobile devices engage in DNS Service
   Discovery over Multicast DNS at a public hotspot, a serious privacy
   problem arises.

   The draft currently progressing in the DNS-SD Working Group assumes
   peer-to-peer pairing between the service to be discovered and each of
   its clients.  This has good security properties, but creates scaling
   issues, because each server needs to publish as many announcements as
   it has paired clients.  This leads to large number of operations when
   servers are paired with many clients.

   Different designs are possible.  For example, if there was only one
   server "discovery key" known by each authorized client, each server
   would only have to announce a single record, and clients would only
   have to process one response for each server that is present on the
   network.  Yet, these designs will present different privacy profiles,
   and pose different management challenges.  This draft analyses the
   tradeoffs between privacy and scaling in a set of different designs,
   using either shared secrets or public keys.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
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1.  Introduction

   DNS-SD [RFC6763] over mDNS [RFC6762] enables configurationless
   service discovery in local networks.  It is very convenient for
   users, but it requires the public exposure of the offering and
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   requesting identities along with information about the offered and
   requested services.  Parts of the published information can seriously
   breach the users’ privacy.  These privacy issues and potential
   solutions are discussed in [KW14a] and [KW14b].

   A recent draft [I-D.ietf-dnssd-privacy] proposes to solve this
   problem by relying on device pairing.  Only clients that have paired
   with a device would be able to discover that device, and the
   discovery would not be observable by third parties.  This design has
   a number of good privacy and security properties, but it has a cost,
   because each server must provide separate annoucements for each
   client.  In this draft, we compare scaling and privacy properties of
   three different designs:

   o  The individual pairing defined in [I-D.ietf-dnssd-privacy],

   o  A single server discovery secret, shared by all authorized
      clients,

   o  A single server discovery public key, known by all authorized
      clients.

   After presenting briefly these three solutions, the draft presents
   the scaling and privacy properties of each of them.

2.  Privacy and Secrets

   Private discovery tries to ensure that clients and servers can
   discover each other in a potentially hostile network context, while
   maintaining privacy.  Unauthorized third parties must not be able to
   discover that a specific server or device is currently present on the
   network, and they must not be able to discover that a particular
   client is trying to discover a particular service.  This cannot be
   achieved without some kind of shared secret between client and
   servers.  We review here three particular designs for sharing these
   secrets.

2.1.  Pairing secrets

   The solution proposed in [I-D.ietf-dnssd-privacy] relies on pairing
   secrets.  Each client obtains a pairing secret from each server that
   they are authorized to use.  The servers publish announcements of the
   form "nonce|proof", in which the proof is the hash of the nonce and
   the pairing secret.  The proof is of course different for each
   client, because the secrets are different.  For better scaling, the
   nonce is common to all clients, and defined as a coarse function of
   time, such as the current 30 minutes interval.
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   Clients discover the required server by issuing queries containing
   the current nonce and proof.  Servers respond to these queries if the
   nonce matches the current time interval, and if the proof matches the
   hash of the nonce with one of the pairing key of an authorized
   client.

2.2.  Group public keys

   In contrast to pair-wise shared secrets, applications may associate
   public and private key pairs with groups of equally authorized
   clients.  This is identical to the pairwise sharing case if each
   client is given a unique key pair.  However, this option permits
   multiple users to belong to the same group associated with a public
   key, depending on the type of public key and cryptographic scheme
   used.  For example, broadcast encryption is a scheme where many
   users, each with their own private key, can access content encrypted
   under a single broadcast key.  The scaling properties of this variant
   depend not only on how private keys are managed, but also on the
   associated cryptographic algorithm(s) by which those keys are used.

2.3.  Shared symmetric secret

   Instead of using a different secret for each client as in
   Section 2.1, another design is to have a single secret per server,
   shared by all authorized clients of that server.  As in the previous
   solution, the servers publish announcements of the form
   "nonce|proof", but this time they only need to publish a single
   announcement per server, because each server maintains a single
   discovery secret.  Again, the nonce can be common to all clients, and
   defined as a coarse function of time.

   Clients discover the required server by issuing queries containing
   the current nonce and proof.  Servers respond to these queries if the
   nonce matches the current time interval, and if the proof matches the
   hash of the nonce with one of the discovery secrets.

2.4.  Shared public key

   Instead of a discovery secret used in Section 2.3, clients could
   obtain the public keys of the servers that they are authorized to
   use.

   Many public key systems assume that the public key of the server is,
   well, not secret.  But if adversaries know the public key of a
   server, they can use that public key as a unique identifier to track
   the server.  Moreover, they could use variations of the padding
   oracle to observe discovery protocol messages and attribute them to a
   specific public key, thus breaking server privacy.  For these
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   reasons, we assume here that the discovery public key is kept secret,
   only known to authorized clients.

   As in the previous solution, the servers publish announcements of the
   form "nonce|proof", but this time they only need to publish a single
   announcement per server, because each server maintains a single
   discovery secret.  The proof is obtained by either hashing the nonce
   with the public key, or using the public key to encrypt the nonce --
   the point being that both clients and server can construct the proof.
   Again, the nonce can be common to all clients, and defined as a
   coarse function of time.

   The advantage of public key based solutions is that the clients can
   easily verify the identity of the server, for example if the service
   is accessed over TLS.  On the other hand, just using standard TLS
   would disclose the certificate of the server to any client that
   attempts a connection, not just to authorized clients.  The server
   should thus only accept connections from clients that demonstrate
   knowledge of its public key.

3.  Scaling properties of different solutions

   To analyze scaling issues we will use the following variables:

   N: The average number of authorized clients per server.

   G: The average number of authorized groups per server.

   M: The average number of servers per client.

   P: The average total number of servers present during discovery.

   The big difference between the three proposals is the number of
   records that need to be published by a server when using DNS-SD in
   server mode, or the number of broadcast messages that needs to be
   announced per server in mDNS mode:

   Pairing secrets:  O(N): One record per client.

   Group public keys:  O(G): One record per group.

   Shared symmetric secret:  O(1): One record for all (shared) clients.

   Shared public key:  O(1): One record for all (shared) clients.

   There are other elements of scaling, linked to the mapping of the
   privacy discovery service to DNS-SD.  DNS-SD identifies services by a
   combination of a service type and an instance name.  In classic
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   mapping behavior, clients send a query for a service type, and will
   receive responses from each server instance supporting that type:

   Pairing secrets:  O(P*N): There are O(P) servers present, and each
      publishes O(N) instances.

   Group public keys:  O(P*G): There are O(P) servers present, and each
      publishes O(G) instances.

   Shared symmetric secret:  O(P): One record per server present.

   Shared public secret:  O(P): One record per server present.

   The DNS-SD Privacy draft suggests an optimization that considerably
   reduces the considerations about scaling of responses -- see section
   4.6 of [I-D.ietf-dnssd-privacy].  In that case, clients compose the
   list of instance names that they are looking for, and specifically
   query for these instance names:

   Pairing secrets:  O(M): The client will compose O(M) queries to
      discover all the servers that it is interested in.  There will be
      at most O(M) responses.

   Group public keys:  O(M): The client will compose O(M) queries to
      discover all the servers that it is interested in.  There will be
      at most O(M) responses.

   Shared symmetric secret:  O(M): Same behavior as in the pairing
      secret case.

   Shared public secret:  O(M): Same behavior as in the pairing secret
      case.

   Finally, another element of scaling is cacheability.  Responses to
   DNS queries can be cached by DNS resolvers, and mDNS responses can be
   cached by mDNS resolvers.  If several clients send the same queries,
   and if previous responses could be cached, the client can be served
   immediately.  There are of course differences between the solutions:

   Pairing secrets:  No caching possible, since there are separate
      server instances for separate clients.

   Group public keys:  Caching is possible for among members of a group.

   Shared symmetric secret:  Caching is possible, since there is just
      one server instance.
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   Shared public secret:  Caching is possible, since there is just one
      server instance.

4.  Comparing privacy posture of different solutions

   The analysis of scaling issues in Section 3 shows that the solutions
   base on a common discovery secret or discovery public key scale much
   better than the solutions based on pairing secret.  All these
   solutions protect against tracking of clients or servers by third
   parties, as long as the secret on which they rely are kept secret.
   There are however significant differences in privacy properties,
   which become visible when one of the clients becomes compromised.

4.1.  Effects of compromized client

   If a client is compromised, an adversary will take possession of the
   secrets owned by that client.  The effects will be the following:

   Pairing secrets:  With a valid pairing key, the adversary can issue
      queries and parse announcements.  It will be able to track the
      presence of all the servers to which the compromised client was
      paired.  It may be able to track other clients of these servers if
      it can infer that multiple independent instances are tied to the
      same server, for example by assessing the IP address associated
      with a specific instance.  It will not be able to impersonate the
      servers for other clients.

   Group public keys:  With a valid group private key, the adversary can
      issue queries and parse announcements.  It will be able to track
      the presence of all the servers with which the compromised group
      was authenticated.  It may be able to track other clients of these
      servers if it can infer that multiple independent instances are
      tied to the same server, for example by assessing the IP address
      associated with a specific instance.  It will not be able to
      impersonate the servers for other clients or groups.

   Shared symmetric secret:  With a valid discovery secret, the
      adversary can issue queries and parse announcements.  It will be
      able to track the presence of all the servers that the compromised
      client could discover.  It will also be able to detect the clients
      that try to use one of these servers.  This will not reveal the
      identity of the client, but it can provide clues for network
      analysis.  The adversary will also be able to spoof the server’s
      announcements, which could be the first step in a server
      impersonation attack.

   Shared public secret:  With a valid discovery public key, the
      adversary can issue queries and parse announcements.  It will be
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      able to track the presence of all the servers that the compromised
      client could discover.  It will also be able to detect the clients
      that try to use one of these servers.  This will not reveal the
      identity of the client, but it can provide clues for network
      analysis.  The adversary will not be able to spoof the server’s
      announcements, or to impersonate the server.

4.2.  Revocation

   Assume an administrator discovers that a client has been compromised.
   As seen in Section 4.1, compromising a client entails a loss of
   privacy for all the servers that the client was authorized to use,
   and also to all other users of these servers.  The worse situation
   happens in the solutions based on "discovery secrets", but no
   solution provides a great defense.  The administrator will have to
   remedy the problem, which means different actions based on the
   different solutions:

   Pairing secrets:  The administrator will need to revoke the pairing
      keys used by the compromised client.  This implies contacting the
      O(M) servers to which the client was paired.

   Group public key:  The administrator must revoke the private key
      associated with the compromised group members and, depending on
      the cryptographic scheme in use, generate new private keys for
      each existing, non-compromised group member.  The latter is
      necessary for public key encryption schemes wherein group access
      is permitted based on ownership (or not) to an included private
      key.  Some public key encryption schemes permit revocation without
      rotating any non-compromised group member private keys.

   Shared symmetric secret:  The administrator will need to revoke the
      discovery secrets used by the compromised client.  This implies
      contacting the O(M) servers that the client was authorized to
      discover, and then the O(N) clients of each of these servers.
      This will require a total of O(N*M) management operations.

   Shared public secret:  The administrator will need to revoke the
      discovery public keys used by the compromised client.  This
      implies contacting the O(M) servers that the client was authorized
      to discover, and then the O(N) clients of each of these servers.
      Just as in the case of discovery secrets, this will require O(N*M)
      management operations.

   The revocation of public keys might benefit from some kind of
   centralized revocation list, and thus may actually be easier to
   organize than simple scaling considerations would dictate.
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4.3.  Effect of compromized server

   If a server is compromised, an adversary will take possession of the
   secrets owned by that server.  The effects are pretty much the same
   in all configurations.  With a set of valid credentials, the
   adversary can impersonate the server.  It can track all of the
   server’s clients.  There are no differences between the various
   solutions.

   As remedy, once the compromise is discovered, the administrator will
   have to revoke the credentials of O(N) clients, or O(G) groups,
   connected to that server.  In all cases, this could be done by
   notifying all potential clients to not trust this particular server
   anymore.

5.  Summary of tradeoffs

   In the preceding sections, we have reviewed the scaling and privacy
   properties of three possible secret sharing solutions for privacy
   discovery.  The comparison can be summed up as follow:

     +-------------------------+---------+------------+-------------+
     |         Solution        | Scaling | Resistance | Remediation |
     +-------------------------+---------+------------+-------------+
     |      Pairing secret     |   Poor  |    Bad     |     Good    |
     |     Group public key    |  Medium |    Bad     |    Maybe    |
     | Shared symmetric secret |   Good  | Really bad |     Poor    |
     |   Shared public secret  |   Good  |    Bad     |    Maybe    |
     +-------------------------+---------+------------+-------------+

              Table 1: Comparison of secret sharing solutions

   All four types of solutions provide reasonable privacy when the
   secrets are not compromised.  They all have poor resistance to the
   compromise of a client, as explained in Section 4.1, but sharing a
   symmetric secret is much worse because it does not prevent server
   impersonation.  The pairing secret solution scales worse than the
   discovery secret and discovery public key solutions.  The group
   public key scales as the number of groups for the total set of
   clients; this depends on group assignment and will be intermediate
   between the pairing secret and shared secret solutions.  The pairing
   secret solution can recover from a compromise with a smaller number
   of updates, but the public key solutions may benefit from a simple
   recovery solution using some form of "revocation list".
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6.  Security Considerations

   This document does not specify a solution, but discusses future
   choices when providing privacy for discovery protocols.

7.  IANA Considerations

   This draft does not require any IANA action.
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Appendix A.  Survey of Implementations

   This section surveys several private service discovery designs in the
   context of the threat model detailed above.

A.1.  DNS-SD Privacy Extensions

   Huitema and Kaiser [I-D.ietf-dnssd-privacy] decompose private service
   discovery into two stages: (1) identify specific peers offering
   private services, and (2) issue unicast DNS-SD queries to those hosts
   after connecting over TLS using a previously agreed upon pre-shared
   key (PSK), or pairing key.  Any out-of-band pairing mechanism will
   suffice for PSK establishment, though the authors specifically
   mention [I-D.ietf-dnssd-pairing] as the pairing mechanism.  Step (1)
   is done by broadcasting "private instance names" to local peers,
   using service-specific pairing keys.  A private instance name N’ for
   some service with name N is composed of a unique nonce r and
   commitment to r using N_k.  Commitments are constructed by hashing
   N_k with the nonce.  Only owners of N_k may verify its correctness
   and, upon doing so, answer as needed.  The draft recommends
   randomizing hostnames in SRV responses along with other identifiers,
   such as MAC addresses, to minimize likability to specific hosts.
   Note that this alone does not prevent fingerprinting and tracking
   using that hostname.  However, when done in conjunction with steps
   (1) and (2) above, this mitigates fingerprinting and tracking since
   different hostnames are used across venues and real discovered
   services remain hidden behind private instance names.

   After discovering its peers, a node will directly connect to each
   device using TLS, authenticated with a PSK derived from each
   associated pairing key, and issue DNS-SD queries per usual.  DNS
   messages are formulated as per [RFC7858].
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   As an optimization, the authors recommend that each nonce be
   deterministically derived based on time so that commitment proofs may
   be precomputed asynchronously.  This avoids O(N*M) computation, where
   N is the number of nodes in a local network and M is the number of
   per-node pairings.

   This system has the following properties:

   1.  Symmetric work load: clients and servers can pre-compute private
       instance names as a function of their pairing secret and
       predictable nonce.

   2.  Mutual identity privacy: Both client and server identities are
       hidden from active and passive attackers that do not subvert the
       pairing process.

   3.  No client set size hiding: The number of private instance names
       reveals the number of unique pairings a server has with its
       clients.  (Servers may pad the list of records with random
       instance names, though this introduces more work for clients.)

   4.  Unlinkability: Private service names are unlinkable to post-
       discovery TLS connections.  (Note that if deterministic nonces
       repeat, servers risk linkability across private service names.)

   5.  No fingerprinting: Assuming servers use fresh nonces per private
       instance name, advertisements change regularly.

A.2.  Private IoT

   Boneh et al.  [Wu16] developed an approach for private service
   discovery that reduces to private mutual authentication.  Moreover,
   it should be infeasible for any adversary to forge advertisements or
   impersonate anyone else on the network.  Specifically, service
   discoverers only wish to reveal their identity to services they
   trust, and vice versa.  Existing protocols such as TLS, IKE, and
   SIGMA [SIGMA] require that one side reveal its identity first.  Their
   approach first allocates, via some policy manager, key pairs
   associated with human-readable policy names.  For example, user Alice
   might have a key pair associated with the names /Alice, /Alice/
   Family, and /Alice/Device.  Her key is bound to each of these names.
   Authentication policies (and trust models) are then expressed as
   policy prefix patterns, e.g., /Alice/*. Broadcast messages are
   encrypted to policies.  For example, Alice might encrypt a message m
   to the policy /Bob/*. Only Bob, who owns a private key bound to,
   e.g., /Bob/Devices, can decrypt m.  (This procedure uses a form of
   identity-based encryption called prefix-based encryption.  Readers
   are referred to [Wu16] for a thorough description.)
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   Using prefix- and policy-based encryption, service discovery is
   decomposed into two steps: (1) service announcement and (2) key
   exchange, similar to [I-D.ietf-dnssd-privacy].  Announcements carry
   service identities, ephemeral key shares, and a signature, all
   encrypted under the service’s desired policy prefix, e.g., /Alice/
   Family/*. Upon receipt of an announcement, clients with matching
   policy private keys can decrypt the announcement and use the
   ephemeral key share to perform an Authenticated Diffie Hellman key
   exchange with the service.  Upon completion, the derived shared
   secret may be used for any further communication, e.g., DNS-SD
   queries, if needed.

   This system has the following properties:

   1.  Asymmetric work load: computation for clients is on the order of
       advertisements.

   2.  Mutual identity privacy: Both client and server identities are
       hidden from active and passive attackers.

   3.  Client set size hiding: Policy-based encryption advertisements
       hides the number of clients with matching policy keys.

   4.  Unlinkability: Client initiated connections are unlinkable to
       service advertisements (modulo network-layer connection
       information, such as advertisement origin and connection
       destination).
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Abstract

   Resource and service discovery are complementary.  Resource discovery
   provides fine-grained detail about the content of a web server, while
   service discovery can provide a scalable method to locate servers in
   large networks.  This document defines a method for mapping between
   CoRE Link Format attributes and DNS-Based Service Discovery records
   to facilitate the use of either method to locate RESTful service
   interfaces (APIs) in heterogeneous HTTP/CoAP environments.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 8, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
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   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction and Background

   The Constrained RESTful Environments (CoRE) working group aims at
   realizing the [REST] architecture in a suitable form for the most
   constrained devices (e.g. 8-bit microcontrollers with limited RAM and
   ROM) and networks (e.g. 6LoWPAN [RFC4944]).  CoRE is aimed at
   machine-to-machine (M2M) applications such as smart energy and
   building automation.  The main deliverable of CoRE is the Constrained
   Application Protocol (CoAP) specification [RFC7252].

   CoRE Link Format [RFC6690] is intended to support fine-grained
   discovery of hosted resources, their attributes, and possibly other
   related resources.  Automated dynamic discovery of resources hosted
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   by a constrained server is critical in M2M applications, where human
   intervention is minimal and static configurations result in
   brittleness.

   DNS-Based Service Discovery (DNS-SD) [RFC6763] supports wide-area
   search for instances of a given service type (i.e. servers that
   support a particular application protocol stack).  A service instance
   consists of a server’s name, IP address, and port number plus
   additional meta-data about the server.  This data may extend to
   support multi-function devices, where multiple services are available
   at the same endpoint.  The result of the discovery process may
   include a path to a resource representing the entry point to each
   function’s RESTful service interface and possibly a link to a formal
   description of that interface (e.g. a JSON Hyper-Schema document
   [I-D.handrews-json-schema-hyperschema]).

   Resource and service discovery are complementary in the case of large
   networks, where the latter can facilitate scaling.  This document
   defines a mapping between CoRE Link Format attributes and DNS-Based
   Service Discovery records that permits discovery of CoAP services by
   either method.  It also addresses the CoRE charter goal to
   interoperate with DNS-SD.

   The primary use case for mapping between resource and service
   discovery is to support heterogeneous HTTP/CoAP environments where,
   for example, HTTP clients may discover and communicate with CoAP
   servers that are behind a "cross proxy" [RFC8075].

1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119].  The term "byte" is used in its now conventional sense as
   a synonym for "octet".

   This specification requires readers to be familiar with all the terms
   and concepts that are discussed in [RFC6690] and [RFC8288].  Readers
   should also be familiar with the terms and concepts discussed in
   [RFC7252].

   This specification also incorporates the terminology of
   [I-D.ietf-core-resource-directory].

   In particular, the following terms are used frequently:
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   Endpoint: a web server associated with a specific IP address and
   port; thus a physical device may host one or more endpoints.
   Endpoints may also act as clients.

   Link: Web Linking [RFC8288] defines a Web Link (link) as a typed
   connection between two resources, comprised of:

   o  a link context,

   o  a link relation type (see Section 2.1 of [RFC8288],

   o  a link target, and

   o  optionally, target attributes (see Section 2.2 of [RFC8288]).

   A link can be viewed as a statement of the form "link context has a
   link relation type resource at link target, which (optionally) has
   target attributes", where link target and context are typically
   Universal Resource Identifiers (URIs) [RFC3986].  For example,
   "https://www.example.com/" has a "canonical" resource at
   "https://example.com", which has a "type" of "text/html".

1.2.  CoRE Resource Discovery

   The main function of Resource Discovery is to return links to the
   resources hosted by a server, complemented by attributes about those
   resources and additional link relations.  In CoRE this collection of
   links and attributes is itself a resource (in contrast to HTTP, where
   headers delivered with a specific resource describe its attributes).

   Resource Discovery can be performed either unicast or multicast.
   When a server’s IP address is already known, either a priori or
   resolved via the Domain Name System (DNS) [RFC1034][RFC1035], unicast
   discovery is performed in order to locate the entry point to the
   resource of interest.  This is performed using a GET to "/.well-
   known/core" on the server, which returns a payload in the CoRE Link
   Format [RFC6690].  A client would then match the appropriate Resource
   Type, Interface Description, and possible media type [RFC2045] for
   its application.  These attributes may also be included in the query
   string in order to filter the number of links returned in a response.

   Multicast Resource Discovery is useful when a client needs to locate
   a resource within a limited scope, and that scope supports IP
   multicast.  A GET request to the appropriate multicast address is
   made for "/.well-known/core".  In order to limit the number and size
   of responses, a query string is recommended with the known
   attributes.  Typically, a resource would be discovered based on its
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   Resource Type and/or Interface Description, along with possible
   application-specific attributes.

1.3.  CoRE Resource Directories

   In many M2M scenarios, direct discovery of resources is not practical
   due to sleeping nodes, limited bandwidth, or networks where multicast
   traffic is inefficient.  These problems can be solved by deploying a
   network element called a Resource Directory (RD), which hosts
   descriptions of resources that originate on other endpoints and
   allows indirect lookups to be performed for those resources.

   The Resource Directory implements a set of REST interfaces for
   endpoints to register and maintain collections of links, called
   Resource Directory registrations.  [I-D.ietf-core-resource-directory]
   specifies the web interfaces that an RD supports for endpoints to
   discover the RD and to register, maintain, lookup and remove resource
   descriptions; for the RD to validate entries; and for clients to
   lookup resources from the RD.

1.4.  DNS-Based Service Discovery

   DNS-Based Service Discovery (DNS-SD) defines a conventional method of
   naming and configuring DNS PTR, SRV, and TXT resource records to
   facilitate discovery of services (such as CoAP servers in a
   subdomain) using the existing DNS infrastructure.  This section gives
   a brief overview of DNS-SD; for a detailed specification see
   [RFC6763].

   DNS-SD Service Names are limited to 255 bytes and are of the form:

         Service Name = <Instance>.<ServiceType>.<Domain>

   The Service Name identifies a SRV/TXT Resource Record (RR) pair.  The
   SRV RR specifies the hostname and port of an endpoint.  The TXT RR
   provides additional information in the form of key/value pairs.  DNS-
   Based Service Discovery is accomplished by sending a DNS request for
   PTR records with the name <ServiceType>.<Domain>, which will return a
   list of zero or more Service Names.

   The <Domain> part of the Service Name is identical to the global (DNS
   subdomain) part of the authority in URIs [RFC3986] that identify the
   resources on an individual server or group of servers.

   The <ServiceType> part is generally composed of two labels.  The
   first label of the pair is the application protocol name [RFC6335]
   preceded by an underscore character.  For example, an organization
   such as the Open Connectivity Foundation [OCF] that specifies
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   Resource Types [RFC6335] might register application protocol names
   beginning with "oic", which all servers that advertise OCF resources
   would use as part of their ServiceType.  The second label indicates
   the transport protocol binding and is typically "_udp" for CoAP
   services.

   The default <Instance> part of the Service Name SHOULD be set to a
   default value at the factory and MAY be modified during the
   commissioning process.  It MUST uniquely identify an instance of
   <ServiceType> within a <Domain>.  Taken together, these three
   elements comprise a unique name for an SRV/TXT record pair within the
   DNS subdomain.

   The granularity of a Service Name MAY be that of a host or group, or
   it might represent a particular resource within a CoAP server.  The
   SRV record contains the host name (AAAA record name) and port of the
   endpoint, while protocol is part of the Service Name.  In the case
   where a Service Name identifies a particular resource, the path part
   of the URI must be carried in a corresponding TXT record.

   A DNS TXT record is in practice limited to a few hundred bytes in
   length, which is indicated in the resource record header in the DNS
   response message (See section 6 of [RFC6763]).  The data consist of
   one or more strings comprising a key/value pair.  By convention, the
   first pair is txtver=<number> (to support different versions of a
   service description).  Each string is formatted as a single length
   byte followed by 0-255 bytes of text.  An example string is:

                 ----------------------------------------
                 | 0x08 | t | x | t | v | e | r | = | 1 |
                 ----------------------------------------

2.  New Link-Format Attributes

   When using the CoRE Link Format to describe resources being
   discovered by or posted to a resource directory service, additional
   information about those resources is often useful.  This
   specification defines the following new attributes for use in the
   CoRE Link Format [RFC6690] to enable the data-driven mappings
   described in Section 3:

      link-extension    = ( "exp" )
      link-extension    = ( "ins" "=" (ptoken | quoted-string) )
                          ; The token or string is max 63 bytes
      link-extension    = ( "st" "=" (ptoken | quoted-string) )
                          ; The token or string is max 15 bytes
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2.1.  Export attribute "exp"

   The Export "exp" attribute is used as a flag to indicate that a link
   description MAY be exported from a resource directory to external
   directories.

   The CoRE Link Format is used for many purposes between CoAP
   endpoints.  Some are useful mainly locally; for example checking the
   observability of a resource before accessing it, determining the size
   of a resource, or traversing dynamic resource structures.  However,
   other links are very useful to be exported to other directories, for
   example the entry point resource to a functional service.  This
   attribute MAY be used as a query parameter in the RD Lookup Function
   Set defined in Section 6 of [I-D.ietf-core-resource-directory].

2.2.  Resource Instance attribute "ins="

   The Resource Instance "ins=" attribute is an identifier for this
   resource, which makes it possible to distinguish it from other
   similar resources in a Resource Directory.  This attribute specifies
   the value to be used for the <Instance> portion of an exported DNS-SD
   Service Name (see Section 1.4), and SHOULD be unique across resources
   with the same Resource Type "rt=" attribute in the domain in which it
   is used.

   A Resource Instance SHOULD be a descriptive human readable string
   like "Ceiling Light, Room 3".  This attribute MUST NOT be more than
   63 bytes in length.  The resource identifier attribute MUST NOT
   appear more than once in a link description.  This attribute MAY be
   used as a query parameter in the RD Lookup Function Set defined in
   Section 7 of [I-D.ietf-core-resource-directory].

2.3.  Service Type attribute "st="

   The Service Type instance "st=" attribute specifies the value to be
   used for the <ServiceType> portion of an exported DNS-SD Service Name
   (see Section 1.4).  This attribute MUST NOT be more than 15 bytes in
   length (see [RFC6335], Section 5.1) and MUST be present in the IANA
   Service Name registry [st].

3.  Mapping CoRE Link Attributes to DNS-SD Record Fields

3.1.  Mapping Resource Instance attribute "ins=" to <Instance>

   The Resource Instance "ins=" attribute maps directly to the
   <Instance> part of a DNS-SD Service Name.  It is stored directly in
   the DNS as a single DNS label of canonical precomposed UTF-8
   [RFC3629] "Net-Unicode" (Unicode Normalization Form C) [RFC5198]
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   text.  However, if the "ins=" attribute is chosen to match the DNS
   host name of a service, it SHOULD use the syntax defined in
   Section 3.5 of [RFC1034] and Section 2.1 of [RFC1123].

   The <Instance> part of the name of a service being offered on the
   network SHOULD be configurable by the user setting up the service, so
   that he or she may give it an informative name.  However, the device
   or service SHOULD NOT require the user to configure a name before it
   can be used.  A sensible choice of default name can allow the device
   or service to be accessed in many cases without any manual
   configuration at all (see Appendix D of [RFC6763]).

   DNS labels are limited to 63 bytes in length and the entire Service
   Name may not exceed 255 bytes.

3.2.  Mapping Service Type attribute "st=" to <ServiceType>

   The Service Type "st=" attribute maps directly to the <ServiceType>
   part of a DNS-SD Service Name.

   In practice, the ServiceType should unambiguously identify
   interoperable devices.  It is up to individual SDOs to specify how to
   represent their registered Resource Type "rt=" values as registered
   application protocol names according to [RFC6335].  The application
   name is then used as the value of the resource "st=" attribute.

   The resulting application protocol name MUST be composed of at least
   a single Net-Unicode text string, without underscore ’_’ or period
   ’.’ and limited to 15 bytes in length (see Section 5.1 of [RFC6335]).
   This string is mapped to the DNS-SD <ServiceType> by prepending an
   underscore and appending a period followed by the "_udp" label.  For
   example, rt="oic.d.light" might correspond to the registered
   application protocol name st="oic-d-light" and would be mapped into
   Service Type "_oic-d-light._udp".

   The resulting string is used to form labels for DNS-SD records which
   are stored directly in the DNS.

3.3.  <Domain> Mapping

   TBD: A method must be specified to determine which DNS zone the CoAP
   service description should be exported to.  See, for example,
   Section 11 in [RFC6763] and Section 2 in
   [I-D.sctl-service-registration].
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3.4.  TXT Record key=value strings

   DNS-SD key/value pairs may be derived from CoRE Link Format
   information and exported as key=value strings in a DNS-SD TXT record
   (See Section 6.3 of [RFC6763]).

   The resource <URI> is exported as key/value pair "path=<URI>".

   The Interface Description "if=" attribute is exported as key/value
   pair "if=<Interface Description>".

   The DNS TXT record can be further populated by importing any other
   resource description attributes as they share the same key=value
   format specified in Section 6 of [RFC6763].

3.5.  Exporting resource links into DNS-SD

   Assuming the ability to query a Resource Directory or multicast a GET
   (?exp) over the local link, CoAP resource discovery may be used to
   populate the DNS-SD database in an automated fashion.  CoAP resource
   descriptions (links) can be exported to DNS-SD for exposure to
   service discovery by using the Resource Instance attribute as the
   basis for a unique Service Name, composed with the Service Type
   attribute as the <ServiceType>, and registered in the appropriate
   <Domain>.  The agent responsible for exporting records to the DNS
   zone file SHOULD be authenticated to the DNS server.  The following
   example, using the example lookup location /rd-lookup, shows an agent
   discovering a resource to be exported:

    Req: GET /rd-lookup/res?exp

    Res: 2.05 Content
    <coap://[FDFD::1234]:5683/light/1>;
      exp;st=oic-d-light;rt="oic.d.light";ins="Spot";
                d="sector";ep="node1"

   The agent subsequently registers the following DNS-SD RRs, assuming a
   derived DNS zone name "office.example.com":

   _oic-d-light._udp.office.example.com      IN PTR
            Spot._oic-d-light._udp.office.example.com
   Spot._oic-d-light._udp.office.example.com IN TXT
            txtver=1;path=/light/1;rt=oic.d.light;d=sector
   Spot._oic-d-light._udp.office.example.com IN SRV
            0 0 5683 node1.office.example.com.
   node1.office.example.com.                 IN AAAA FDFD::1234
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4.  Exporting Resource Directory Service to DNS

   In some cases it is required that one (or more) Resource Directories
   (RD) in a given DNS domain can be discoverable from DNS.  The /.well-
   known/core resource of the RD should reflect this by specifying the
   "ins", "exp", and the "st" attributes in the the link of the RD
   service.  This document specifies in Section 5 two servicetypes: _rd-
   lookup-res._udp and _rd-lookup-ep._udp for resource types rt =
   core.rd-lookup-res and rt = core.rd-lookup-ep respectively.  The
   default coap and coaps ports are respectively: 5683 and 5684.

   The value of the instance MAY be specified by the manager of the
   resource directories.  In case of an unmanaged RD (for example in a
   home network) it is recommended that the ins parameter takes a value
   provided by an Authorization Server during the acceptance of the RD
   to the network (see for example section 7 of
   [I-D.ietf-core-resource-directory]).

   With the assumption that the "ins" value is attributed by
   Authorization Server, and [FDFD::1234] is IP address of RD, Example
   links for RD are:

        Req: GET coap://[FDFD::1234]/.well-known/core?exp

        Res: 2.05 Content
        <rd-lookup/res>;
          exp;st=rd-lookup-res;rt="core.rd-lookup-res";
          ins="505567",
        <rd-lookup/ep>;
          exp;st=rd-lookup-ep;rt="core.rd-lookup-ep";
          ins="505572"

   The link atributes can be exported to RR by the mapping process
   described in Section 3.

5.  IANA considerations

   Two registries are affected by this document: (1) "RD Parameters"
   registry under "Core Parameters" registry, and (2) Service Name and
   Transport Protocol Port Number Registry

5.1.  RD Parameters Registry

   This specification defines new parameters for the registry "RD
   Parameters" provided under "CoRE Parameters" (TBD).
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   +----------------+-------+---------------+-----+--------------------+
   | Full name      | Short | Validity      | Use | Description        |
   +----------------+-------+---------------+-----+--------------------+
   | ServiceType    | st    |               | RLA | Name of the        |
   |                |       |               |     |Service Type,       |
   |                |       |               |     | max 63 bytes       |
   | Resource       | ins   |               | RLA | Instance identifier|
   | Instance       |       |               |     | of the resource    |
   |                |       |               |     |                    |
   | Export         | exp   |               | RLA | flag to indicate   |
   |                |       |               |     | exportation        |
   +----------------+-------+---------------+-----+--------------------+

5.2.  Service Name and Transport Protocol Port Number Registry

   This specification defines new parameters for the Service Name and
   Transport Protocol Port Number Registry:

   * _rd-lookup-res._udp at ports 5683 and 5684
   * _rd-lookup-ep._udp at ports 5683 and 5684

6.  Security considerations

   Malicious nodes can export fake link attributes to DNS.  It is
   recommended that the RD can be authenticated, and is authorized to
   both join the network and export its link attributes.  Authentication
   is specified in [I-D.ietf-ace-oauth-authz].

7.  Contributors

   Keryy lynn was the initiator of, and major contributor to this
   document.  This document was split out from
   [I-D.ietf-core-resource-directory].  Zach Shelby was a co-author of
   the original version of this draft.

8.  Acknowledgments

   The authors wish to thank Stuart Cheshire, Ted Lemon, and David
   Thaler for their thorough reviews and clarifying suggestions.

9.  References

9.1.  Normative References

   [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
              <https://www.rfc-editor.org/info/rfc1034>.

van der Stok, et al.     Expires January 8, 2020               [Page 11]



Internet-Draft   CoRE Resource Directory: DNS-SD mapping       July 2019

   [RFC1035]  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
              November 1987, <https://www.rfc-editor.org/info/rfc1035>.

   [RFC1123]  Braden, R., Ed., "Requirements for Internet Hosts -
              Application and Support", STD 3, RFC 1123,
              DOI 10.17487/RFC1123, October 1989,
              <https://www.rfc-editor.org/info/rfc1123>.

   [RFC2045]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part One: Format of Internet Message
              Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
              <https://www.rfc-editor.org/info/rfc2045>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
              10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
              2003, <https://www.rfc-editor.org/info/rfc3629>.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.

   [RFC4944]  Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
              "Transmission of IPv6 Packets over IEEE 802.15.4
              Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
              <https://www.rfc-editor.org/info/rfc4944>.

   [RFC5198]  Klensin, J. and M. Padlipsky, "Unicode Format for Network
              Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
              <https://www.rfc-editor.org/info/rfc5198>.

   [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
              Cheshire, "Internet Assigned Numbers Authority (IANA)
              Procedures for the Management of the Service Name and
              Transport Protocol Port Number Registry", BCP 165,
              RFC 6335, DOI 10.17487/RFC6335, August 2011,
              <https://www.rfc-editor.org/info/rfc6335>.

   [RFC6690]  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
              Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
              <https://www.rfc-editor.org/info/rfc6690>.

van der Stok, et al.     Expires January 8, 2020               [Page 12]



Internet-Draft   CoRE Resource Directory: DNS-SD mapping       July 2019

   [RFC6763]  Cheshire, S. and M. Krochmal, "DNS-Based Service
              Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
              <https://www.rfc-editor.org/info/rfc6763>.

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.

   [RFC8075]  Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
              E. Dijk, "Guidelines for Mapping Implementations: HTTP to
              the Constrained Application Protocol (CoAP)", RFC 8075,
              DOI 10.17487/RFC8075, February 2017,
              <https://www.rfc-editor.org/info/rfc8075>.

   [RFC8288]  Nottingham, M., "Web Linking", RFC 8288,
              DOI 10.17487/RFC8288, October 2017,
              <https://www.rfc-editor.org/info/rfc8288>.

9.2.  Informative References

   [I-D.handrews-json-schema-hyperschema]
              Andrews, H. and A. Wright, "JSON Hyper-Schema: A
              Vocabulary for Hypermedia Annotation of JSON", draft-
              handrews-json-schema-hyperschema-01 (work in progress),
              January 2018.

   [I-D.ietf-ace-oauth-authz]
              Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
              H. Tschofenig, "Authentication and Authorization for
              Constrained Environments (ACE) using the OAuth 2.0
              Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-24
              (work in progress), March 2019.

   [I-D.ietf-core-resource-directory]
              Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.
              Amsuess, "CoRE Resource Directory", draft-ietf-core-
              resource-directory-22 (work in progress), July 2019.

   [I-D.sctl-service-registration]
              Cheshire, S. and T. Lemon, "Service Registration Protocol
              for DNS-Based Service Discovery", draft-sctl-service-
              registration-02 (work in progress), July 2018.

   [OCF]      Foundation, O., "OCF Specification 2.0", 2018,
              <https://openconnectivity.org/developer/specifications>.

van der Stok, et al.     Expires January 8, 2020               [Page 13]



Internet-Draft   CoRE Resource Directory: DNS-SD mapping       July 2019

   [REST]     Fielding, R., "Architectural Styles and the Design of
              Network-based Software Architectures", 2000,
              <http://www.ics.uci.edu/˜fielding/pubs/dissertation/
              fielding_dissertation.pdf>.

   [rt]       IANA, ., "Resource Type (rt=) Link Target Attribute
              Values", 2012, <https://www.iana.org/assignments/core-
              parameters/
              core-parameters.xhtml#rt-link-target-att-value>.

   [st]       IANA, ., "Service Name and Transport Protocol Port Number
              Registry", 2018, <https://www.iana.org/assignments/
              service-names-port-numbers/
              service-names-port-numbers.xml>.

Authors’ Addresses

   Peter van der Stok
   Consultant

   Phone: +31 492474673 (Netherlands), +33 966015248 (France)
   Email: consultancy@vanderstok.org
   URI:   www.vanderstok.org

   Michael Koster
   SmartThings
   665 Clyde Avenue
   Mountain View, CA  94043
   USA

   Phone: +1 707-502-5136
   Email: Michael.Koster@smartthings.com

   Christian Amsuess
   Energy Harvesting Solutions
   Hollandstr. 12/4
   1020
   Austria

   Phone: +43 664-9790639
   Email: c.amsuess@energyharvesting.at

van der Stok, et al.     Expires January 8, 2020               [Page 14]



DNSOP Working Group                                            R. Bellis
Internet-Draft                                                       ISC
Updates: 1035, 7766 (if approved)                            S. Cheshire
Intended status: Standards Track                              Apple Inc.
Expires: June 9, 2019                                       J. Dickinson
                                                            S. Dickinson
                                                                 Sinodun
                                                                T. Lemon
                                                     Nibbhaya Consulting
                                                             T. Pusateri
                                                            Unaffiliated
                                                       December 06, 2018

                        DNS Stateful Operations
                   draft-ietf-dnsop-session-signal-20

Abstract

   This document defines a new DNS OPCODE for DNS Stateful Operations
   (DSO).  DSO messages communicate operations within persistent
   stateful sessions, using type-length-value (TLV) syntax.  Three TLVs
   are defined that manage session timeouts, termination, and encryption
   padding, and a framework is defined for extensions to enable new
   stateful operations.  This document updates RFC 1035 by adding a new
   DNS header opcode which has different message semantics, and a new
   result code.  This document updates RFC 7766 by redefining a session,
   providing new guidance on connection re-use, and providing a new
   mechanism for handling session idle timeouts.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 9, 2019.
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1.  Introduction

   This document specifies a mechanism for managing stateful DNS
   connections.  DNS most commonly operates over a UDP transport, but
   can also operate over streaming transports; the original DNS RFC
   specifies DNS over TCP [RFC1035] and a profile for DNS over TLS
   [RFC7858] has been specified.  These transports can offer persistent,
   long-lived sessions and therefore when using them for transporting
   DNS messages it is of benefit to have a mechanism that can establish
   parameters associated with those sessions, such as timeouts.  In such
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   situations it is also advantageous to support server-initiated
   messages (such as DNS Push Notifications [I-D.ietf-dnssd-push]).

   The existing EDNS(0) Extension Mechanism for DNS [RFC6891] is
   explicitly defined to only have "per-message" semantics.  While
   EDNS(0) has been used to signal at least one session-related
   parameter (edns-tcp-keepalive EDNS0 Option [RFC7828]) the result is
   less than optimal due to the restrictions imposed by the EDNS(0)
   semantics and the lack of server-initiated signalling.  For example,
   a server cannot arbitrarily instruct a client to close a connection
   because the server can only send EDNS(0) options in responses to
   queries that contained EDNS(0) options.

   This document defines a new DNS OPCODE, DSO ([TBA1], tentatively 6),
   for DNS Stateful Operations.  DSO messages are used to communicate
   operations within persistent stateful sessions, expressed using type-
   length-value (TLV) syntax.  This document defines an initial set of
   three TLVs, used to manage session timeouts, termination, and
   encryption padding.

   All three TLVs defined here are mandatory for all implementations of
   DSO.  Further TLVs may be defined in additional specifications.

   DSO messages may or may not be acknowledged; this is signalled by
   providing a non-zero message ID for messages that must be
   acknowledged (DSO request messages) and a zero message ID for
   messages that are not to be acknowledged (DSO unidirectional
   messages), and is also specified in the definition of a particular
   DSO message type.  Messages are pipelined; answers may appear out of
   order when more than one answer is pending.

   The format for DSO messages (Section 5.4) differs somewhat from the
   traditional DNS message format used for standard queries and
   responses.  The standard twelve-byte header is used, but the four
   count fields (QDCOUNT, ANCOUNT, NSCOUNT, ARCOUNT) are set to zero and
   accordingly their corresponding sections are not present.

   The actual data pertaining to DNS Stateful Operations (expressed in
   TLV syntax) is appended to the end of the DNS message header.  Just
   as in traditional DNS over TCP [RFC1035] [RFC7766] the stream
   protocol carrying DSO messages (which are just another kind of DNS
   message) frames them by putting a 16-bit message length at the start,
   so the length of the DSO message is determined from that length,
   rather than from any of the DNS header counts.

   When displayed using packet analyzer tools that have not been updated
   to recognize the DSO format, this will result in the DSO data being
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   displayed as unknown additional data after the end of the DNS
   message.

   This new format has distinct advantages over an RR-based format
   because it is more explicit and more compact.  Each TLV definition is
   specific to its use case, and as a result contains no redundant or
   overloaded fields.  Importantly, it completely avoids conflating DNS
   Stateful Operations in any way with normal DNS operations or with
   existing EDNS(0)-based functionality.  A goal of this approach is to
   avoid the operational issues that have befallen EDNS(0), particularly
   relating to middlebox behaviour (see for example
   [I-D.ietf-dnsop-no-response-issue] sections 3.2 and 4).

   With EDNS(0), multiple options may be packed into a single OPT
   pseudo-RR, and there is no generalized mechanism for a client to be
   able to tell whether a server has processed or otherwise acted upon
   each individual option within the combined OPT pseudo-RR.  The
   specifications for each individual option need to define how each
   different option is to be acknowledged, if necessary.

   In contrast to EDNS(0), with DSO there is no compelling motivation to
   pack multiple operations into a single message for efficiency
   reasons, because DSO always operates using a connection-oriented
   transport protocol.  Each DSO operation is communicated in its own
   separate DNS message, and the transport protocol can take care of
   packing several DNS messages into a single IP packet if appropriate.
   For example, TCP can pack multiple small DNS messages into a single
   TCP segment.  This simplification allows for clearer semantics.  Each
   DSO request message communicates just one primary operation, and the
   RCODE in the corresponding response message indicates the success or
   failure of that operation.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.
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3.  Terminology

   DSO:  DNS Stateful Operations.

   connection:  a bidirectional byte (or message) stream, where the
      bytes (or messages) are delivered reliably and in-order, such as
      provided by using DNS over TCP [RFC1035] [RFC7766] or DNS over TLS
      [RFC7858].

   session:  The unqualified term "session" in the context of this
      document refers to a persistent network connection between two
      endpoints which allows for the exchange of DNS messages over a
      connection where either end of the connection can send messages to
      the other end.  (The term has no relationship to the "session
      layer" of the OSI "seven-layer model".)

   DSO Session:  a session established between two endpoints that
      acknowledge persistent DNS state via the exchange of DSO messages
      over the connection.  This is distinct from a DNS-over-TCP session
      as described in the previous specification for DNS over TCP
      [RFC7766].

   close gracefully:  a normal session shutdown, where the client closes
      the TCP connection to the server using a graceful close, such that
      no data is lost (e.g., using TCP FIN, see Section 5.3).

   forcibly abort:  a session shutdown as a result of a fatal error,
      where the TCP connection is unilaterally aborted without regard
      for data loss (e.g., using TCP RST, see Section 5.3).

   server:  the software with a listening socket, awaiting incoming
      connection requests, in the usual DNS sense.

   client:  the software which initiates a connection to the server’s
      listening socket, in the usual DNS sense.

   initiator:  the software which sends a DSO request message or a DSO
      unidirectional message during a DSO session.  Either a client or
      server can be an initiator

   responder:  the software which receives a DSO request message or a
      DSO unidirectional message during a DSO

   session.  Either a client or server can be a responder.

   sender:  the software which is sending a DNS message, a DSO message,
      a DNS response, or a DSO response.
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   receiver:  the software which is receiving a DNS message, a DSO
      message, a DNS response, or a DSO response.

   service instance:  a specific instance of server software running on
      a specific host (Section 9.1).

   long-lived operation:  a long-lived operation is an outstanding
      operation on a DSO session where either the client or server,
      acting as initiator, has requested that the responder send new
      information regarding the request, as it becomes available.

   Early Data: A TLS 1.3 handshake containing early data that begins a
   DSO session ([RFC8446] section 2.3).  TCP Fast Open is only permitted
   when using TLS.

   DNS message:  any DNS message, including DNS queries, response,
      updates, DSO messages, etc.

   DNS request message:  any DNS message where the QR bit is 0.

   DNS response message:  any DNS message where the QR bit is 1.

   DSO message:  a DSO request message, DSO unidirectional message, or a
      DSO response to a DSO request message.  If the QR bit is 1 in a
      DSO message, it is a DSO response message.  If the QR bit is 0 in
      a DSO message, it is a DSO request message or DSO unidirectional
      message, as determined by the specification of its primary TLV.

   DSO response message:  a response to a DSO request message.

   DSO request message:  a DSO message that requires a response.

   DSO unidirectional message:  a DSO message that does not require and
      cannot induce a response.

   Primary TLV:  The first TLV in a DSO message or DSO response; in the
      DSO message this determines the nature of the operation being
      performed.

   Additional TLV:  Any TLVs in a DSO message response that follow the
      primary TLV.

   Response Primary TLV:  The (optional) first TLV in a DSO response.

   Response Additional TLV:  Any TLVs in a DSO response that follow the
      (optional) Response Primary TLV.
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   inactivity timer:  the time since the most recent non-keepalive DNS
      message was sent or received.  (see Section 6.4)

   keepalive timer:  the time since the most recent DNS message was sent
      or received.  (see Section 6.5)

   session timeouts:  the inactivity timer and the keepalive timer.

   inactivity timeout:  the maximum value that the inactivity timer can
      have before the connection is gracefully closed.

   keepalive interval:  the maximum value that the keepalive timer can
      have before the client is required to send a keepalive.  (see
      Section 7.1)

   resetting a timer:  setting the timer value to zero and restarting
      the timer.

   clearing a timer:  setting the timer value to zero but not restarting
      the timer.
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4.  Applicability

   DNS Stateful Operations are applicable to several known use cases and
   are only applicable on transports that are capable of supporting a
   DSO Session.

4.1.  Use Cases

   There are several use cases for DNS Stateful operations that can be
   described here.

4.1.1.  Session Management

   Firstly, establishing session parameters such as server-defined
   timeouts is of great use in the general management of persistent
   connections.  For example, using DSO sessions for stub-to-recursive
   DNS-over-TLS [RFC7858] is more flexible for both the client and the
   server than attempting to manage sessions using just the edns-tcp-
   keepalive EDNS0 Option [RFC7828].  The simple set of TLVs defined in
   this document is sufficient to greatly enhance connection management
   for this use case.

4.1.2.  Long-lived Subscriptions

   Secondly, DNS-SD [RFC6763] has evolved into a naturally session-based
   mechanism where, for example, long-lived subscriptions lend
   themselves to ’push’ mechanisms as opposed to polling.  Long-lived
   stateful connections and server-initiated messages align with this
   use case [I-D.ietf-dnssd-push].

   A general use case is that DNS traffic is often bursty but session
   establishment can be expensive.  One challenge with long-lived
   connections is to maintain sufficient traffic to maintain NAT and
   firewall state.  To mitigate this issue this document introduces a
   new concept for the DNS, that is DSO "Keepalive traffic".  This
   traffic carries no DNS data and is not considered ’activity’ in the
   classic DNS sense, but serves to maintain state in middleboxes, and
   to assure client and server that they still have connectivity to each
   other.
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4.2.  Applicable Transports

   DNS Stateful Operations are applicable in cases where it is useful to
   maintain an open session between a DNS client and server, where the
   transport allows such a session to be maintained, and where the
   transport guarantees in-order delivery of messages, on which DSO
   depends.  Examples of transports that can support DNS Stateful
   Operations are DNS-over-TCP [RFC1035] [RFC7766] and DNS-over-TLS
   [RFC7858].

   Note that in the case of DNS over TLS, there is no mechanism for
   upgrading from DNS-over-TCP to DNS-over-TLS mid-connection (see
   [RFC7858] section 7).  A connection is either DNS-over-TCP from the
   start, or DNS-over-TLS from the start.

   DNS Stateful Operations are not applicable for transports that cannot
   support clean session semantics, or that do not guarantee in-order
   delivery.  While in principle such a transport could be constructed
   over UDP, the current DNS specification over UDP transport [RFC1035]
   does not provide in-order delivery or session semantics, and hence
   cannot be used.  Similarly, DNS-over-HTTP
   [I-D.ietf-doh-dns-over-https] cannot be used because HTTP has its own
   mechanism for managing sessions, and this is incompatible with the
   mechanism specified here.

   No other transports are currently defined for use with DNS Stateful
   Operations.  Such transports can be added in the future, if they meet
   the requirements set out in the first paragraph of this section.
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5.  Protocol Details

   The overall flow of DNS Stateful Operations goes through a series of
   phases:

   Connection Establishment:  A client establishes a connection to a
      server.  (Section 4.2)

   Connected but sessionless:  A connection exists, but a DSO session
      has not been established.  DNS messages can be sent from the
      client to server, and DNS responses can be sent from servers to
      clients.  In this state a client that wishes to use DSO can
      attempt to establish a DSO session (Section 5.1).  Standard DNS-
      over-TCP inactivity timeout handling is in effect [RFC7766] (see
      Section 7.1.2).

   DSO Session Establishment in Progress:  A client has sent a DSO
      request, but has not yet received a DSO response.  In this phase,
      the client may send more DSO requests and more DNS requests, but
      MUST NOT send DSO unidirectional messages (Section 5.1).

   DSO Session Establishment Failed:  The attempt to establish the DSO
      session did not succeed.  At this point, the client is permitted
      to continue operating without a DSO session (Connected but
      Sessionless) but does not send further DSO messages (Section 5.1).

   DSO Session Established:  Both client and server may send DSO
      messages and DNS messages; both may send replies in response to
      messages they receive (Section 5.2).  The inactivity timer
      (Section 6.4) is active; the keepalive timer (Section 6.5) is
      active.  Standard DNS-over-TCP inactivity timeout handling is no
      longer in effect [RFC7766] (see Section 7.1.2).

   Server Shutdown:  The server has decided to gracefully terminate the
      session, and has sent the client a Retry Delay message
      (Section 6.6.1).  There may still be unprocessed messages from the
      client; the server will ignore these.  The server will not send
      any further messages to the client (Section 6.6.1.1).

   Client Shutdown:  The client has decided to disconnect, either
      because it no longer needs service, the connection is inactive
      (Section 6.4.1), or because the server sent it a Retry Delay
      message (Section 6.6.1).  The client closes the connection
      gracefully Section 5.3.

   Reconnect:  The client disconnected as a result of a server shutdown.
      The client either waits for the server-specified Retry Delay to
      expire (Section 6.6.3), or else contacts a different server
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      instance.  If the client no longer needs service, it does not
      reconnect.

   Forcibly Abort:  The client or server detected a protocol error, and
      further communication would have undefined behavior.  The client
      or server forcibly aborts the connection (Section 5.3).

   Abort Reconnect Wait:  The client has forcibly aborted the
      connection, but still needs service.  Or, the server forcibly
      aborted the connection, but the client still needs service.  The
      client either connects to a different service instance
      (Section 9.1) or waits to reconnect (Section 6.6.3.1).

5.1.  DSO Session Establishment

   In order for a session to be established between a client and a
   server, the client must first establish a connection to the server,
   using an applicable transport (see Section 4).

   In some environments it may be known in advance by external means
   that both client and server support DSO, and in these cases either
   client or server may initiate DSO messages at any time.  In this
   case, the session is established as soon as the connection is
   established; this is referred to as implicit session establishment.

   However, in the typical case a server will not know in advance
   whether a client supports DSO, so in general, unless it is known in
   advance by other means that a client does support DSO, a server MUST
   NOT initiate DSO request messages or DSO unidirectional messages
   until a DSO Session has been mutually established by at least one
   successful DSO request/response exchange initiated by the client, as
   described below.  This is referred to as explicit session
   establishment.

   Until a DSO session has been implicitly or explicitly established, a
   client MUST NOT initiate DSO unidirectional messages.

   A DSO Session is established over a connection by the client sending
   a DSO request message, such as a DSO Keepalive request message
   (Section 7.1), and receiving a response, with matching MESSAGE ID,
   and RCODE set to NOERROR (0), indicating that the DSO request was
   successful.

   Some DSO messages are permitted as early data (Section 11.1).  Others
   are not.  Unidirectional messages are never permitted as early data
   unless an implicit session exists.
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   If a server receives a DSO message in early data whose primary TLV is
   not permitted to appear in early data, the server MUST forcibly abort
   the connection.  If a client receives a DSO message in early data,
   and there is no implicit DSO session, the client MUST forcibly abort
   the connection.  This can only be enforced on TLS connections;
   therefore, servers MUST NOT enable TFO when listening for a
   connection that does not require TLS.

5.1.1.  Session Establishment Failure

   If the response RCODE is set to NOTIMP (4), or in practise any value
   other than NOERROR (0) or DSOTYPENI (defined below), then the client
   MUST assume that the server does not implement DSO at all.  In this
   case the client is permitted to continue sending DNS messages on that
   connection, but the client MUST NOT issue further DSO messages on
   that connection.

   If the RCODE in the response is set to DSOTYPENI ("DSO-TYPE Not
   Implemented", [TBA2] tentatively RCODE 11) this indicates that the
   server does support DSO, but does not implement the DSO-TYPE of the
   primary TLV in this DSO request message.  A server implementing DSO
   MUST NOT return DSOTYPENI for a DSO Keepalive request message,
   because the Keepalive TLV is mandatory to implement.  But in the
   future, if a client attempts to establish a DSO Session using a
   response-requiring DSO request message using some newly-defined DSO-
   TYPE that the server does not understand, that would result in a
   DSOTYPENI response.  If the server returns DSOTYPENI then a DSO
   Session is not considered established, but the client is permitted to
   continue sending DNS messages on the connection, including other DSO
   messages such as the DSO Keepalive, which may result in a successful
   NOERROR response, yielding the establishment of a DSO Session.

   Two other possibilities exist: the server might drop the connection,
   or the server might send no response to the DSO message.

   In the first case, the client SHOULD mark that service instance as
   not supporting DSO, and not attempt a DSO connection for some period
   of time (at least an hour) after the failed attempt.  The client MAY
   reconnect but not use DSO, if appropriate (Section 6.6.3.2).

   In the second case, the client SHOULD wait 30 seconds, after which
   time the server will be assumed not to support DSO.  If the server
   doesn’t respond within 30 seconds, the client MUST forcibly abort the
   connection to the server, since the server’s behavior is out of spec,
   and hence its state is undefined.  The client MAY reconnect, but not
   use DSO, if appropriate (Section 6.6.3.1).
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5.1.2.  Session Establishment Success

   When the server receives a DSO request message from a client, and
   transmits a successful NOERROR response to that request, the server
   considers the DSO Session established.

   When the client receives the server’s NOERROR response to its DSO
   request message, the client considers the DSO Session established.

   Once a DSO Session has been established, either end may unilaterally
   send appropriate DSO messages at any time, and therefore either
   client or server may be the initiator of a message.

5.2.  Operations After Session Establishment

   Once a DSO Session has been established, clients and servers should
   behave as described in this specification with regard to inactivity
   timeouts and session termination, not as previously prescribed in the
   earlier specification for DNS over TCP [RFC7766].

   Because a server that supports DNS Stateful Operations MUST return an
   RCODE of NOERROR when it receives a Keepalive TLV DSO request
   message, the Keepalive TLV is an ideal candidate for use in
   establishing a DSO session.  Any other option that can only succeed
   when sent to a server of the desired kind is also a good candidate
   for use in establishing a DSO session.  For clients that implement
   only the DSO-TYPEs defined in this base specification, sending a
   Keepalive TLV is the only DSO request message they have available to
   initiate a DSO Session.  Even for clients that do implement other
   future DSO-TYPEs, for simplicity they MAY elect to always send an
   initial DSO Keepalive request message as their way of initiating a
   DSO Session.  A future definition of a new response-requiring DSO-
   TYPE gives implementers the option of using that new DSO-TYPE if they
   wish, but does not change the fact that sending a Keepalive TLV
   remains a valid way of initiating a DSO Session.
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5.3.  Session Termination

   A "DSO Session" is terminated when the underlying connection is
   closed.  Sessions are "closed gracefully" as a result of the server
   closing a session because it is overloaded, the client closing the
   session because it is done, or the client closing the session because
   it is inactive.  Sessions are "forcibly aborted" when either the
   client or server closes the connection because of a protocol error.

   o  Where this specification says, "close gracefully," that means
      sending a TLS close_notify (if TLS is in use) followed by a TCP
      FIN, or the equivalents for other protocols.  Where this
      specification requires a connection to be closed gracefully, the
      requirement to initiate that graceful close is placed on the
      client, to place the burden of TCP’s TIME-WAIT state on the client
      rather than the server.

   o  Where this specification says, "forcibly abort," that means
      sending a TCP RST, or the equivalent for other protocols.  In the
      BSD Sockets API this is achieved by setting the SO_LINGER option
      to zero before closing the socket.

5.3.1.  Handling Protocol Errors

   In protocol implementation there are generally two kinds of errors
   that software writers have to deal with.  The first is situations
   that arise due to factors in the environment, such as temporary loss
   of connectivity.  While undesirable, these situations do not indicate
   a flaw in the software, and they are situations that software should
   generally be able to recover from.

   The second is situations that should never happen when communicating
   with a compliant DSO implementation.  If they do happen, they
   indicate a serious flaw in the protocol implementation, beyond what
   it is reasonable to expect software to recover from.  This document
   describes this latter form of error condition as a "fatal error" and
   specifies that an implementation encountering a fatal error condition
   "MUST forcibly abort the connection immediately".

Bellis, et al.            Expires June 9, 2019                 [Page 15]



Internet-Draft           DNS Stateful Operations           December 2018

5.4.  Message Format

   A DSO message begins with the standard twelve-byte DNS message header
   [RFC1035] with the OPCODE field set to the DSO OPCODE.  However,
   unlike standard DNS messages, the question section, answer section,
   authority records section and additional records sections are not
   present.  The corresponding count fields (QDCOUNT, ANCOUNT, NSCOUNT,
   ARCOUNT) MUST be set to zero on transmission.

   If a DSO message is received where any of the count fields are not
   zero, then a FORMERR MUST be returned.

                                                1   1   1   1   1   1
        0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                          MESSAGE ID                           |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |QR |    OPCODE     |            Z              |     RCODE     |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                     QDCOUNT (MUST be zero)                    |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                     ANCOUNT (MUST be zero)                    |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                     NSCOUNT (MUST be zero)                    |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                     ARCOUNT (MUST be zero)                    |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                                                               |
      /                           DSO Data                            /
      /                                                               /
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
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5.4.1.  DNS Header Fields in DSO Messages

   In a DSO unidirectional message the MESSAGE ID field MUST be set to
   zero.  In a DSO request message the MESSAGE ID field MUST be set to a
   unique nonzero value, that the initiator is not currently using for
   any other active operation on this connection.  For the purposes
   here, a MESSAGE ID is in use in this DSO Session if the initiator has
   used it in a DSO request message for which it is still awaiting a
   response, or if the client has used it to set up a long-lived
   operation that has not yet been cancelled.  For example, a long-lived
   operation could be a Push Notification subscription
   [I-D.ietf-dnssd-push] or a Discovery Relay interface subscription
   [I-D.ietf-dnssd-mdns-relay].

   Whether a message is a DSO request message or a DSO unidirectional
   message is determined only by the specification for the Primary TLV.
   An acknowledgment cannot be requested by including a nonzero message
   ID in a message that is required according to its primary TLV to be
   unidirectional.  Nor can an acknowledgment be prevented by sending a
   message ID of zero in a message that is required to be a DSO request
   message according to its primary TLV.  A responder that receives
   either such malformed message MUST treat it as a fatal error and
   forcibly abort the connection immediately.

   In a DSO request message or DSO unidirectional message the DNS Header
   QR bit MUST be zero (QR=0).  If the QR bit is not zero the message is
   not a DSO request or DSO unidirectional message.

   In a DSO response message the DNS Header QR bit MUST be one (QR=1).
   If the QR bit is not one, the message is not a response message.

   In a DSO response message (QR=1) the MESSAGE ID field MUST contain a
   copy of the value of the MESSAGE ID field in the DSO request message
   being responded to.  In a DSO response message (QR=1) the MESSAGE ID
   field MUST NOT be zero.  If a DSO response message (QR=1) is received
   where the MESSAGE ID is zero this is a fatal error and the recipient
   MUST forcibly abort the connection immediately.

   The DNS Header OPCODE field holds the DSO OPCODE value.

   The Z bits are currently unused in DSO messages, and in both DSO
   request messages and DSO responses the Z bits MUST be set to zero (0)
   on transmission and MUST be ignored on reception.

   In a DSO request message (QR=0) the RCODE is set according to the
   definition of the request.  For example, in a Retry Delay message
   (Section 6.6.1) the RCODE indicates the reason for termination.
   However, in most cases, except where clearly specified otherwise, in
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   a DSO request message (QR=0) the RCODE is set to zero on
   transmission, and silently ignored on reception.

   The RCODE value in a response message (QR=1) may be one of the
   following values:

   +--------+-----------+----------------------------------------------+
   |   Code | Mnemonic  | Description                                  |
   +--------+-----------+----------------------------------------------+
   |      0 | NOERROR   | Operation processed successfully             |
   |        |           |                                              |
   |      1 | FORMERR   | Format error                                 |
   |        |           |                                              |
   |      2 | SERVFAIL  | Server failed to process DSO request message |
   |        |           | due to a problem with the server             |
   |        |           |                                              |
   |      4 | NOTIMP    | DSO not supported                            |
   |        |           |                                              |
   |      5 | REFUSED   | Operation declined for policy reasons        |
   |        |           |                                              |
   | [TBA2] | DSOTYPENI | Primary TLV’s DSO-Type is not implemented    |
   |     11 |           |                                              |
   +--------+-----------+----------------------------------------------+

   Use of the above RCODEs is likely to be common in DSO but does not
   preclude the definition and use of other codes in future documents
   that make use of DSO.

   If a document defining a new DSO-TYPE makes use of response codes not
   defined here, then that document MUST specify the specific
   interpretation of those RCODE values in the context of that new DSO
   TLV.
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5.4.2.  DSO Data

   The standard twelve-byte DNS message header with its zero-valued
   count fields is followed by the DSO Data, expressed using TLV syntax,
   as described below in Section 5.4.3.

   A DSO request message or DSO unidirectional message MUST contain at
   least one TLV.  The first TLV in a DSO request message or DSO
   unidirectional message is referred to as the "Primary TLV" and
   determines the nature of the operation being performed, including
   whether it is a DSO request or a DSO unidirectional operation.  In
   some cases it may be appropriate to include other TLVs in a DSO
   request message or DSO unidirectional message, such as the Encryption
   Padding TLV (Section 7.3), and these extra TLVs are referred to as
   the "Additional TLVs" and are not limited to what is defined in this
   document.  New "Additional TLVs" may be defined in the future and
   those definitions will describe when their use is appropriate.

   A DSO response message may contain no TLVs, or it may be specified to
   contain one or more TLVs appropriate to the information being
   communicated.  This includes "Primary TLVs" and "Additional TLVs"
   defined in this document as well as in future TLV definitions.  It
   may be permissible for an additional TLV to appear in a response to a
   primary TLV even though the specification of that primary TLV does
   not specify it explicitly.  See Section 8.2 for more information.

   A DSO response message may contain one or more TLVs with the Primary
   TLV DSO-TYPE the same as the Primary TLV from the corresponding DSO
   request message or it may contain zero or more Additional TLVs only.
   The MESSAGE ID field in the DNS message header is sufficient to
   identify the DSO request message to which this response message
   relates.

   A DSO response message may contain one or more TLVs with DSO-TYPEs
   different from the Primary TLV from the corresponding DSO request
   message, in which case those TLV(s) are referred to as "Response
   Additional TLVs".

   Response Primary TLV(s), if present, MUST occur first in the response
   message, before any Response Additional TLVs.

   It is anticipated that most DSO operations will be specified to use
   DSO request messages, which generate corresponding DSO responses.  In
   some specialized high-traffic use cases, it may be appropriate to
   specify DSO unidirectional messages.  DSO unidirectional messages can
   be more efficient on the network, because they don’t generate a
   stream of corresponding reply messages.  Using DSO unidirectional
   messages can also simplify software in some cases, by removing need
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   for an initiator to maintain state while it waits to receive replies
   it doesn’t care about.  When the specification for a particular TLV
   states that, when used as a Primary TLV (i.e., first) in an outgoing
   DSO request message (i.e., QR=0), that message is to be
   unidirectional, the MESSAGE ID field MUST be set to zero and the
   receiver MUST NOT generate any response message corresponding to this
   DSO unidirectional message.

   The previous point, that the receiver MUST NOT generate responses to
   DSO unidirectional messages, applies even in the case of errors.

   When a DSO message is received where both the QR bit and the MESSAGE
   ID field are zero, the receiver MUST NOT generate any response.  For
   example, if the DSO-TYPE in the Primary TLV is unrecognized, then a
   DSOTYPENI error MUST NOT be returned; instead the receiver MUST
   forcibly abort the connection immediately.

   DSO unidirectional messages MUST NOT be used "speculatively" in cases
   where the sender doesn’t know if the receiver supports the Primary
   TLV in the message, because there is no way to receive any response
   to indicate success or failure.  DSO unidirectional messages are only
   appropriate in cases where the sender already knows that the receiver
   supports, and wishes to receive, these messages.

   For example, after a client has subscribed for Push Notifications
   [I-D.ietf-dnssd-push], the subsequent event notifications are then
   sent as DSO unidirectional messages, and this is appropriate because
   the client initiated the message stream by virtue of its Push
   Notification subscription, thereby indicating its support of Push
   Notifications, and its desire to receive those notifications.

   Similarly, after a Discovery Relay client has subscribed to receive
   inbound mDNS (multicast DNS, [RFC6762]) traffic from a Discovery
   Relay, the subsequent stream of received packets is then sent using
   DSO unidirectional messages, and this is appropriate because the
   client initiated the message stream by virtue of its Discovery Relay
   link subscription, thereby indicating its support of Discovery Relay,
   and its desire to receive inbound mDNS packets over that DSO session
   [I-D.ietf-dnssd-mdns-relay].
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5.4.3.  TLV Syntax

   All TLVs, whether used as "Primary", "Additional", "Response
   Primary", or "Response Additional", use the same encoding syntax.

   Specifications that define new TLVs must specify whether the DSO-TYPE
   can be used as the Primary TLV, used as an Additional TLV, or used in
   either context, both in the case of requests and of responses.  The
   specification for a TLV must also state whether, when used as the
   Primary (i.e., first) TLV in a DSO message (i.e., QR=0), that DSO
   message is unidirectional or is a request message which requires a
   response.  If the DSO message requires a response, the specification
   must also state which TLVs, if any, are to be included in the
   response.  The Primary TLV may or may not be contained in the
   response, depending on what is specified for that TLV.

                                                1   1   1   1   1   1
        0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                           DSO-TYPE                            |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                          DSO-LENGTH                           |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                                                               |
      /                           DSO-DATA                            /
      /                                                               /
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

   DSO-TYPE:  A 16-bit unsigned integer, in network (big endian) byte
      order, giving the DSO-TYPE of the current DSO TLV per the IANA DSO
      Type Code Registry.

   DSO-LENGTH:  A 16-bit unsigned integer, in network (big endian) byte
      order, giving the size in bytes of the DSO-DATA.

   DSO-DATA:  Type-code specific format.  The generic DSO machinery
      treats the DSO-DATA as an opaque "blob" without attempting to
      interpret it.  Interpretation of the meaning of the DSO-DATA for a
      particular DSO-TYPE is the responsibility of the software that
      implements that DSO-TYPE.
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5.4.3.1.  Request TLVs

   The first TLV in a DSO request message or DSO unidirectional message
   is the "Primary TLV" and indicates the operation to be performed.  A
   DSO request message or DSO unidirectional message MUST contain at at
   least one TLV-the Primary TLV.

   Immediately following the Primary TLV, a DSO request message or DSO
   unidirectional message MAY contain one or more "Additional TLVs",
   which specify additional parameters relating to the operation.

5.4.3.2.  Response TLVs

   Depending on the operation, a DSO response message MAY contain no
   TLVs, because it is simply a response to a previous DSO request
   message, and the MESSAGE ID in the header is sufficient to identify
   the DSO request in question.  Or it may contain a single response
   TLV, with the same DSO-TYPE as the Primary TLV in the request
   message.  Alternatively it may contain one or more TLVs of other
   types, or a combination of the above, as appropriate for the
   information that needs to be communicated.  The specification for
   each DSO TLV determines what TLVs are required in a response to a DSO
   request message using that TLV.

   If a DSO response is received for an operation where the
   specification requires that the response carry a particular TLV or
   TLVs, and the required TLV(s) are not present, then this is a fatal
   error and the recipient of the defective response message MUST
   forcibly abort the connection immediately.
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5.4.3.3.  Unrecognized TLVs

   If DSO request message is received containing an unrecognized Primary
   TLV, with a nonzero MESSAGE ID (indicating that a response is
   expected), then the receiver MUST send an error response with
   matching MESSAGE ID, and RCODE DSOTYPENI.  The error response MUST
   NOT contain a copy of the unrecognized Primary TLV.

   If DSO unidirectional message is received containing an unrecognized
   Primary TLV, with a zero MESSAGE ID (indicating that no response is
   expected), then this is a fatal error and the recipient MUST forcibly
   abort the connection immediately.

   If a DSO request message or DSO unidirectional message is received
   where the Primary TLV is recognized, containing one or more
   unrecognized Additional TLVs, the unrecognized Additional TLVs MUST
   be silently ignored, and the remainder of the message is interpreted
   and handled as if the unrecognized parts were not present.

   Similarly, if a DSO response message is received containing one or
   more unrecognized TLVs, the unrecognized TLVs MUST be silently
   ignored, and the remainder of the message is interpreted and handled
   as if the unrecognized parts were not present.
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5.4.4.  EDNS(0) and TSIG

   Since the ARCOUNT field MUST be zero, a DSO message cannot contain a
   valid EDNS(0) option in the additional records section.  If
   functionality provided by current or future EDNS(0) options is
   desired for DSO messages, one or more new DSO TLVs need to be defined
   to carry the necessary information.

   For example, the EDNS(0) Padding Option [RFC7830] used for security
   purposes is not permitted in a DSO message, so if message padding is
   desired for DSO messages then the Encryption Padding TLV described in
   Section 7.3 MUST be used.

   A DSO message can’t contain a TSIG record, because a TSIG record is
   included in the additional section of the message, which would mean
   that ARCOUNT would be greater than zero.  DSO messages are required
   to have an ARCOUNT of zero.  Therefore, if use of signatures with DSO
   messages becomes necessary in the future, a new DSO TLV would have to
   be defined to perform this function.

   Note however that, while DSO *messages* cannot include EDNS(0) or
   TSIG records, a DSO *session* is typically used to carry a whole
   series of DNS messages of different kinds, including DSO messages,
   and other DNS message types like Query [RFC1034] [RFC1035] and Update
   [RFC2136], and those messages can carry EDNS(0) and TSIG records.

   Although messages may contain other EDNS(0) options as appropriate,
   this specification explicitly prohibits use of the edns-tcp-keepalive
   EDNS0 Option [RFC7828] in *any* messages sent on a DSO Session
   (because it is obsoleted by the functionality provided by the DSO
   Keepalive operation).  If any message sent on a DSO Session contains
   an edns-tcp-keepalive EDNS0 Option this is a fatal error and the
   recipient of the defective message MUST forcibly abort the connection
   immediately.
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5.5.  Message Handling

   As described above in Section 5.4.1, whether an outgoing DSO message
   with the QR bit in the DNS header set to zero is a DSO request or DSO
   unidirectional message is determined by the specification for the
   Primary TLV, which in turn determines whether the MESSAGE ID field in
   that outgoing message will be zero or nonzero.

   Every DSO message with the QR bit in the DNS header set to zero and a
   nonzero MESSAGE ID field is a DSO request message, and MUST elicit a
   corresponding response, with the QR bit in the DNS header set to one
   and the MESSAGE ID field set to the value given in the corresponding
   DSO request message.

   Valid DSO request messages sent by the client with a nonzero MESSAGE
   ID field elicit a response from the server, and valid DSO request
   messages sent by the server with a nonzero MESSAGE ID field elicit a
   response from the client.

   Every DSO message with both the QR bit in the DNS header and the
   MESSAGE ID field set to zero is a DSO unidirectional message, and
   MUST NOT elicit a response.
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5.5.1.  Delayed Acknowledgement Management

   Generally, most good TCP implementations employ a delayed
   acknowledgement timer to provide more efficient use of the network
   and better performance.

   With a bidirectional exchange over TCP, as for example with a DSO
   request message, the operating system TCP implementation waits for
   the application-layer client software to generate the corresponding
   DSO response message.  It can then send a single combined packet
   containing the TCP acknowledgement, the TCP window update, and the
   application-generated DSO response message.  This is more efficient
   than sending three separate packets, as would occur if the TCP packet
   containing the DSO request were acknowledged immediately.

   With a DSO unidirectional message or DSO response message, there is
   no corresponding application-generated DSO response message, and
   consequently, no hint to the transport protocol about when it should
   send its acknowledgement and window update.

   Some networking APIs provide a mechanism that allows the application-
   layer client software to signal to the transport protocol that no
   response will be forthcoming (in effect it can be thought of as a
   zero-length "empty" write).  Where available in the networking API
   being used, the recipient of a DSO unidirectional message or DSO
   response message, having parsed and interpreted the message, SHOULD
   then use this mechanism provided by the networking API to signal that
   no response for this message will be forthcoming, so that the TCP
   implementation can go ahead and send its acknowledgement and window
   update without further delay.  See Section 9.5 for further discussion
   of why this is important.
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5.5.2.  MESSAGE ID Namespaces

   The namespaces of 16-bit MESSAGE IDs are independent in each
   direction.  This means it is *not* an error for both client and
   server to send DSO request messages at the same time as each other,
   using the same MESSAGE ID, in different directions.  This
   simplification is necessary in order for the protocol to be
   implementable.  It would be infeasible to require the client and
   server to coordinate with each other regarding allocation of new
   unique MESSAGE IDs.  It is also not necessary to require the client
   and server to coordinate with each other regarding allocation of new
   unique MESSAGE IDs.  The value of the 16-bit MESSAGE ID combined with
   the identity of the initiator (client or server) is sufficient to
   unambiguously identify the operation in question.  This can be
   thought of as a 17-bit message identifier space, using message
   identifiers 0x00001-0x0FFFF for client-to-server DSO request
   messages, and message identifiers 0x10001-0x1FFFF for server-to-
   client DSO request messages.  The least-significant 16 bits are
   stored explicitly in the MESSAGE ID field of the DSO message, and the
   most-significant bit is implicit from the direction of the message.

   As described above in Section 5.4.1, an initiator MUST NOT reuse a
   MESSAGE ID that it already has in use for an outstanding DSO request
   message (unless specified otherwise by the relevant specification for
   the DSO-TYPE in question).  At the very least, this means that a
   MESSAGE ID can’t be reused in a particular direction on a particular
   DSO Session while the initiator is waiting for a response to a
   previous DSO request message using that MESSAGE ID on that DSO
   Session (unless specified otherwise by the relevant specification for
   the DSO-TYPE in question), and for a long-lived operation the MESSAGE
   ID for the operation can’t be reused while that operation remains
   active.

   If a client or server receives a response (QR=1) where the MESSAGE ID
   is zero, or is any other value that does not match the MESSAGE ID of
   any of its outstanding operations, this is a fatal error and the
   recipient MUST forcibly abort the connection immediately.

   If a responder receives a DSO request message (QR=0) where the
   MESSAGE ID is not zero, and the responder tracks request MESSAGE IDs,
   and the MESSAGE ID matches the MESSAGE ID of a DSO request message it
   received for which a response has not yet been sent, it MUST forcibly
   abort the connection immediately.  This behavior is required to
   prevent a hypothetical attack that takes advantage of undefined
   behavior in this case.  However, if the responder does not track
   MESSAGE IDs in this way, no such risk exists, so tracking MESSAGE IDs
   just to implement this sanity check is not required.
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5.5.3.  Error Responses

   When a DSO unidirectional message type is received (MESSAGE ID field
   is zero), the receiver should already be expecting this DSO message
   type.  Section 5.4.3.3 describes the handling of unknown DSO message
   types.  Parsing errors MUST also result in the receiver forcibly
   aborting the connection.  When a DSO unidirectional message of an
   unexpected type is received, the receiver SHOULD forcibly abort the
   connection.  Whether the connection should be forcibly aborted for
   other internal errors processing the DSO unidirectional message is
   implementation dependent, according to the severity of the error.

   When a DSO request message is unsuccessful for some reason, the
   responder returns an error code to the initiator.

   In the case of a server returning an error code to a client in
   response to an unsuccessful DSO request message, the server MAY
   choose to end the DSO Session, or MAY choose to allow the DSO Session
   to remain open.  For error conditions that only affect the single
   operation in question, the server SHOULD return an error response to
   the client and leave the DSO Session open for further operations.

   For error conditions that are likely to make all operations
   unsuccessful in the immediate future, the server SHOULD return an
   error response to the client and then end the DSO Session by sending
   a Retry Delay message, as described in Section 6.6.1.

   Upon receiving an error response from the server, a client SHOULD NOT
   automatically close the DSO Session.  An error relating to one
   particular operation on a DSO Session does not necessarily imply that
   all other operations on that DSO Session have also failed, or that
   future operations will fail.  The client should assume that the
   server will make its own decision about whether or not to end the DSO
   Session, based on the server’s determination of whether the error
   condition pertains to this particular operation, or would also apply
   to any subsequent operations.  If the server does not end the DSO
   Session by sending the client a Retry Delay message (Section 6.6.1)
   then the client SHOULD continue to use that DSO Session for
   subsequent operations.
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5.6.  Responder-Initiated Operation Cancellation

   This document, the base specification for DNS Stateful Operations,
   does not itself define any long-lived operations, but it defines a
   framework for supporting long-lived operations, such as Push
   Notification subscriptions [I-D.ietf-dnssd-push] and Discovery Relay
   interface subscriptions [I-D.ietf-dnssd-mdns-relay].

   Long-lived operations, if successful, will remain active until the
   initiator terminates the operation.

   However, it is possible that a long-lived operation may be valid at
   the time it was initiated, but then a later change of circumstances
   may render that operation invalid.  For example, a long-lived client
   operation may pertain to a name that the server is authoritative for,
   but then the server configuration is changed such that it is no
   longer authoritative for that name.

   In such cases, instead of terminating the entire session it may be
   desirable for the responder to be able to cancel selectively only
   those operations that have become invalid.

   The responder performs this selective cancellation by sending a new
   response message, with the MESSAGE ID field containing the MESSAGE ID
   of the long-lived operation that is to be terminated (that it had
   previously acknowledged with a NOERROR RCODE), and the RCODE field of
   the new response message giving the reason for cancellation.

   After a response message with nonzero RCODE has been sent, that
   operation has been terminated from the responder’s point of view, and
   the responder sends no more messages relating to that operation.

   After a response message with nonzero RCODE has been received by the
   initiator, that operation has been terminated from the initiator’s
   point of view, and the cancelled operation’s MESSAGE ID is now free
   for reuse.
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6.  DSO Session Lifecycle and Timers

6.1.  DSO Session Initiation

   A DSO Session begins as described in Section 5.1.

   The client may perform as many DNS operations as it wishes using the
   newly created DSO Session.  When the client has multiple messages to
   send, it SHOULD NOT wait for each response before sending the next
   message.

   The server MUST act on messages in the order they are received, but
   SHOULD NOT delay sending responses to those messages as they become
   available in order to return them in the order the requests were
   received.

   Section 6.2.1.1 of the DNS-over-TCP specification [RFC7766] specifies
   this in more detail.
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6.2.  DSO Session Timeouts

   Two timeout values are associated with a DSO Session: the inactivity
   timeout, and the keepalive interval.  Both values are communicated in
   the same TLV, the Keepalive TLV (Section 7.1).

   The first timeout value, the inactivity timeout, is the maximum time
   for which a client may speculatively keep an inactive DSO Session
   open in the expectation that it may have future requests to send to
   that server.

   The second timeout value, the keepalive interval, is the maximum
   permitted interval between messages if the client wishes to keep the
   DSO Session alive.

   The two timeout values are independent.  The inactivity timeout may
   be lower, the same, or higher than the keepalive interval, though in
   most cases the inactivity timeout is expected to be shorter than the
   keepalive interval.

   A shorter inactivity timeout with a longer keepalive interval signals
   to the client that it should not speculatively keep an inactive DSO
   Session open for very long without reason, but when it does have an
   active reason to keep a DSO Session open, it doesn’t need to be
   sending an aggressive level of DSO keepalive traffic to maintain that
   session.  An example of this would be a client that has subscribed to
   DNS Push notifications: in this case, the client is not sending any
   traffic to the server, but the session is not inactive, because there
   is a active request to the server to receive push notifications.

   A longer inactivity timeout with a shorter keepalive interval signals
   to the client that it may speculatively keep an inactive DSO Session
   open for a long time, but to maintain that inactive DSO Session it
   should be sending a lot of DSO keepalive traffic.  This configuration
   is expected to be less common.

   In the usual case where the inactivity timeout is shorter than the
   keepalive interval, it is only when a client has a long-lived, low-
   traffic, operation that the keepalive interval comes into play, to
   ensure that a sufficient residual amount of traffic is generated to
   maintain NAT and firewall state and to assure client and server that
   they still have connectivity to each other.

   On a new DSO Session, if no explicit DSO Keepalive message exchange
   has taken place, the default value for both timeouts is 15 seconds.

   For both timeouts, lower values of the timeout result in higher
   network traffic, and higher CPU load on the server.
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6.3.  Inactive DSO Sessions

   At both servers and clients, the generation or reception of any
   complete DNS message (including DNS requests, responses, updates, DSO
   messages, etc.) resets both timers for that DSO Session, with the one
   exception that a DSO Keepalive message resets only the keepalive
   timer, not the inactivity timeout timer.

   In addition, for as long as the client has an outstanding operation
   in progress, the inactivity timer remains cleared, and an inactivity
   timeout cannot occur.

   For short-lived DNS operations like traditional queries and updates,
   an operation is considered in progress for the time between request
   and response, typically a period of a few hundred milliseconds at
   most.  At the client, the inactivity timer is cleared upon
   transmission of a request and remains cleared until reception of the
   corresponding response.  At the server, the inactivity timer is
   cleared upon reception of a request and remains cleared until
   transmission of the corresponding response.

   For long-lived DNS Stateful operations (such as a Push Notification
   subscription [I-D.ietf-dnssd-push] or a Discovery Relay interface
   subscription [I-D.ietf-dnssd-mdns-relay]), an operation is considered
   in progress for as long as the operation is active, i.e. until it is
   cancelled.  This means that a DSO Session can exist, with active
   operations, with no messages flowing in either direction, for far
   longer than the inactivity timeout, and this is not an error.  This
   is why there are two separate timers: the inactivity timeout, and the
   keepalive interval.  Just because a DSO Session has no traffic for an
   extended period of time does not automatically make that DSO Session
   "inactive", if it has an active operation that is awaiting events.
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6.4.  The Inactivity Timeout

   The purpose of the inactivity timeout is for the server to balance
   the trade off between the costs of setting up new DSO Sessions and
   the costs of maintaining inactive DSO Sessions.  A server with
   abundant DSO Session capacity can offer a high inactivity timeout, to
   permit clients to keep a speculative DSO Session open for a long
   time, to save the cost of establishing a new DSO Session for future
   communications with that server.  A server with scarce memory
   resources can offer a low inactivity timeout, to cause clients to
   promptly close DSO Sessions whenever they have no outstanding
   operations with that server, and then create a new DSO Session later
   when needed.

6.4.1.  Closing Inactive DSO Sessions

   When a connection’s inactivity timeout is reached the client MUST
   begin closing the idle connection, but a client is not required to
   keep an idle connection open until the inactivity timeout is reached.
   A client MAY close a DSO Session at any time, at the client’s
   discretion.  If a client determines that it has no current or
   reasonably anticipated future need for a currently inactive DSO
   Session, then the client SHOULD gracefully close that connection.

   If, at any time during the life of the DSO Session, the inactivity
   timeout value (i.e., 15 seconds by default) elapses without there
   being any operation active on the DSO Session, the client MUST close
   the connection gracefully.

   If, at any time during the life of the DSO Session, twice the
   inactivity timeout value (i.e., 30 seconds by default), or five
   seconds, if twice the inactivity timeout value is less than five
   seconds, elapses without there being any operation active on the DSO
   Session, the server MUST consider the client delinquent, and MUST
   forcibly abort the DSO Session.

   In this context, an operation being active on a DSO Session includes
   a query waiting for a response, an update waiting for a response, or
   an active long-lived operation, but not a DSO Keepalive message
   exchange itself.  A DSO Keepalive message exchange resets only the
   keepalive interval timer, not the inactivity timeout timer.

   If the client wishes to keep an inactive DSO Session open for longer
   than the default duration then it uses the DSO Keepalive message to
   request longer timeout values, as described in Section 7.1.
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6.4.2.  Values for the Inactivity Timeout

   For the inactivity timeout value, lower values result in more
   frequent DSO Session teardown and re-establishment.  Higher values
   result in lower traffic and lower CPU load on the server, but higher
   memory burden to maintain state for inactive DSO Sessions.

   A server may dictate any value it chooses for the inactivity timeout
   (either in a response to a client-initiated request, or in a server-
   initiated message) including values under one second, or even zero.

   An inactivity timeout of zero informs the client that it should not
   speculatively maintain idle connections at all, and as soon as the
   client has completed the operation or operations relating to this
   server, the client should immediately begin closing this session.

   A server will forcibly abort an idle client session after twice the
   inactivity timeout value, or five seconds, whichever is greater.  In
   the case of a zero inactivity timeout value, this means that if a
   client fails to close an idle client session then the server will
   forcibly abort the idle session after five seconds.

   An inactivity timeout of 0xFFFFFFFF represents "infinity" and informs
   the client that it may keep an idle connection open as long as it
   wishes.  Note that after granting an unlimited inactivity timeout in
   this way, at any point the server may revise that inactivity timeout
   by sending a new DSO Keepalive message dictating new Session Timeout
   values to the client.

   The largest *finite* inactivity timeout supported by the current
   Keepalive TLV is 0xFFFFFFFE (2^32-2 milliseconds, approximately 49.7
   days).
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6.5.  The Keepalive Interval

   The purpose of the keepalive interval is to manage the generation of
   sufficient messages to maintain state in middleboxes (such at NAT
   gateways or firewalls) and for the client and server to periodically
   verify that they still have connectivity to each other.  This allows
   them to clean up state when connectivity is lost, and to establish a
   new session if appropriate.

6.5.1.  Keepalive Interval Expiry

   If, at any time during the life of the DSO Session, the keepalive
   interval value (i.e., 15 seconds by default) elapses without any DNS
   messages being sent or received on a DSO Session, the client MUST
   take action to keep the DSO Session alive, by sending a DSO Keepalive
   message (Section 7.1).  A DSO Keepalive message exchange resets only
   the keepalive timer, not the inactivity timer.

   If a client disconnects from the network abruptly, without cleanly
   closing its DSO Session, perhaps leaving a long-lived operation
   uncancelled, the server learns of this after failing to receive the
   required DSO keepalive traffic from that client.  If, at any time
   during the life of the DSO Session, twice the keepalive interval
   value (i.e., 30 seconds by default) elapses without any DNS messages
   being sent or received on a DSO Session, the server SHOULD consider
   the client delinquent, and SHOULD forcibly abort the DSO Session.

6.5.2.  Values for the Keepalive Interval

   For the keepalive interval value, lower values result in a higher
   volume of DSO keepalive traffic.  Higher values of the keepalive
   interval reduce traffic and CPU load, but have minimal effect on the
   memory burden at the server, because clients keep a DSO Session open
   for the same length of time (determined by the inactivity timeout)
   regardless of the level of DSO keepalive traffic required.

   It may be appropriate for clients and servers to select different
   keepalive interval values depending on the nature of the network they
   are on.

   A corporate DNS server that knows it is serving only clients on the
   internal network, with no intervening NAT gateways or firewalls, can
   impose a higher keepalive interval, because frequent DSO keepalive
   traffic is not required.

   A public DNS server that is serving primarily residential consumer
   clients, where it is likely there will be a NAT gateway on the path,
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   may impose a lower keepalive interval, to generate more frequent DSO
   keepalive traffic.

   A smart client may be adaptive to its environment.  A client using a
   private IPv4 address [RFC1918] to communicate with a DNS server at an
   address outside that IPv4 private address block, may conclude that
   there is likely to be a NAT gateway on the path, and accordingly
   request a lower keepalive interval.

   By default it is RECOMMENDED that clients request, and servers grant,
   a keepalive interval of 60 minutes.  This keepalive interval provides
   for reasonably timely detection if a client abruptly disconnects
   without cleanly closing the session, and is sufficient to maintain
   state in firewalls and NAT gateways that follow the IETF recommended
   Best Current Practice that the "established connection idle-timeout"
   used by middleboxes be at least 2 hours 4 minutes [RFC5382]
   [RFC7857].

   Note that the lower the keepalive interval value, the higher the load
   on client and server.  Moreover for a keep-alive value that is
   smaller than the time needed for the transport to retransmit, a
   single packet loss would cause a server to overzealously abort the
   connect.  For example, a (hypothetical and unrealistic) keepalive
   interval value of 100 ms would result in a continuous stream of ten
   messages per second or more (if allowed by the current congestion
   control window), in both directions, to keep the DSO Session alive.
   And, in this extreme example, a single retransmission over a path
   with, e.g., 100ms RTT would introduce a momentary pause in the stream
   of messages, long enough to cause the server to abort the connection.

   Because of this concern, the server MUST NOT send a DSO Keepalive
   message (either a response to a client-initiated request, or a
   server-initiated message) with a keepalive interval value less than
   ten seconds.  If a client receives a DSO Keepalive message specifying
   a keepalive interval value less than ten seconds this is a fatal
   error and the client MUST forcibly abort the connection immediately.

   A keepalive interval value of 0xFFFFFFFF represents "infinity" and
   informs the client that it should generate no DSO keepalive traffic.
   Note that after signaling that the client should generate no DSO
   keepalive traffic in this way, at any point the server may revise
   that DSO keepalive traffic requirement by sending a new DSO Keepalive
   message dictating new Session Timeout values to the client.

   The largest *finite* keepalive interval supported by the current
   Keepalive TLV is 0xFFFFFFFE (2^32-2 milliseconds, approximately 49.7
   days).
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6.6.  Server-Initiated Session Termination

   In addition to cancelling individual long-lived operations
   selectively (Section 5.6) there are also occasions where a server may
   need to terminate one or more entire sessions.  An entire session may
   need to be terminated if the client is defective in some way, or
   departs from the network without closing its session.  Sessions may
   also need to be terminated if the server becomes overloaded, or if
   the server is reconfigured and lacks the ability to be selective
   about which operations need to be cancelled.

   This section discusses various reasons a session may be terminated,
   and the mechanisms for doing so.

   In normal operation, closing a DSO Session is the client’s
   responsibility.  The client makes the determination of when to close
   a DSO Session based on an evaluation of both its own needs, and the
   inactivity timeout value dictated by the server.  A server only
   causes a DSO Session to be ended in the exceptional circumstances
   outlined below.  Some of the exceptional situations in which a server
   may terminate a DSO Session include:

   o  The server application software or underlying operating system is
      shutting down or restarting.

   o  The server application software terminates unexpectedly (perhaps
      due to a bug that makes it crash, causing the underlying operating
      system to send a TCP RST).

   o  The server is undergoing a reconfiguration or maintenance
      procedure, that, due to the way the server software is
      implemented, requires clients to be disconnected.  For example,
      some software is implemented such that it reads a configuration
      file at startup, and changing the server’s configuration entails
      modifying the configuration file and then killing and restarting
      the server software, which generally entails a loss of network
      connections.

   o  The client fails to meets its obligation to generate the required
      DSO keepalive traffic, or to close an inactive session by the
      prescribed time (twice the time interval dictated by the server,
      or five seconds, whichever is greater, as described in
      Section 6.2).

   o  The client sends a grossly invalid or malformed request that is
      indicative of a seriously defective client implementation.

   o  The server is over capacity and needs to shed some load.
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6.6.1.  Server-Initiated Retry Delay Message

   In the cases described above where a server elects to terminate a DSO
   Session, it could do so simply by forcibly aborting the connection.
   However, if it did this the likely behavior of the client might be
   simply to to treat this as a network failure and reconnect
   immediately, putting more burden on the server.

   Therefore, to avoid this reconnection implosion, a server SHOULD
   instead choose to shed client load by sending a Retry Delay message,
   with an appropriate RCODE value informing the client of the reason
   the DSO Session needs to be terminated.  The format of the Retry
   Delay TLV, and the interpretations of the various RCODE values, are
   described in Section 7.2.  After sending a Retry Delay message, the
   server MUST NOT send any further messages on that DSO Session.

   The server MAY randomize retry delays in situations where many retry
   delays are sent in quick succession, so as to avoid all the clients
   attempting to reconnect at once.  In general, implementations should
   avoid using the Retry Delay message in a way that would result in
   many clients reconnecting at the same time, if every client attempts
   to reconnect at the exact time specified.

   Upon receipt of a Retry Delay message from the server, the client
   MUST make note of the reconnect delay for this server, and then
   immediately close the connection gracefully.

   After sending a Retry Delay message the server SHOULD allow the
   client five seconds to close the connection, and if the client has
   not closed the connection after five seconds then the server SHOULD
   forcibly abort the connection.

   A Retry Delay message MUST NOT be initiated by a client.  If a server
   receives a Retry Delay message this is a fatal error and the server
   MUST forcibly abort the connection immediately.

6.6.1.1.  Outstanding Operations

   At the instant a server chooses to initiate a Retry Delay message
   there may be DNS requests already in flight from client to server on
   this DSO Session, which will arrive at the server after its Retry
   Delay message has been sent.  The server MUST silently ignore such
   incoming requests, and MUST NOT generate any response messages for
   them.  When the Retry Delay message from the server arrives at the
   client, the client will determine that any DNS requests it previously
   sent on this DSO Session, that have not yet received a response, now
   will certainly not be receiving any response.  Such requests should
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   be considered failed, and should be retried at a later time, as
   appropriate.

   In the case where some, but not all, of the existing operations on a
   DSO Session have become invalid (perhaps because the server has been
   reconfigured and is no longer authoritative for some of the names),
   but the server is terminating all affected DSO Sessions en masse by
   sending them all a Retry Delay message, the reconnect delay MAY be
   zero, indicating that the clients SHOULD immediately attempt to re-
   establish operations.

   It is likely that some of the attempts will be successful and some
   will not, depending on the nature of the reconfiguration.

   In the case where a server is terminating a large number of DSO
   Sessions at once (e.g., if the system is restarting) and the server
   doesn’t want to be inundated with a flood of simultaneous retries, it
   SHOULD send different reconnect delay values to each client.  These
   adjustments MAY be selected randomly, pseudorandomly, or
   deterministically (e.g., incrementing the time value by one tenth of
   a second for each successive client, yielding a post-restart
   reconnection rate of ten clients per second).

6.6.2.  Misbehaving Clients

   A server may determine that a client is not following the protocol
   correctly.  There may be no way for the server to recover the
   session, in which case the server forcibly terminates the connection.
   Since the client doesn’t know why the connection dropped, it may
   reconnect immediately.  If the server has determined that a client is
   not following the protocol correctly, it may terminate the DSO
   session as soon as it is established, specifying a long retry-delay
   to prevent the client from immediately reconnecting.

6.6.3.  Client Reconnection

   After a DSO Session is ended by the server (either by sending the
   client a Retry Delay message, or by forcibly aborting the underlying
   transport connection) the client SHOULD try to reconnect, to that
   service instance, or to another suitable service instance, if more
   than one is available.  If reconnecting to the same service instance,
   the client MUST respect the indicated delay, if available, before
   attempting to reconnect.  Clients should not attempt to randomize the
   delay; the server will randomly jitter the retry delay values it
   sends to each client if this behavior is desired.

   If the service instance will only be out of service for a short
   maintenance period, it should use a value a little longer that the
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   expected maintenance window.  It should not default to a very large
   delay value, or clients may not attempt to reconnect after it resumes
   service.

   If a particular service instance does not want a client to reconnect
   ever (perhaps the service instance is being de-commissioned), it
   SHOULD set the retry delay to the maximum value 0xFFFFFFFF (2^32-1
   milliseconds, approximately 49.7 days).  It is not possible to
   instruct a client to stay away for longer than 49.7 days.  If, after
   49.7 days, the DNS or other configuration information still indicates
   that this is the valid service instance for a particular service,
   then clients MAY attempt to reconnect.  In reality, if a client is
   rebooted or otherwise lose state, it may well attempt to reconnect
   before 49.7 days elapses, for as long as the DNS or other
   configuration information continues to indicate that this is the
   service instance the client should use.

6.6.3.1.  Reconnecting After a Forcible Abort

   If a connection was forcibly aborted by the client, the client SHOULD
   mark that service instance as not supporting DSO.  The client MAY
   reconnect but not attempt to use DSO, or may connect to a different
   service instance, if applicable.

6.6.3.2.  Reconnecting After an Unexplained Connection Drop

   It is also possible for a server to forcibly terminate the
   connection; in this case the client doesn’t know whether the
   termination was the result of a protocol error or a network outage.
   When the client notices that the connection has been dropped, it can
   attempt to reconnect immediately.  However, if the connection is
   dropped again without the client being able to successfully do
   whatever it is trying to do, it should mark the server as not
   supporting DSO.

6.6.3.3.  Probing for Working DSO Support

   Once a server has been marked by the client as not supporting DSO,
   the client SHOULD NOT attempt DSO operations on that server until
   some time has elapsed.  A reasonable minimum would be an hour.  Since
   forcibly aborted connections are the result of a software failure,
   it’s not likely that the problem will be solved in the first hour
   after it’s first encountered.  However, by restricting the retry
   interval to an hour, the client will be able to notice when the
   problem has been fixed without placing an undue burden on the server.
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7.  Base TLVs for DNS Stateful Operations

   This section describes the three base TLVs for DNS Stateful
   Operations: Keepalive, Retry Delay, and Encryption Padding.

7.1.  Keepalive TLV

   The Keepalive TLV (DSO-TYPE=1) performs two functions.  Primarily it
   establishes the values for the Session Timeouts.  Incidentally, it
   also resets the keepalive timer for the DSO Session, meaning that it
   can be used as a kind of "no-op" message for the purpose of keeping a
   session alive.  The client will request the desired session timeout
   values and the server will acknowledge with the response values that
   it requires the client to use.

   DSO messages with the Keepalive TLV as the primary TLV may appear in
   early data.

   The DSO-DATA for the Keepalive TLV is as follows:

                           1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 INACTIVITY TIMEOUT (32 bits)                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 KEEPALIVE INTERVAL (32 bits)                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   INACTIVITY TIMEOUT:  The inactivity timeout for the current DSO
      Session, specified as a 32-bit unsigned integer, in network (big
      endian) byte order, in units of milliseconds.  This is the timeout
      at which the client MUST begin closing an inactive DSO Session.
      The inactivity timeout can be any value of the server’s choosing.
      If the client does not gracefully close an inactive DSO Session,
      then after twice this interval, or five seconds, whichever is
      greater, the server will forcibly abort the connection.

   KEEPALIVE INTERVAL:  The keepalive interval for the current DSO
      Session, specified as a 32-bit unsigned integer, in network (big
      endian) byte order, in units of milliseconds.  This is the
      interval at which a client MUST generate DSO keepalive traffic to
      maintain connection state.  The keepalive interval MUST NOT be
      less than ten seconds.  If the client does not generate the
      mandated DSO keepalive traffic, then after twice this interval the
      server will forcibly abort the connection.  Since the minimum
      allowed keepalive interval is ten seconds, the minimum time at
      which a server will forcibly disconnect a client for failing to
      generate the mandated DSO keepalive traffic is twenty seconds.
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   The transmission or reception of DSO Keepalive messages (i.e.,
   messages where the Keepalive TLV is the first TLV) reset only the
   keepalive timer, not the inactivity timer.  The reason for this is
   that periodic DSO Keepalive messages are sent for the sole purpose of
   keeping a DSO Session alive, when that DSO Session has current or
   recent non-maintenance activity that warrants keeping that DSO
   Session alive.  Sending DSO keepalive traffic itself is not
   considered a client activity; it is considered a maintenance activity
   that is performed in service of other client activities.  If DSO
   keepalive traffic itself were to reset the inactivity timer, then
   that would create a circular livelock where keepalive traffic would
   be sent indefinitely to keep a DSO Session alive, where the only
   activity on that DSO Session would be the keepalive traffic keeping
   the DSO Session alive so that further keepalive traffic can be sent.
   For a DSO Session to be considered active, it must be carrying
   something more than just keepalive traffic.  This is why merely
   sending or receiving a DSO Keepalive message does not reset the
   inactivity timer.

   When sent by a client, the DSO Keepalive request message MUST be sent
   as an DSO request message, with a nonzero MESSAGE ID.  If a server
   receives a DSO Keepalive message with a zero MESSAGE ID then this is
   a fatal error and the server MUST forcibly abort the connection
   immediately.  The DSO Keepalive request message resets a DSO
   Session’s keepalive timer, and at the same time communicates to the
   server the client’s requested Session Timeout values.  In a server
   response to a client-initiated DSO Keepalive request message, the
   Session Timeouts contain the server’s chosen values from this point
   forward in the DSO Session, which the client MUST respect.  This is
   modeled after the DHCP protocol, where the client requests a certain
   lease lifetime using DHCP option 51 [RFC2132], but the server is the
   ultimate authority for deciding what lease lifetime is actually
   granted.

   When a client is sending its second and subsequent DSO Keepalive
   request messages to the server, the client SHOULD continue to request
   its preferred values each time.  This allows flexibility, so that if
   conditions change during the lifetime of a DSO Session, the server
   can adapt its responses to better fit the client’s needs.

   Once a DSO Session is in progress (Section 5.1) a DSO Keepalive
   message MAY be initiated by a server.  When sent by a server, the DSO
   Keepalive message MUST be sent as a DSO unidirectional message, with
   the MESSAGE ID set to zero.  The client MUST NOT generate a response
   to a server-initiated DSO Keepalive message.  If a client receives a
   DSO Keepalive request message with a nonzero MESSAGE ID then this is
   a fatal error and the client MUST forcibly abort the connection
   immediately.  The DSO Keepalive unidirectional message from the
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   server resets a DSO Session’s keepalive timer, and at the same time
   unilaterally informs the client of the new Session Timeout values to
   use from this point forward in this DSO Session.  No client DSO
   response to this unilateral declaration is required or allowed.

   In DSO Keepalive response messages, the Keepalive TLV is REQUIRED and
   is used only as a Response Primary TLV sent as a reply to a DSO
   Keepalive request message from the client.  A Keepalive TLV MUST NOT
   be added to other responses as a Response Additional TLV.  If the
   server wishes to update a client’s Session Timeout values other than
   in response to a DSO Keepalive request message from the client, then
   it does so by sending an DSO Keepalive unidirectional message of its
   own, as described above.

   It is not required that the Keepalive TLV be used in every DSO
   Session.  While many DNS Stateful operations will be used in
   conjunction with a long-lived session state, not all DNS Stateful
   operations require long-lived session state, and in some cases the
   default 15-second value for both the inactivity timeout and keepalive
   interval may be perfectly appropriate.  However, note that for
   clients that implement only the DSO-TYPEs defined in this document, a
   DSO Keepalive request message is the only way for a client to
   initiate a DSO Session.

7.1.1.  Client handling of received Session Timeout values

   When a client receives a response to its client-initiated DSO
   Keepalive message, or receives a server-initiated DSO Keepalive
   message, the client has then received Session Timeout values dictated
   by the server.  The two timeout values contained in the Keepalive TLV
   from the server may each be higher, lower, or the same as the
   respective Session Timeout values the client previously had for this
   DSO Session.

   In the case of the keepalive timer, the handling of the received
   value is straightforward.  The act of receiving the message
   containing the DSO Keepalive TLV itself resets the keepalive timer,
   and updates the keepalive interval for the DSO Session.  The new
   keepalive interval indicates the maximum time that may elapse before
   another message must be sent or received on this DSO Session, if the
   DSO Session is to remain alive.

   In the case of the inactivity timeout, the handling of the received
   value is a little more subtle, though the meaning of the inactivity
   timeout remains as specified -- it still indicates the maximum
   permissible time allowed without useful activity on a DSO Session.
   The act of receiving the message containing the Keepalive TLV does
   not itself reset the inactivity timer.  The time elapsed since the
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   last useful activity on this DSO Session is unaffected by exchange of
   DSO Keepalive messages.  The new inactivity timeout value in the
   Keepalive TLV in the received message does update the timeout
   associated with the running inactivity timer; that becomes the new
   maximum permissible time without activity on a DSO Session.

   o  If the current inactivity timer value is less than the new
      inactivity timeout, then the DSO Session may remain open for now.
      When the inactivity timer value reaches the new inactivity
      timeout, the client MUST then begin closing the DSO Session, as
      described above.

   o  If the current inactivity timer value is equal to the new
      inactivity timeout, then this DSO Session has been inactive for
      exactly as long as the server will permit, and now the client MUST
      immediately begin closing this DSO Session.

   o  If the current inactivity timer value is already greater than the
      new inactivity timeout, then this DSO Session has already been
      inactive for longer than the server permits, and the client MUST
      immediately begin closing this DSO Session.

   o  If the current inactivity timer value is already more than twice
      the new inactivity timeout, then the client is immediately
      considered delinquent (this DSO Session is immediately eligible to
      be forcibly terminated by the server) and the client MUST
      immediately begin closing this DSO Session.  However if a server
      abruptly reduces the inactivity timeout in this way, then, to give
      the client time to close the connection gracefully before the
      server resorts to forcibly aborting it, the server SHOULD give the
      client an additional grace period of one quarter of the new
      inactivity timeout, or five seconds, whichever is greater.

7.1.2.  Relationship to edns-tcp-keepalive EDNS0 Option

   The inactivity timeout value in the Keepalive TLV (DSO-TYPE=1) has
   similar intent to the edns-tcp-keepalive EDNS0 Option [RFC7828].  A
   client/server pair that supports DSO MUST NOT use the edns-tcp-
   keepalive EDNS0 Option within any message after a DSO Session has
   been established.  A client that has sent a DSO message to establish
   a session MUST NOT send an edns-tcp-keepalive EDNS0 Option from this
   point on.  Once a DSO Session has been established, if either client
   or server receives a DNS message over the DSO Session that contains
   an edns-tcp-keepalive EDNS0 Option, this is a fatal error and the
   receiver of the edns-tcp-keepalive EDNS0 Option MUST forcibly abort
   the connection immediately.
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7.2.  Retry Delay TLV

   The Retry Delay TLV (DSO-TYPE=2) can be used as a Primary TLV
   (unidirectional) in a server-to-client message, or as a Response
   Additional TLV in either direction.  DSO messages with a Relay Delay
   TLV as their primary TLV are not permitted in early data.

   The DSO-DATA for the Retry Delay TLV is as follows:

                           1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     RETRY DELAY (32 bits)                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   RETRY DELAY:  A time value, specified as a 32-bit unsigned integer,
      in network (big endian) byte order, in units of milliseconds,
      within which the initiator MUST NOT retry this operation, or retry
      connecting to this server.  Recommendations for the RETRY DELAY
      value are given in Section 6.6.1.

7.2.1.  Retry Delay TLV used as a Primary TLV

   When sent from server to client, the Retry Delay TLV is used as the
   Primary TLV in a DSO unidirectional message.  It is used by a server
   to instruct a client to close the DSO Session and underlying
   connection, and not to reconnect for the indicated time interval.

   In this case it applies to the DSO Session as a whole, and the client
   MUST begin closing the DSO Session, as described in Section 6.6.1.
   The RCODE in the message header SHOULD indicate the principal reason
   for the termination:

   o  NOERROR indicates a routine shutdown or restart.

   o  FORMERR indicates that a client request was too badly malformed
      for the session to continue.

   o  SERVFAIL indicates that the server is overloaded due to resource
      exhaustion and needs to shed load.

   o  REFUSED indicates that the server has been reconfigured, and at
      this time it is now unable to perform one or more of the long-
      lived client operations that were previously being performed on
      this DSO Session.

   o  NOTAUTH indicates that the server has been reconfigured and at
      this time it is now unable to perform one or more of the long-
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      lived client operations that were previously being performed on
      this DSO Session because it does not have authority over the names
      in question (for example, a DNS Push Notification server could be
      reconfigured such that is is no longer accepting DNS Push
      Notification requests for one or more of the currently subscribed
      names).

   This document specifies only these RCODE values for the Retry Delay
   message.  Servers sending Retry Delay messages SHOULD use one of
   these values.  However, future circumstances may create situations
   where other RCODE values are appropriate in Retry Delay messages, so
   clients MUST be prepared to accept Retry Delay messages with any
   RCODE value.

   In some cases, when a server sends a Retry Delay message to a client,
   there may be more than one reason for the server wanting to end the
   session.  Possibly the configuration could have been changed such
   that some long-lived client operations can no longer be continued due
   to policy (REFUSED), and other long-lived client operations can no
   longer be performed due to the server no longer being authoritative
   for those names (NOTAUTH).  In such cases the server MAY use any of
   the applicable RCODE values, or RCODE=NOERROR (routine shutdown or
   restart).

   Note that the selection of RCODE value in a Retry Delay message is
   not critical, since the RCODE value is generally used only for
   information purposes, such as writing to a log file for future human
   analysis regarding the nature of the disconnection.  Generally
   clients do not modify their behavior depending on the RCODE value.
   The RETRY DELAY in the message tells the client how long it should
   wait before attempting a new connection to this service instance.

   For clients that do in some way modify their behavior depending on
   the RCODE value, they should treat unknown RCODE values the same as
   RCODE=NOERROR (routine shutdown or restart).

   A Retry Delay message from server to client is a DSO unidirectional
   message; the MESSAGE ID MUST be set to zero in the outgoing message
   and the client MUST NOT send a response.

   A client MUST NOT send a Retry Delay DSO message to a server.  If a
   server receives a DSO message where the Primary TLV is the Retry
   Delay TLV, this is a fatal error and the server MUST forcibly abort
   the connection immediately.
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7.2.2.  Retry Delay TLV used as a Response Additional TLV

   In the case of a DSO request message that results in a nonzero RCODE
   value, the responder MAY append a Retry Delay TLV to the response,
   indicating the time interval during which the initiator SHOULD NOT
   attempt this operation again.

   The indicated time interval during which the initiator SHOULD NOT
   retry applies only to the failed operation, not to the DSO Session as
   a whole.
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7.3.  Encryption Padding TLV

   The Encryption Padding TLV (DSO-TYPE=3) can only be used as an
   Additional or Response Additional TLV.  It is only applicable when
   the DSO Transport layer uses encryption such as TLS.

   The DSO-DATA for the Padding TLV is optional and is a variable length
   field containing non-specified values.  A DSO-LENGTH of 0 essentially
   provides for 4 bytes of padding (the minimum amount).

                                                1   1   1   1   1   1
        0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      /                                                               /
      /              PADDING -- VARIABLE NUMBER OF BYTES              /
      /                                                               /
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

   As specified for the EDNS(0) Padding Option [RFC7830] the PADDING
   bytes SHOULD be set to 0x00.  Other values MAY be used, for example,
   in cases where there is a concern that the padded message could be
   subject to compression before encryption.  PADDING bytes of any value
   MUST be accepted in the messages received.

   The Encryption Padding TLV may be included in either a DSO request
   message, response, or both.  As specified for the EDNS(0) Padding
   Option [RFC7830] if a DSO request message is received with an
   Encryption Padding TLV, then the DSO response MUST also include an
   Encryption Padding TLV.

   The length of padding is intentionally not specified in this document
   and is a function of current best practices with respect to the type
   and length of data in the preceding TLVs
   [I-D.ietf-dprive-padding-policy].
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8.  Summary Highlights

   This section summarizes some noteworthy highlights about various
   aspects of the DSO protocol.

8.1.  QR bit and MESSAGE ID

   In DSO Request Messages the QR bit is 0 and the MESSAGE ID is
   nonzero.

   In DSO Response Messages the QR bit is 1 and the MESSAGE ID is
   nonzero.

   In DSO Unidirectional Messages the QR bit is 0 and the MESSAGE ID is
   zero.

   The table below illustrates which combinations are legal and how they
   are interpreted:

               +------------------------------+------------------------+
               |       MESSAGE ID zero        |   MESSAGE ID nonzero   |
      +--------+------------------------------+------------------------+
      |  QR=0  |  DSO unidirectional Message  |  DSO Request Message   |
      +--------+------------------------------+------------------------+
      |  QR=1  |    Invalid - Fatal Error     |  DSO Response Message  |
      +--------+------------------------------+------------------------+
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8.2.  TLV Usage

   The table below indicates, for each of the three TLVs defined in this
   document, whether they are valid in each of ten different contexts.

   The first five contexts are DSO requests or DSO unidirectional
   messages from client to server, and the corresponding responses from
   server back to client:

   o  C-P - Primary TLV, sent in DSO Request message, from client to
      server, with nonzero MESSAGE ID indicating that this request MUST
      generate response message.

   o  C-U - Primary TLV, sent in DSO Unidirectional message, from client
      to server, with zero MESSAGE ID indicating that this request MUST
      NOT generate response message.

   o  C-A - Additional TLV, optionally added to a DSO request message or
      DSO unidirectional message from client to server.

   o  CRP - Response Primary TLV, included in response message sent back
      to the client (in response to a client "C-P" request with nonzero
      MESSAGE ID indicating that a response is required) where the DSO-
      TYPE of the Response TLV matches the DSO-TYPE of the Primary TLV
      in the request.

   o  CRA - Response Additional TLV, included in response message sent
      back to the client (in response to a client "C-P" request with
      nonzero MESSAGE ID indicating that a response is required) where
      the DSO-TYPE of the Response TLV does not match the DSO-TYPE of
      the Primary TLV in the request.

   The second five contexts are their counterparts in the opposite
   direction: DSO requests or DSO unidirectional messages from server to
   client, and the corresponding responses from client back to server.

   o  S-P - Primary TLV, sent in DSO Request message, from server to
      client, with nonzero MESSAGE ID indicating that this request MUST
      generate response message.

   o  S-U - Primary TLV, sent in DSO Unidirectional message, from server
      to client, with zero MESSAGE ID indicating that this request MUST
      NOT generate response message.

   o  S-A - Additional TLV, optionally added to a DSO request message or
      DSO unidirectional message from server to client.
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   o  SRP - Response Primary TLV, included in response message sent back
      to the server (in response to a server "S-P" request with nonzero
      MESSAGE ID indicating that a response is required) where the DSO-
      TYPE of the Response TLV matches the DSO-TYPE of the Primary TLV
      in the request.

   o  SRA - Response Additional TLV, included in response message sent
      back to the server (in response to a server "S-P" request with
      nonzero MESSAGE ID indicating that a response is required) where
      the DSO-TYPE of the Response TLV does not match the DSO-TYPE of
      the Primary TLV in the request.

                +-------------------------+-------------------------+
                | C-P  C-U  C-A  CRP  CRA | S-P  S-U  S-A  SRP  SRA |
   +------------+-------------------------+-------------------------+
   | KeepAlive  |  X              X       |       X                 |
   +------------+-------------------------+-------------------------+
   | RetryDelay |                      X  |       X              X  |
   +------------+-------------------------+-------------------------+
   | Padding    |            X         X  |            X         X  |
   +------------+-------------------------+-------------------------+

   Note that some of the columns in this table are currently empty.  The
   table provides a template for future TLV definitions to follow.  It
   is recommended that definitions of future TLVs include a similar
   table summarizing the contexts where the new TLV is valid.
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9.  Additional Considerations

9.1.  Service Instances

   We use the term service instance to refer to software running on a
   host which can receive connections on some set of IP address and port
   tuples.  What makes the software an instance is that regardless of
   which of these tuples the client uses to connect to it, the client is
   connected to the same software, running on the same node (but see
   Section 9.2), and will receive the same answers and the same keying
   information.

   Service instances are identified from the perspective of the client.
   If the client is configured with IP addresses and port number tuples,
   it has no way to tell if the service offered at one tuple is the same
   server that is listening on a different tuple.  So in this case, the
   client treats each such tuple as if it references a separate service
   instance.

   In some cases a client is configured with a hostname and a port
   number (either implicitly, where the port number is omitted and
   assumed, or explicitly, as in the case of DNS SRV records).  In these
   cases, the (hostname, port) tuple uniquely identifies the service
   instance (hostname comparisons are case-insensitive [RFC1034].

   It is possible that two hostnames might point to some common IP
   addresses; this is a configuration error which the client is not
   obliged to detect.  The effect of this could be that after being told
   to disconnect, the client might reconnect to the same server because
   it is represented as a different service instance.

   Implementations SHOULD NOT resolve hostnames and then perform
   matching of IP address(es) in order to evaluate whether two entities
   should be determined to be the "same service instance".
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9.2.  Anycast Considerations

   When an anycast service is configured on a particular IP address and
   port, it must be the case that although there is more than one
   physical server responding on that IP address, each such server can
   be treated as equivalent.  What we mean by "equivalent" here is that
   both servers can provide the same service and, where appropriate, the
   same authentication information, such as PKI certificates, when
   establishing connections.

   If a change in network topology causes packets in a particular TCP
   connection to be sent to an anycast server instance that does not
   know about the connection, the new server will automatically
   terminate the connection with a TCP reset, since it will have no
   record of the connection, and then the client can reconnect or stop
   using the connection, as appropriate.

   If after the connection is re-established, the client’s assumption
   that it is connected to the same service is violated in some way,
   that would be considered to be incorrect behavior in this context.
   It is however out of the possible scope for this specification to
   make specific recommendations in this regard; that would be up to
   follow-on documents that describe specific uses of DNS stateful
   operations.
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9.3.  Connection Sharing

   As previously specified for DNS over TCP [RFC7766]:

      To mitigate the risk of unintentional server overload, DNS
      clients MUST take care to minimize the number of concurrent
      TCP connections made to any individual server.  It is RECOMMENDED
      that for any given client/server interaction there SHOULD be
      no more than one connection for regular queries, one for zone
      transfers, and one for each protocol that is being used on top
      of TCP (for example, if the resolver was using TLS). However,
      it is noted that certain primary/secondary configurations
      with many busy zones might need to use more than one TCP
      connection for zone transfers for operational reasons (for
      example, to support concurrent transfers of multiple zones).

   A single server may support multiple services, including DNS Updates
   [RFC2136], DNS Push Notifications [I-D.ietf-dnssd-push], and other
   services, for one or more DNS zones.  When a client discovers that
   the target server for several different operations is the same
   service instance (see Section 9.1), the client SHOULD use a single
   shared DSO Session for all those operations.

   This requirement has two benefits.  First, it reduces unnecessary
   connection load on the DNS server.  Second, it avoids paying the TCP
   slow start penalty when making subsequent connections to the same
   server.

   However, server implementers and operators should be aware that
   connection sharing may not be possible in all cases.  A single host
   device may be home to multiple independent client software instances
   that don’t coordinate with each other.  Similarly, multiple
   independent client devices behind the same NAT gateway will also
   typically appear to the DNS server as different source ports on the
   same client IP address.  Because of these constraints, a DNS server
   MUST be prepared to accept multiple connections from different source
   ports on the same client IP address.
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9.4.  Operational Considerations for Middlebox

   Where an application-layer middlebox (e.g., a DNS proxy, forwarder,
   or session multiplexer) is in the path, care must be taken to avoid a
   configuration in which DSO traffic is mis-handled.  The simplest way
   to avoid such problems is to avoid using middleboxes.  When this is
   not possible, middleboxes should be evaluated to make sure that they
   behave correctly.

   Correct behavior for middleboxes consists of one of:

   o  The middlebox does not forward DSO messages, and responds to DSO
      messages with a response code other than NOERROR or DSOTYPENI.

   o  The middlebox acts as a DSO server and follows this specification
      in establishing connections.

   o  There is a 1:1 correspondence between incoming and outgoing
      connections, such that when a connection is established to the
      middlebox, it is guaranteed that exactly one corresponding
      connection will be established from the middlebox to some DNS
      resolver, and all incoming messages will be forwarded without
      modification or reordering.  An example of this would be a NAT
      forwarder or TCP connection optimizer (e.g. for a high-latency
      connection such as a geosynchronous satellite link).

   Middleboxes that do not meet one of the above criteria are very
   likely to fail in unexpected and difficult-to-diagnose ways.  For
   example, a DNS load balancer might unbundle DNS messages from the
   incoming TCP stream and forward each message from the stream to a
   different DNS server.  If such a load balancer is in use, and the DNS
   servers it points implement DSO and are configured to enable DSO, DSO
   session establishment will succeed, but no coherent session will
   exist between the client and the server.  If such a load balancer is
   pointed at a DNS server that does not implement DSO or is configured
   not to allow DSO, no such problem will exist, but such a
   configuration risks unexpected failure if new server software is
   installed which does implement DSO.

   It is of course possible to implement a middlebox that properly
   supports DSO.  It is even possible to implement one that implements
   DSO with long-lived operations.  This can be done either by
   maintaining a 1:1 correspondence between incoming and outgoing
   connections, as mentioned above, or by terminating incoming sessions
   at the middlebox, but maintaining state in the middlebox about any
   long-lived that are requested.  Specifying this in detail is beyond
   the scope of this document.
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9.5.  TCP Delayed Acknowledgement Considerations

   Most modern implementations of the Transmission Control Protocol
   (TCP) include a feature called "Delayed Acknowledgement" [RFC1122].

   Without this feature, TCP can be very wasteful on the network.  For
   illustration, consider a simple example like remote login, using a
   very simple TCP implementation that lacks delayed acks.  When the
   user types a keystroke, a data packet is sent.  When the data packet
   arrives at the server, the simple TCP implementation sends an
   immediate acknowledgement.  Mere milliseconds later, the server
   process reads the one byte of keystroke data, and consequently the
   simple TCP implementation sends an immediate window update.  Mere
   milliseconds later, the server process generates the character echo,
   and sends this data back in reply.  The simple TCP implementation
   then sends this data packet immediately too.  In this case, this
   simple TCP implementation sends a burst of three packets almost
   instantaneously (ack, window update, data).

   Clearly it would be more efficient if the TCP implementation were to
   combine the three separate packets into one, and this is what the
   delayed ack feature enables.

   With delayed ack, the TCP implementation waits after receiving a data
   packet, typically for 200 ms, and then send its ack if (a) more data
   packet(s) arrive (b) the receiving process generates some reply data,
   or (c) 200 ms elapses without either of the above occurring.

   With delayed ack, remote login becomes much more efficient,
   generating just one packet instead of three for each character echo.

   The logic of delayed ack is that the 200 ms delay cannot do any
   significant harm.  If something at the other end were waiting for
   something, then the receiving process should generate the reply that
   the thing at the end is waiting for, and TCP will then immediately
   send that reply (and the ack and window update).  And if the
   receiving process does not in fact generate any reply for this
   particular message, then by definition the thing at the other end
   cannot be waiting for anything, so the 200 ms delay is harmless.

   This assumption may be true, unless the sender is using Nagle’s
   algorithm, a similar efficiency feature, created to protect the
   network from poorly written client software that performs many rapid
   small writes in succession.  Nagle’s algorithm allows these small
   writes to be combined into larger, less wasteful packets.
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   Unfortunately, Nagle’s algorithm and delayed ack, two valuable
   efficiency features, can interact badly with each other when used
   together [NagleDA].

   DSO request messages elicit responses; DSO unidirectional messages
   and DSO response messages do not.

   For DSO request messages, which do elicit responses, Nagle’s
   algorithm and delayed ack work as intended.

   For DSO messages that do not elicit responses, the delayed ack
   mechanism causes the ack to be delayed by 200 ms.  The 200 ms delay
   on the ack can in turn cause Nagle’s algorithm to prevent the sender
   from sending any more data for 200 ms until the awaited ack arrives.
   On an enterprise GigE backbone with sub-millisecond round-trip times,
   a 200 ms delay is enormous in comparison.

   When this issues is raised, there are two solutions that are often
   offered, neither of them ideal:

   1.  Disable delayed ack.  For DSO messages that elicit no response,
       removing delayed ack avoids the needless 200 ms delay, and sends
       back an immediate ack, which tells Nagle’s algorithm that it
       should immediately grant the sender permission to send its next
       packet.  Unfortunately, for DSO messages that *do* elicit a
       response, removing delayed ack removes the efficiency gains of
       combining acks with data, and the responder will now send two or
       three packets instead of one.

   2.  Disable Nagle’s algorithm.  When acks are delayed by the delayed
       ack algorithm, removing Nagle’s algorithm prevents the sender
       from being blocked from sending its next small packet
       immediately.  Unfortunately, on a network with a higher round-
       trip time, removing Nagle’s algorithm removes the efficiency
       gains of combining multiple small packets into fewer larger ones,
       with the goal of limiting the number of small packets in flight
       at any one time.

   For DSO messages that elicit a response, delayed ack and Nagle’s
   algorithm do the right thing.

   The problem here is that with DSO messages that elicit no response,
   the TCP implementation is stuck waiting, unsure if a response is
   about to be generated, or whether the TCP implementation should go
   ahead and send an ack and window update.

   The solution is networking APIs that allow the receiver to inform the
   TCP implementation that a received message has been read, processed,
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   and no response for this message will be generated.  TCP can then
   stop waiting for a response that will never come, and immediately go
   ahead and send an ack and window update.

   For implementations of DSO, disabling delayed ack is NOT RECOMMENDED,
   because of the harm this can do to the network.

   For implementations of DSO, disabling Nagle’s algorithm is NOT
   RECOMMENDED, because of the harm this can do to the network.

   At the time that this document is being prepared for publication, it
   is known that at least one TCP implementation provides the ability
   for the recipient of a TCP message to signal that it is not going to
   send a response, and hence the delayed ack mechanism can stop
   waiting.  Implementations on operating systems where this feature is
   available SHOULD make use of it.
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10.  IANA Considerations

10.1.  DSO OPCODE Registration

   The IANA is requested to record the value [TBA1] (tentatively 6) for
   the DSO OPCODE in the DNS OPCODE Registry.  DSO stands for DNS
   Stateful Operations.

10.2.  DSO RCODE Registration

   The IANA is requested to record the value [TBA2] (tentatively 11) for
   the DSOTYPENI error code in the DNS RCODE Registry.  The DSOTYPENI
   error code ("DSO-TYPE Not Implemented") indicates that the receiver
   does implement DNS Stateful Operations, but does not implement the
   specific DSO-TYPE of the primary TLV in the DSO request message.

10.3.  DSO Type Code Registry

   The IANA is requested to create the 16-bit DSO Type Code Registry,
   with initial (hexadecimal) values as shown below:

   +-----------+------------------------+-------+----------+-----------+
   | Type      | Name                   | Early | Status   | Reference |
   |           |                        | Data  |          |           |
   +-----------+------------------------+-------+----------+-----------+
   | 0000      | Reserved               | NO    | Standard | RFC-TBD   |
   |           |                        |       |          |           |
   | 0001      | KeepAlive              | OK    | Standard | RFC-TBD   |
   |           |                        |       |          |           |
   | 0002      | RetryDelay             | NO    | Standard | RFC-TBD   |
   |           |                        |       |          |           |
   | 0003      | EncryptionPadding      | NA    | Standard | RFC-TBD   |
   |           |                        |       |          |           |
   | 0004-003F | Unassigned, reserved   | NO    |          |           |
   |           | for DSO session-       |       |          |           |
   |           | management TLVs        |       |          |           |
   |           |                        |       |          |           |
   | 0040-F7FF | Unassigned             | NO    |          |           |
   |           |                        |       |          |           |
   | F800-FBFF | Experimental/local use | NO    |          |           |
   |           |                        |       |          |           |
   | FC00-FFFF | Reserved for future    | NO    |          |           |
   |           | expansion              |       |          |           |
   +-----------+------------------------+-------+----------+-----------+

   The meanings of the fields are as follows:

   Type:  the 16-bit DSO type code
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   Name:  the human-readable name of the TLV

   Early Data:  If OK, this TLV may be sent as early data in a TLS 0-RTT
      ([RFC8446] Section 2.3) initial handshake.  If NA, the TLV may
      appear as a secondary TLV in a DSO message that is send as early
      data.

   Status:  IETF Document status (or "External" if not documented in an
      IETF document.

   Reference:  A stable reference to the document in which this TLV is
      defined.

   DSO Type Code zero is reserved and is not currently intended for
   allocation.

   Registrations of new DSO Type Codes in the "Reserved for DSO session-
   management" range 0004-003F and the "Reserved for future expansion"
   range FC00-FFFF require publication of an IETF Standards Action
   document [RFC8126].

   Any document defining a new TLV which lists a value of "OK" in the
   0-RTT column must include a threat analysis for the use of the TLV in
   the case of TLS 0-RTT.  See Section 11.1 for details.

   Requests to register additional new DSO Type Codes in the
   "Unassigned" range 0040-F7FF are to be recorded by IANA after Expert
   Review [RFC8126].  The expert review should validate that the
   requested type code is specified in a way that conforms to this
   specification, and that the intended use for the code would not be
   addressed with an experimental/local assignment.

   DSO Type Codes in the "experimental/local" range F800-FBFF may be
   used as Experimental Use or Private Use values [RFC8126] and may be
   used freely for development purposes, or for other purposes within a
   single site.  No attempt is made to prevent multiple sites from using
   the same value in different (and incompatible) ways.  There is no
   need for IANA to review such assignments (since IANA does not record
   them) and assignments are not generally useful for broad
   interoperability.  It is the responsibility of the sites making use
   of "experimental/local" values to ensure that no conflicts occur
   within the intended scope of use.

11.  Security Considerations

   If this mechanism is to be used with DNS over TLS, then these
   messages are subject to the same constraints as any other DNS-over-
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   TLS messages and MUST NOT be sent in the clear before the TLS session
   is established.

   The data field of the "Encryption Padding" TLV could be used as a
   covert channel.

   When designing new DSO TLVs, the potential for data in the TLV to be
   used as a tracking identifier should be taken into consideration, and
   should be avoided when not required.

   When used without TLS or similar cryptographic protection, a
   malicious entity maybe able to inject a malicious unidirectional DSO
   Retry Delay Message into the data stream, specifying an unreasonably
   large RETRY DELAY, causing a denial-of-service attack against the
   client.

   The establishment of DSO sessions has an impact on the number of open
   TCP connections on a DNS server.  Additional resources may be used on
   the server as a result.  However, because the server can limit the
   number of DSO sessions established and can also close existing DSO
   sessions as needed, denial of service or resource exhaustion should
   not be a concern.

11.1.  TLS 0-RTT Considerations

   DSO permits zero round-trip operation using TCP Fast Open [RFC7413]
   with TLS 1.3 [RFC8446] 0-RTT to reduce or eliminate round trips in
   session establishment.  TCP Fast Open is only permitted in
   combination with TLS 0-RTT.  In the rest of this section we refer to
   TLS 1.3 early data in a TLS 0-RTT initial handshake message, whether
   or not it is included in a TCP SYN packet with early data using the
   TCP Fast Open option, as "early data."

   A DSO message may or may not be permitted to be sent as early data.
   The definition for each TLV that can be used as a primary TLV is
   required to state whether or not that TLV is permitted as early data.
   Only response-requiring messages are ever permitted as early data,
   and only clients are permitted to send any DSO message as early data,
   unless there is an implicit session (see Section 5.1).

   For DSO messages that are permitted as early data, a client MAY
   include one or more such messages as early data without having to
   wait for a DSO response to the first DSO request message to confirm
   successful establishment of a DSO session.

   However, unless there is an implicit session, a client MUST NOT send
   DSO unidirectional messages until after a DSO Session has been
   mutually established.
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   Similarly, unless there is an implicit session, a server MUST NOT
   send DSO request messages until it has received a response-requiring
   DSO request message from a client and transmitted a successful
   NOERROR response for that request.

   Caution must be taken to ensure that DSO messages sent as early data
   are idempotent, or are otherwise immune to any problems that could be
   result from the inadvertent replay that can occur with zero round-
   trip operation.

   It would be possible to add a TLV that requires the server to do some
   significant work, and send that to the server as initial data in a
   TCP SYN packet.  A flood of such packets could be used as a DoS
   attack on the server.  None of the TLVs defined here have this
   property.

   If a new TLV is specified that does have this property, that TLV must
   be specified as not permitted in 0-RTT messages.  This prevents work
   from being done until a round-trip has occurred from the server to
   the client to verify that the source address of the packet is
   reachable.

   Documents that define new TLVs must state whether each new TLV may be
   sent as early data.  Such documents must include a threat analysis in
   the security considerations section for each TLV defined in the
   document that may be sent as early data.  This threat analysis should
   be done based on the advice given in [RFC8446] Section 2.3, 8 and
   Appendix E.5.
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1.  Introduction

   Multicast DNS [RFC6762] and its companion technology DNS-based
   Service Discovery [RFC6763] were created to provide IP networking
   with the ease-of-use and autoconfiguration for which AppleTalk was
   well known [RFC6760] [ZC] [Roadmap].

   For a small home network consisting of just a single link (or a few
   physical links bridged together to appear as a single logical link
   from the point of view of IP) Multicast DNS [RFC6762] is sufficient
   for client devices to look up the ".local" host names of peers on the
   same home network, and to use Multicast DNS-Based Service Discovery
   (DNS-SD) [RFC6763] to discover services offered on that home network.

   For a larger network consisting of multiple links that are
   interconnected using IP-layer routing instead of link-layer bridging,
   link-local Multicast DNS alone is insufficient because link-local
   Multicast DNS packets, by design, are not propagated onto other
   links.

   Using link-local multicast packets for Multicast DNS was a conscious
   design choice [RFC6762].  Even when limited to a single link,
   multicast traffic is still generally considered to be more expensive
   than unicast, because multicast traffic impacts many devices, instead
   of just a single recipient.  In addition, with some technologies like
   Wi-Fi [IEEE-11], multicast traffic is inherently less efficient and
   less reliable than unicast, because Wi-Fi multicast traffic is sent
   at lower data rates, and is not acknowledged [Mcast].  Increasing the
   amount of expensive multicast traffic by flooding it across multiple
   links would make the traffic load even worse.

   Partitioning the network into many small links curtails the spread of
   expensive multicast traffic, but limits the discoverability of
   services.  At the opposite end of the spectrum, using a very large
   local link with thousands of hosts enables better service discovery,
   but at the cost of larger amounts of multicast traffic.

   Performing DNS-Based Service Discovery using purely Unicast DNS is
   more efficient and doesn’t require large multicast domains, but does
   require that the relevant data be available in the Unicast DNS
   namespace.  The Unicast DNS namespace in question could fall within a
   traditionally assigned globally unique domain name, or could use a
   private local unicast domain name such as ".home.arpa" [RFC8375].

   In the DNS-SD specification [RFC6763], Section 10 ("Populating the
   DNS with Information") discusses various possible ways that a
   service’s PTR, SRV, TXT and address records can make their way into
   the Unicast DNS namespace, including manual zone file configuration
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   [RFC1034] [RFC1035], DNS Update [RFC2136] [RFC3007] and proxies of
   various kinds.

   Making the relevant data available in the Unicast DNS namespace by
   manual DNS configuration is one option.  This option has been used
   for many years at IETF meetings to advertise the IETF Terminal Room
   printer.  Details of this example are given in Appendix A of the
   Roadmap document [Roadmap].  However, this manual DNS configuration
   is labor intensive, error prone, and requires a reasonable degree of
   DNS expertise.

   Populating the Unicast DNS namespace via DNS Update by the devices
   offering the services themselves is another option [RegProt]
   [DNS-UL].  However, this requires configuration of DNS Update keys on
   those devices, which has proven onerous and impractical for simple
   devices like printers and network cameras.

   Hence, to facilitate efficient and reliable DNS-Based Service
   Discovery, a compromise is needed that combines the ease-of-use of
   Multicast DNS with the efficiency and scalability of Unicast DNS.

   This document specifies a type of proxy called a "Discovery Proxy"
   that uses Multicast DNS [RFC6762] to discover Multicast DNS records
   on its local link, and makes corresponding DNS records visible in the
   Unicast DNS namespace.

   In principle, similar mechanisms could be defined using other local
   service discovery protocols, to discover local information and then
   make corresponding DNS records visible in the Unicast DNS namespace.
   Such mechanisms for other local service discovery protocols could be
   addressed in future documents.

   The design of the Discovery Proxy is guided by the previously
   published requirements document [RFC7558].

   In simple terms, a descriptive DNS name is chosen for each link in an
   organization.  Using a DNS NS record, responsibility for that DNS
   name is delegated to a Discovery Proxy physically attached to that
   link.  Now, when a remote client issues a unicast query for a name
   falling within the delegated subdomain, the normal DNS delegation
   mechanism results in the unicast query arriving at the Discovery
   Proxy, since it has been declared authoritative for those names.
   Now, instead of consulting a textual zone file on disk to discover
   the answer to the query, as a traditional DNS server would, a
   Discovery Proxy consults its local link, using Multicast DNS, to find
   the answer to the question.
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   For fault tolerance reasons there may be more than one Discovery
   Proxy serving a given link.

   Note that the Discovery Proxy uses a "pull" model.  The local link is
   not queried using Multicast DNS until some remote client has
   requested that data.  In the idle state, in the absence of client
   requests, the Discovery Proxy sends no packets and imposes no burden
   on the network.  It operates purely "on demand".

   An alternative proposal that has been discussed is a proxy that
   performs DNS updates to a remote DNS server on behalf of the
   Multicast DNS devices on the local network.  The difficulty with this
   is is that Multicast DNS devices do not routinely announce their
   records on the network.  Generally they remain silent until queried.
   This means that the complete set of Multicast DNS records in use on a
   link can only be discovered by active querying, not by passive
   listening.  Because of this, a proxy can only know what names exist
   on a link by issuing queries for them, and since it would be
   impractical to issue queries for every possible name just to find out
   which names exist and which do not, there is no reasonable way for a
   proxy to programmatically learn all the answers it would need to push
   up to the remote DNS server using DNS Update.  Even if such a
   mechanism were possible, it would risk generating high load on the
   network continuously, even when there are no clients with any
   interest in that data.

   Hence, having a model where the query comes to the Discovery Proxy is
   much more efficient than a model where the Discovery Proxy pushes the
   answers out to some other remote DNS server.

   A client seeking to discover services and other information achieves
   this by sending traditional DNS queries to the Discovery Proxy, or by
   sending DNS Push Notification subscription requests [Push].

   How a client discovers what domain name(s) to use for its service
   discovery queries, (and consequently what Discovery Proxy or Proxies
   to use) is described in Section 5.2.

   The diagram below illustrates a network topology using a Discovery
   Proxy to provide discovery service to a remote client.

     +--------+    Unicast     +-----------+  +---------+  +---------+
     | Remote |  Communcation  | Discovery |  | Network |  | Network |
     | Client |---- . . . -----|   Proxy   |  | Printer |  | Camera  |
     +--------+                +-----------+  +---------+  +---------+
                                      |            |            |
                           --------------------------------------------
                          Multicast-capable LAN segment (e.g., Ethernet)
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2.  Operational Analogy

   A Discovery Proxy does not operate as a multicast relay, or multicast
   forwarder.  There is no danger of multicast forwarding loops that
   result in traffic storms, because no multicast packets are forwarded.
   A Discovery Proxy operates as a *proxy* for a remote client,
   performing queries on its behalf and reporting the results back.

   A reasonable analogy is making a telephone call to a colleague at
   your workplace and saying, "I’m out of the office right now.  Would
   you mind bringing up a printer browser window and telling me the
   names of the printers you see?"  That entails no risk of a forwarding
   loop causing a traffic storm, because no multicast packets are sent
   over the telephone call.

   A similar analogy, instead of enlisting another human being to
   initiate the service discovery operation on your behalf, is to log
   into your own desktop work computer using screen sharing, and then
   run the printer browser yourself to see the list of printers.  Or log
   in using ssh and type "dns-sd -B _ipp._tcp" and observe the list of
   discovered printer names.  In neither case is there any risk of a
   forwarding loop causing a traffic storm, because no multicast packets
   are being sent over the screen sharing or ssh connection.

   The Discovery Proxy provides another way of performing remote
   queries, except using a different protocol instead of screen sharing
   or ssh.

   When the Discovery Proxy software performs Multicast DNS operations,
   the exact same Multicast DNS caching mechanisms are applied as when
   any other client software on that Discovery Proxy device performs
   Multicast DNS operations, whether that be running a printer browser
   client locally, or a remote user running the printer browser client
   via a screen sharing connection, or a remote user logged in via ssh
   running a command-line tool like "dns-sd", or a remote user sending
   DNS requests that cause a Discovery Proxy to perform discovery
   operations on its behalf.
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3.  Conventions and Terminology Used in this Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",
   and "OPTIONAL" in this document are to be interpreted as described
   in "Key words for use in RFCs to Indicate Requirement Levels",
   when, and only when, they appear in all capitals, as shown here
   [RFC2119] [RFC8174].

   The Discovery Proxy builds on Multicast DNS, which works between
   hosts on the same link.  For the purposes of this document a set of
   hosts is considered to be "on the same link" if:

   o  when any host from that set sends a packet to any other host in
      that set, using unicast, multicast, or broadcast, the entire link-
      layer packet payload arrives unmodified, and

   o  a broadcast sent over that link, by any host from that set of
      hosts, can be received by every other host in that set.

   The link-layer *header* may be modified, such as in Token Ring Source
   Routing [IEEE-5], but not the link-layer *payload*.  In particular,
   if any device forwarding a packet modifies any part of the IP header
   or IP payload then the packet is no longer considered to be on the
   same link.  This means that the packet may pass through devices such
   as repeaters, bridges, hubs or switches and still be considered to be
   on the same link for the purpose of this document, but not through a
   device such as an IP router that decrements the IP TTL or otherwise
   modifies the IP header.

4.  Compatibility Considerations

   No changes to existing devices are required to work with a Discovery
   Proxy.

   Existing devices that advertise services using Multicast DNS work
   with Discovery Proxy.

   Existing clients that support DNS-Based Service Discovery over
   Unicast DNS work with Discovery Proxy.  Service Discovery over
   Unicast DNS was introduced in Mac OS X 10.4 in April 2005, as is
   included in Apple products introduced since then, including iPhone
   and iPad, as well as products from other vendors, such as Microsoft
   Windows 10.

   An overview of the larger collection of related Service Discovery
   technologies, and how Discovery Proxy relates to those, is given in
   the Service Discovery Road Map document [Roadmap].
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5.  Discovery Proxy Operation

   In a typical configuration, a Discovery Proxy is configured to be
   authoritative [RFC1034] [RFC1035] for four or more DNS subdomains,
   and authority for these subdomains is delegated to it via NS records:

   A DNS subdomain for service discovery records.
      This subdomain name may contain rich text, including spaces and
      other punctuation.  This is because this subdomain name is used
      only in graphical user interfaces, where rich text is appropriate.

   A DNS subdomain for host name records.
      This subdomain name SHOULD be limited to letters, digits and
      hyphens, to facilitate convenient use of host names in command-
      line interfaces.

   One or more DNS subdomains for IPv4 Reverse Mapping records.
      These subdomains will have names that ends in "in-addr.arpa."

   One or more DNS subdomains for IPv6 Reverse Mapping records.
      These subdomains will have names that ends in "ip6.arpa."

   In an enterprise network the naming and delegation of these
   subdomains is typically performed by conscious action of the network
   administrator.  In a home network naming and delegation would
   typically be performed using some automatic configuration mechanism
   such as HNCP [RFC7788].

   These three varieties of delegated subdomains (service discovery,
   host names, and reverse mapping) are described below in Section 5.1,
   Section 5.3 and Section 5.4.

   How a client discovers where to issue its service discovery queries
   is described below in Section 5.2.
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5.1.  Delegated Subdomain for Service Discovery Records

   In its simplest form, each link in an organization is assigned a
   unique Unicast DNS domain name, such as "Building 1.example.com" or
   "2nd Floor.Building 3.example.com".  Grouping multiple links under a
   single Unicast DNS domain name is to be specified in a future
   companion document, but for the purposes of this document, assume
   that each link has its own unique Unicast DNS domain name.  In a
   graphical user interface these names are not displayed as strings
   with dots as shown above, but something more akin to a typical file
   browser graphical user interface (which is harder to illustrate in a
   text-only document) showing folders, subfolders and files in a file
   system.

    +---------------+--------------+-------------+-------------------+
    | *example.com* |  Building 1  |  1st Floor  | Alice’s printer   |
    |               |  Building 2  | *2nd Floor* | Bob’s printer     |
    |               | *Building 3* |  3rd Floor  | Charlie’s printer |
    |               |  Building 4  |  4th Floor  |                   |
    |               |  Building 5  |             |                   |
    |               |  Building 6  |             |                   |
    +---------------+--------------+-------------+-------------------+

                        Figure 1: Illustrative GUI

   Each named link in an organization has one or more Discovery Proxies
   which serve it.  This Discovery Proxy function for each link could be
   performed by a device like a router or switch that is physically
   attached to that link.  In the parent domain, NS records are used to
   delegate ownership of each defined link name
   (e.g., "Building 1.example.com") to the one or more Discovery Proxies
   that serve the named link.  In other words, the Discovery Proxies are
   the authoritative name servers for that subdomain.  As in the rest of
   DNS-Based Service Discovery, all names are represented as-is using
   plain UTF-8 encoding, and, as described in Section 5.5.4, no text
   encoding translations are performed.

   With appropriate VLAN configuration [IEEE-1Q] a single Discovery
   Proxy device could have a logical presence on many links, and serve
   as the Discovery Proxy for all those links.  In such a configuration
   the Discovery Proxy device would have a single physical Ethernet
   [IEEE-3] port, configured as a VLAN trunk port, which would appear to
   software on that device as multiple virtual Ethernet interfaces, one
   connected to each of the VLAN links.

   As an alternative to using VLAN technology, using a Multicast DNS
   Discovery Relay [Relay] is another way that a Discovery Proxy can
   have a ’virtual’ presence on a remote link.
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   When a DNS-SD client issues a Unicast DNS query to discover services
   in a particular Unicast DNS subdomain
   (e.g., "_printer._tcp.Building 1.example.com. PTR ?") the normal DNS
   delegation mechanism results in that query being forwarded until it
   reaches the delegated authoritative name server for that subdomain,
   namely the Discovery Proxy on the link in question.  Like a
   conventional Unicast DNS server, a Discovery Proxy implements the
   usual Unicast DNS protocol [RFC1034] [RFC1035] over UDP and TCP.
   However, unlike a conventional Unicast DNS server that generates
   answers from the data in its manually-configured zone file, a
   Discovery Proxy generates answers using Multicast DNS.  A Discovery
   Proxy does this by consulting its Multicast DNS cache and/or issuing
   Multicast DNS queries, as appropriate, according to the usual
   protocol rules of Multicast DNS [RFC6762], for the corresponding
   Multicast DNS name, type and class, with the delegated zone part of
   the name replaced with ".local" (e.g., in this case,
   "_printer._tcp.local. PTR ?").  Then, from the received Multicast DNS
   data, the Discovery Proxy synthesizes the appropriate Unicast DNS
   response, with the ".local" top-level label replaced with with the
   name of the delegated zone.  How long the Discovery Proxy should wait
   to accumulate Multicast DNS responses before sending its unicast
   reply is described below in Section 5.6.

   The existing Multicast DNS caching mechanism is used to minimize
   unnecessary Multicast DNS queries on the wire.  The Discovery Proxy
   is acting as a client of the underlying Multicast DNS subsystem, and
   benefits from the same caching and efficiency measures as any other
   client using that subsystem.

   Note that the contents of the delegated zone, generated as it is by
   performing ".local" Multicast DNS queries, mirrors the records
   available on the local link via Multicast DNS very closely, but not
   precisely.  There is not a full bidirectional equivalence between the
   two.  Certain records that are available via Multicast DNS may not
   have equivalents in the delegated zone, possibly because they are
   invalid or not relevant in the delegated zone, or because they are
   being supressed because they are unusable outside the local link (see
   Section 5.5.2).  Conversely, certain records that appear in the
   delegated zone may not have corresponding records available on the
   local link via Multicast DNS.  In particular there are certain
   administrative SRV records (see Section 6) that logically fall within
   the delegated zone, but semantically represent metadata *about* the
   zone rather than records *within* the zone, and consequently these
   administrative records in the delegated zone do not have any
   corresponding counterparts in the Multicast DNS namespace of the
   local link.

Cheshire               Expires September 25, 2019              [Page 10]



Internet-Draft      Multicast Service Discovery Proxy         March 2019

5.2.  Domain Enumeration

   A DNS-SD client performs Domain Enumeration [RFC6763] via certain PTR
   queries, using both unicast and multicast.  If it receives a Domain
   Name configuration via DHCP option 15 [RFC2132], then it issues
   unicast queries using this domain.  It issues unicast queries using
   names derived from its IPv4 subnet address(es) and IPv6 prefix(es).
   These are described below in Section 5.2.1.  It also issues multicast
   Domain Enumeration queries in the "local" domain [RFC6762].  These
   are described below in Section 5.2.2.  The results of all the Domain
   Enumeration queries are combined for Service Discovery purposes.

5.2.1.  Domain Enumeration via Unicast Queries

   The administrator creates Domain Enumeration PTR records [RFC6763] to
   inform clients of available service discovery domains.  Two varieties
   of such Domain Enumeration PTR records exist; those with names
   derived from the domain name communicated to the clients via DHCP,
   and those with names derived from IPv4 subnet address(es) and IPv6
   prefix(es) in use by the clients.  Below is an example showing the
   name-based variety:

       b._dns-sd._udp.example.com.    PTR   Building 1.example.com.
                                      PTR   Building 2.example.com.
                                      PTR   Building 3.example.com.
                                      PTR   Building 4.example.com.

       db._dns-sd._udp.example.com.   PTR   Building 1.example.com.

       lb._dns-sd._udp.example.com.   PTR   Building 1.example.com.

   The meaning of these records is defined in the DNS Service Discovery
   specification [RFC6763] but for convenience is repeated here.  The
   "b" ("browse") records tell the client device the list of browsing
   domains to display for the user to select from.  The "db" ("default
   browse") record tells the client device which domain in that list
   should be selected by default.  The "db" domain MUST be one of the
   domains in the "b" list; if not then no domain is selected by
   default.  The "lb" ("legacy browse") record tells the client device
   which domain to automatically browse on behalf of applications that
   don’t implement UI for multi-domain browsing (which is most of them,
   at the time of writing).  The "lb" domain is often the same as the
   "db" domain, or sometimes the "db" domain plus one or more others
   that should be included in the list of automatic browsing domains for
   legacy clients.

   Note that in the example above, for clarity, space characters in
   names are shown as actual spaces.  If this data is manually entered
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   into a textual zone file for authoritative server software such as
   BIND, care must be taken because the space character is used as a
   field separator, and other characters like dot (’.’), semicolon
   (’;’), dollar (’$’), backslash (’\’), etc., also have special
   meaning.  These characters have to be escaped when entered into a
   textual zone file, following the rules in Section 5.1 of the DNS
   specification [RFC1035].  For example, a literal space in a name is
   represented in the textual zone file using ’\032’, so "Building
   1.example.com." is entered as "Building\0321.example.com."

   DNS responses are limited to a maximum size of 65535 bytes.  This
   limits the maximum number of domains that can be returned for a
   Domain Enumeration query, as follows:

   A DNS response header is 12 bytes.  That’s typically followed by a
   single qname (up to 256 bytes) plus qtype (2 bytes) and qclass
   (2 bytes), leaving 65275 for the Answer Section.

   An Answer Section Resource Record consists of:

   o  Owner name, encoded as a two-byte compression pointer
   o  Two-byte rrtype (type PTR)
   o  Two-byte rrclass (class IN)
   o  Four-byte ttl
   o  Two-byte rdlength
   o  rdata (domain name, up to 256 bytes)

   This means that each Resource Record in the Answer Section can take
   up to 268 bytes total, which means that the Answer Section can
   contain, in the worst case, no more than 243 domains.

   In a more typical scenario, where the domain names are not all
   maximum-sized names, and there is some similarity between names so
   that reasonable name compression is possible, each Answer
   Section Resource Record may average 140 bytes, which means that the
   Answer Section can contain up to 466 domains.

   It is anticipated that this should be sufficient for even a large
   corporate network or university campus.
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5.2.2.  Domain Enumeration via Multicast Queries

   In the case where Discovery Proxy functionality is widely deployed
   within an enterprise (either by having a Discovery Proxy on each
   link, or by having a Discovery Proxy with a remote ’virtual’ presence
   on each link using VLANs or Multicast DNS Discovery Relays [Relay])
   this offers an additional way to provide Domain Enumeration data for
   clients.

   A Discovery Proxy can be configured to generate Multicast DNS
   responses for the following Multicast DNS Domain Enumeration queries
   issued by clients:

       b._dns-sd._udp.local.    PTR   ?
       db._dns-sd._udp.local.   PTR   ?
       lb._dns-sd._udp.local.   PTR   ?

   This provides the ability for Discovery Proxies to indicate
   recommended browsing domains to DNS-SD clients on a per-link
   granularity.  In some enterprises it may be preferable to provide
   this per-link configuration data in the form of Discovery Proxy
   configuration, rather than populating the Unicast DNS servers with
   the same data (in the "ip6.arpa" or "in-addr.arpa" domains).

   Regardless of how the network operator chooses to provide this
   configuration data, clients will perform Domain Enumeration via both
   unicast and multicast queries, and then combine the results of these
   queries.
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5.3.  Delegated Subdomain for LDH Host Names

   DNS-SD service instance names and domains are allowed to contain
   arbitrary Net-Unicode text [RFC5198], encoded as precomposed UTF-8
   [RFC3629].

   Users typically interact with service discovery software by viewing a
   list of discovered service instance names on a display, and selecting
   one of them by pointing, touching, or clicking.  Similarly, in
   software that provides a multi-domain DNS-SD user interface, users
   view a list of offered domains on the display and select one of them
   by pointing, touching, or clicking.  To use a service, users don’t
   have to remember domain or instance names, or type them; users just
   have to be able to recognize what they see on the display and touch
   or click on the thing they want.

   In contrast, host names are often remembered and typed.  Also, host
   names have historically been used in command-line interfaces where
   spaces can be inconvenient.  For this reason, host names have
   traditionally been restricted to letters, digits and hyphens (LDH),
   with no spaces or other punctuation.

   While we do want to allow rich text for DNS-SD service instance names
   and domains, it is advisable, for maximum compatibility with existing
   usage, to restrict host names to the traditional letter-digit-hyphen
   rules.  This means that while a service name
   "My Printer._ipp._tcp.Building 1.example.com" is acceptable and
   desirable (it is displayed in a graphical user interface as an
   instance called "My Printer" in the domain "Building 1" at
   "example.com"), a host name "My-Printer.Building 1.example.com" is
   less desirable (because of the space in "Building 1").

   To accomodate this difference in allowable characters, a Discovery
   Proxy SHOULD support having two separate subdomains delegated to it
   for each link it serves, one whose name is allowed to contain
   arbitrary Net-Unicode text [RFC5198], and a second more constrained
   subdomain whose name is restricted to contain only letters, digits,
   and hyphens, to be used for host name records (names of ’A’ and
   ’AAAA’ address records).  The restricted names may be any valid name
   consisting of only letters, digits, and hyphens, including Punycode-
   encoded names [RFC3492].

Cheshire               Expires September 25, 2019              [Page 14]



Internet-Draft      Multicast Service Discovery Proxy         March 2019

   For example, a Discovery Proxy could have the two subdomains
   "Building 1.example.com" and "bldg1.example.com" delegated to it.
   The Discovery Proxy would then translate these two Multicast DNS
   records:

      My Printer._ipp._tcp.local. SRV 0 0 631 prnt.local.
      prnt.local.                 A   203.0.113.2

   into Unicast DNS records as follows:

      My Printer._ipp._tcp.Building 1.example.com.
                                  SRV 0 0 631 prnt.bldg1.example.com.
      prnt.bldg1.example.com.     A   203.0.113.2

   Note that the SRV record name is translated using the rich-text
   domain name ("Building 1.example.com") and the address record name is
   translated using the LDH domain ("bldg1.example.com").

   A Discovery Proxy MAY support only a single rich text Net-Unicode
   domain, and use that domain for all records, including ’A’ and ’AAAA’
   address records, but implementers choosing this option should be
   aware that this choice may produce host names that are awkward to use
   in command-line environments.  Whether this is an issue depends on
   whether users in the target environment are expected to be using
   command-line interfaces.

   A Discovery Proxy MUST NOT be restricted to support only a letter-
   digit-hyphen subdomain, because that results in an unnecessarily poor
   user experience.

   As described above in Section 5.2.1, for clarity, space characters in
   names are shown as actual spaces.  If this data were to be manually
   entered into a textual zone file (which it isn’t) then spaces would
   need to be represented using ’\032’, so
   "My Printer._ipp._tcp.Building 1.example.com." would become
   "My\032Printer._ipp._tcp.Building\0321.example.com."
   Note that the ’\032’ representation does not appear in the network
   packets sent over the air.  In the wire format of DNS messages,
   spaces are sent as spaces, not as ’\032’, and likewise, in a
   graphical user interface at the client device, spaces are shown as
   spaces, not as ’\032’.
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5.4.  Delegated Subdomain for Reverse Mapping

   A Discovery Proxy can facilitate easier management of reverse mapping
   domains, particularly for IPv6 addresses where manual management may
   be more onerous than it is for IPv4 addresses.

   To achieve this, in the parent domain, NS records are used to
   delegate ownership of the appropriate reverse mapping domain to the
   Discovery Proxy.  In other words, the Discovery Proxy becomes the
   authoritative name server for the reverse mapping domain.  For fault
   tolerance reasons there may be more than one Discovery Proxy serving
   a given link.

   If a given link is using the IPv4 subnet 203.0.113/24,
   then the domain "113.0.203.in-addr.arpa"
   is delegated to the Discovery Proxy for that link.

   For example, if a given link is using the
   IPv6 prefix 2001:0DB8:1234:5678/64,
   then the domain "8.7.6.5.4.3.2.1.8.b.d.0.1.0.0.2.ip6.arpa"
   is delegated to the Discovery Proxy for that link.

   When a reverse mapping query arrives at the Discovery Proxy, it
   issues the identical query on its local link as a Multicast DNS
   query.  The mechanism to force an apparently unicast name to be
   resolved using link-local Multicast DNS varies depending on the API
   set being used.  For example, in the "dns_sd.h" APIs
   (available on macOS, iOS, Bonjour for Windows, Linux and Android),
   using kDNSServiceFlagsForceMulticast indicates that the
   DNSServiceQueryRecord() call should perform the query using Multicast
   DNS.  Other APIs sets have different ways of forcing multicast
   queries.  When the host owning that IPv4 or IPv6 address responds
   with a name of the form "something.local", the Discovery Proxy
   rewrites that to use its configured LDH host name domain instead of
   "local", and returns the response to the caller.
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   For example, a Discovery Proxy with the two subdomains
   "113.0.203.in-addr.arpa" and "bldg1.example.com" delegated to it
   would translate this Multicast DNS record:

      2.113.0.203.in-addr.arpa. PTR prnt.local.

   into this Unicast DNS response:

      2.113.0.203.in-addr.arpa. PTR prnt.bldg1.example.com.

   Subsequent queries for the prnt.bldg1.example.com address record,
   falling as it does within the bldg1.example.com domain, which is
   delegated to the Discovery Proxy, will arrive at the Discovery Proxy,
   where they are answered by issuing Multicast DNS queries and using
   the received Multicast DNS answers to synthesize Unicast DNS
   responses, as described above.

   Note that this design assumes that all addresses on a given IPv4
   subnet or IPv6 prefix are mapped to hostnames using the Discovery
   Proxy mechanism.  It would be possible to implement a Discovery Proxy
   that can be configured so that some address-to-name mappings are
   performed using Multicast DNS on the local link, while other address-
   to-name mappings within the same IPv4 subnet or IPv6 prefix are
   configured manually.
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5.5.  Data Translation

   Generating the appropriate Multicast DNS queries involves,
   at the very least, translating from the configured DNS domain
   (e.g., "Building 1.example.com") on the Unicast DNS side to "local"
   on the Multicast DNS side.

   Generating the appropriate Unicast DNS responses involves translating
   back from "local" to the appropriate configured DNS Unicast domain.

   Other beneficial translation and filtering operations are described
   below.

5.5.1.  DNS TTL limiting

   For efficiency, Multicast DNS typically uses moderately high DNS TTL
   values.  For example, the typical TTL on DNS-SD PTR records is 75
   minutes.  What makes these moderately high TTLs acceptable is the
   cache coherency mechanisms built in to the Multicast DNS protocol
   which protect against stale data persisting for too long.  When a
   service shuts down gracefully, it sends goodbye packets to remove its
   PTR records immediately from neighboring caches.  If a service shuts
   down abruptly without sending goodbye packets, the Passive
   Observation Of Failures (POOF) mechanism described in Section 10.5 of
   the Multicast DNS specification [RFC6762] comes into play to purge
   the cache of stale data.

   A traditional Unicast DNS client on a distant remote link does not
   get to participate in these Multicast DNS cache coherency mechanisms
   on the local link.  For traditional Unicast DNS queries (those
   received without using Long-Lived Query [LLQ] or DNS Push
   Notification subscriptions [Push]) the DNS TTLs reported in the
   resulting Unicast DNS response MUST be capped to be no more than ten
   seconds.

   Similarly, for negative responses, the negative caching TTL indicated
   in the SOA record [RFC2308] should also be ten seconds (Section 6.1).

   This value of ten seconds is chosen based on user-experience
   considerations.

   For negative caching, suppose a user is attempting to access a remote
   device (e.g., a printer), and they are unsuccessful because that
   device is powered off.  Suppose they then place a telephone call and
   ask for the device to be powered on.  We want the device to become
   available to the user within a reasonable time period.  It is
   reasonable to expect it to take on the order of ten seconds for a
   simple device with a simple embedded operating system to power on.
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   Once the device is powered on and has announced its presence on the
   network via Multicast DNS, we would like it to take no more than a
   further ten seconds for stale negative cache entries to expire from
   Unicast DNS caches, making the device available to the user desiring
   to access it.

   Similar reasoning applies to capping positive TTLs at ten seconds.
   In the event of a device moving location, getting a new DHCP address,
   or other renumbering events, we would like the updated information to
   be available to remote clients in a relatively timely fashion.

   However, network administrators should be aware that many recursive
   (caching) DNS servers by default are configured to impose a minimum
   TTL of 30 seconds.  If stale data appears to be persisting in the
   network to the extent that it adversely impacts user experience,
   network administrators are advised to check the configuration of
   their recursive DNS servers.

   For received Unicast DNS queries that use LLQ [LLQ] or DNS Push
   Notifications [Push], the Multicast DNS record’s TTL SHOULD be
   returned unmodified, because the Push Notification channel exists to
   inform the remote client as records come and go.  For further details
   about Long-Lived Queries, and its newer replacement, DNS Push
   Notifications, see Section 5.6.

5.5.2.  Suppressing Unusable Records

   A Discovery Proxy SHOULD offer a configurable option, enabled by
   default, to suppress Unicast DNS answers for records that are not
   useful outside the local link.  When the option to suppress unusable
   records is enabled:

   o  DNS A and AAAA records for IPv4 link-local addresses [RFC3927] and
      IPv6 link-local addresses [RFC4862] SHOULD be suppressed.

   o  Similarly, for sites that have multiple private address realms
      [RFC1918], in cases where the Discovery Proxy can determine that
      the querying client is in a different address realm, private
      addresses SHOULD NOT be communicated to that client.

   o  IPv6 Unique Local Addresses [RFC4193] SHOULD be suppressed in
      cases where the Discovery Proxy can determine that the querying
      client is in a different IPv6 address realm.

   o  By the same logic, DNS SRV records that reference target host
      names that have no addresses usable by the requester should be
      suppressed, and likewise, DNS PTR records that point to unusable
      SRV records should be similarly be suppressed.
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5.5.3.  NSEC and NSEC3 queries

   Multicast DNS devices do not routinely announce their records on the
   network.  Generally they remain silent until queried.  This means
   that the complete set of Multicast DNS records in use on a link can
   only be discovered by active querying, not by passive listening.
   Because of this, a Discovery Proxy can only know what names exist on
   a link by issuing queries for them, and since it would be impractical
   to issue queries for every possible name just to find out which names
   exist and which do not, a Discovery Proxy cannot programmatically
   generate the traditional NSEC [RFC4034] and NSEC3 [RFC5155] records
   which assert the nonexistence of a large range of names.

   When queried for an NSEC or NSEC3 record type, the Discovery Proxy
   issues a qtype "ANY" query using Multicast DNS on the local link, and
   then generates an NSEC or NSEC3 response with a Type Bit Map
   signifying which record types do and do not exist for just the
   specific name queried, and no other names.

   Multicast DNS NSEC records received on the local link MUST NOT be
   forwarded unmodified to a unicast querier, because there are slight
   differences in the NSEC record data.  In particular, Multicast DNS
   NSEC records do not have the NSEC bit set in the Type Bit Map,
   whereas conventional Unicast DNS NSEC records do have the NSEC bit
   set.

5.5.4.  No Text Encoding Translation

   A Discovery Proxy does no translation between text encodings.
   Specifically, a Discovery Proxy does no translation between Punycode
   encoding [RFC3492] and UTF-8 encoding [RFC3629], either in the owner
   name of DNS records, or anywhere in the RDATA of DNS records (such as
   the RDATA of PTR records, SRV records, NS records, or other record
   types like TXT, where it is ambiguous whether the RDATA may contain
   DNS names).  All bytes are treated as-is, with no attempt at text
   encoding translation.  A client implementing DNS-based Service
   Discovery [RFC6763] will use UTF-8 encoding for its service discovery
   queries, which the Discovery Proxy passes through without any text
   encoding translation to the Multicast DNS subsystem.  Responses from
   the Multicast DNS subsystem are similarly returned, without any text
   encoding translation, back to the requesting client.
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5.5.5.  Application-Specific Data Translation

   There may be cases where Application-Specific Data Translation is
   appropriate.

   For example, AirPrint printers tend to advertise fairly verbose
   information about their capabilities in their DNS-SD TXT record.  TXT
   record sizes in the range 500-1000 bytes are not uncommon.  This
   information is a legacy from LPR printing, because LPR does not have
   in-band capability negotiation, so all of this information is
   conveyed using the DNS-SD TXT record instead.  IPP printing does have
   in-band capability negotiation, but for convenience printers tend to
   include the same capability information in their IPP DNS-SD TXT
   records as well.  For local mDNS use this extra TXT record
   information is inefficient, but not fatal.  However, when a Discovery
   Proxy aggregates data from multiple printers on a link, and sends it
   via unicast (via UDP or TCP) this amount of unnecessary TXT record
   information can result in large responses.  A DNS reply over TCP
   carrying information about 70 printers with an average of 700 bytes
   per printer adds up to about 50 kilobytes of data.  Therefore, a
   Discovery Proxy that is aware of the specifics of an application-
   layer protocol such as AirPrint (which uses IPP) can elide
   unnecessary key/value pairs from the DNS-SD TXT record for better
   network efficiency.

   Also, the DNS-SD TXT record for many printers contains an "adminurl"
   key something like "adminurl=http://printername.local/status.html".
   For this URL to be useful outside the local link, the embedded
   ".local" hostname needs to be translated to an appropriate name with
   larger scope.  It is easy to translate ".local" names when they
   appear in well-defined places, either as a record’s name, or in the
   rdata of record types like PTR and SRV.  In the printing case, some
   application-specific knowledge about the semantics of the "adminurl"
   key is needed for the Discovery Proxy to know that it contains a name
   that needs to be translated.  This is somewhat analogous to the need
   for NAT gateways to contain ALGs (Application-Specific Gateways) to
   facilitate the correct translation of protocols that embed addresses
   in unexpected places.

   To avoid the need for application-specific knowledge about the
   semantics of particular TXT record keys, protocol designers are
   advised to avoid placing link-local names or link-local IP addresses
   in TXT record keys, if translation of those names or addresses would
   be required for off-link operation.  In the printing case, the
   operational failure of failing to translate the "adminurl" key
   correctly is that, when accessed from a different link, printing will
   still work, but clicking the "Admin" UI button will fail to open the
   printer’s administration page.  Rather than duplicating the host name
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   from the service’s SRV record in its "adminurl" key, thereby having
   the same host name appear in two places, a better design might have
   been to omit the host name from the "adminurl" key, and instead have
   the client implicitly substitute the target host name from the
   service’s SRV record in place of a missing host name in the
   "adminurl" key.  That way the desired host name only appears once,
   and it is in a well-defined place where software like the Discovery
   Proxy is expecting to find it.

   Note that this kind of Application-Specific Data Translation is
   expected to be very rare.  It is the exception, rather than the rule.
   This is an example of a common theme in computing.  It is frequently
   the case that it is wise to start with a clean, layered design, with
   clear boundaries.  Then, in certain special cases, those layer
   boundaries may be violated, where the performance and efficiency
   benefits outweigh the inelegance of the layer violation.

   These layer violations are optional.  They are done primarily for
   efficiency reasons, and generally should not be required for correct
   operation.  A Discovery Proxy MAY operate solely at the mDNS layer,
   without any knowledge of semantics at the DNS-SD layer or above.
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5.6.  Answer Aggregation

   In a simple analysis, simply gathering multicast answers and
   forwarding them in a unicast response seems adequate, but it raises
   the question of how long the Discovery Proxy should wait to be sure
   that it has received all the Multicast DNS answers it needs to form a
   complete Unicast DNS response.  If it waits too little time, then it
   risks its Unicast DNS response being incomplete.  If it waits too
   long, then it creates a poor user experience at the client end.  In
   fact, there may be no time which is both short enough to produce a
   good user experience and at the same time long enough to reliably
   produce complete results.

   Similarly, the Discovery Proxy -- the authoritative name server for
   the subdomain in question -- needs to decide what DNS TTL to report
   for these records.  If the TTL is too long then the recursive
   (caching) name servers issuing queries on behalf of their clients
   risk caching stale data for too long.  If the TTL is too short then
   the amount of network traffic will be more than necessary.  In fact,
   there may be no TTL which is both short enough to avoid undesirable
   stale data and at the same time long enough to be efficient on the
   network.

   Both these dilemmas are solved by use of DNS Long-Lived Queries
   (DNS LLQ) [LLQ] or its newer replacement, DNS Push Notifications
   [Push].

   Clients supporting unicast DNS Service Discovery SHOULD implement DNS
   Push Notifications [Push] for improved user experience.

   Clients and Discovery Proxies MAY support both DNS LLQ and DNS Push,
   and when talking to a Discovery Proxy that supports both, the client
   may use either protocol, as it chooses, though it is expected that
   only DNS Push will continue to be supported in the long run.

   When a Discovery Proxy receives a query using DNS LLQ or DNS Push
   Notifications, it responds immediately using the Multicast DNS
   records it already has in its cache (if any).  This provides a good
   client user experience by providing a near-instantaneous response.
   Simultaneously, the Discovery Proxy issues a Multicast DNS query on
   the local link to discover if there are any additional Multicast DNS
   records it did not already know about.  Should additional Multicast
   DNS responses be received, these are then delivered to the client
   using additional DNS LLQ or DNS Push Notification update messages.
   The timeliness of such update messages is limited only by the
   timeliness of the device responding to the Multicast DNS query.  If
   the Multicast DNS device responds quickly, then the update message is
   delivered quickly.  If the Multicast DNS device responds slowly, then
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   the update message is delivered slowly.  The benefit of using update
   messages is that the Discovery Proxy can respond promptly because it
   doesn’t have to delay its unicast response to allow for the expected
   worst-case delay for receiving all the Multicast DNS responses.  Even
   if a proxy were to try to provide reliability by assuming an
   excessively pessimistic worst-case time (thereby giving a very poor
   user experience) there would still be the risk of a slow Multicast
   DNS device taking even longer than that (e.g., a device that is not
   even powered on until ten seconds after the initial query is
   received) resulting in incomplete responses.  Using update message
   solves this dilemma: even very late responses are not lost; they are
   delivered in subsequent update messages.

   There are two factors that determine specifically how responses are
   generated:

   The first factor is whether the query from the client used LLQ or DNS
   Push Notifications (used for long-lived service browsing PTR queries)
   or not (used for one-shot operations like SRV or address record
   queries).  Note that queries using LLQ or DNS Push Notifications are
   received directly from the client.  Queries not using LLQ or DNS Push
   Notifications are generally received via the client’s configured
   recursive (caching) name server.

   The second factor is whether the Discovery Proxy already has at least
   one record in its cache that positively answers the question.

   o  Not using LLQ or Push Notifications; no answer in cache:
      Issue an mDNS query, exactly as a local client would issue an mDNS
      query on the local link for the desired record name, type and
      class, including retransmissions, as appropriate, according to the
      established mDNS retransmission schedule [RFC6762].  As soon as
      any Multicast DNS response packet is received that contains one or
      more positive answers to that question (with or without the Cache
      Flush bit [RFC6762] set), or a negative answer (signified via a
      Multicast DNS NSEC record [RFC6762]), the Discovery Proxy
      generates a Unicast DNS response packet containing the
      corresponding (filtered and translated) answers and sends it to
      the remote client.  If after six seconds no Multicast DNS answers
      have been received, cancel the mDNS query and return a negative
      response to the remote client.  Six seconds is enough time to
      transmit three mDNS queries, and allow some time for responses to
      arrive.
      DNS TTLs in responses MUST be capped to at most ten seconds.
      (Reasoning: Queries not using LLQ or Push Notifications are
      generally queries that that expect an answer from only one device,
      so the first response is also the only response.)
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   o  Not using LLQ or Push Notifications; at least one answer in cache:
      Send response right away to minimise delay.
      DNS TTLs in responses MUST be capped to at most ten seconds.
      No local mDNS queries are performed.
      (Reasoning: Queries not using LLQ or Push Notifications are
      generally queries that that expect an answer from only one device.
      Given RRSet TTL harmonisation, if the proxy has one Multicast DNS
      answer in its cache, it can reasonably assume that it has all of
      them.)

   o  Using LLQ or Push Notifications; no answer in cache:
      As in the case above with no answer in the cache, perform mDNS
      querying for six seconds, and send a response to the remote client
      as soon as any relevant mDNS response is received.
      If after six seconds no relevant mDNS response has been received,
      return negative response to the remote client (for LLQ; not
      applicable for Push Notifications).
      (Reasoning: We don’t need to rush to send an empty answer.)
      Whether or not a relevant mDNS response is received within six
      seconds, the query remains active for as long as the client
      maintains the LLQ or Push Notification state, and if mDNS answers
      are received later, LLQ or Push Notification messages are sent.
      DNS TTLs in responses are returned unmodified.

   o  Using LLQ or Push Notifications; at least one answer in cache:
      As in the case above with at least one answer in cache, send
      response right away to minimise delay.
      The query remains active for as long as the client maintains the
      LLQ or Push Notification state, and results in transmission of
      mDNS queries, with appropriate Known Answer lists, to determine if
      further answers are available.  If additional mDNS answers are
      received later, LLQ or Push Notification messages are sent.
      (Reasoning: We want UI that is displayed very rapidly, yet
      continues to remain accurate even as the network environment
      changes.)
      DNS TTLs in responses are returned unmodified.

   The "negative responses" referred to above are "no error no answer"
   negative responses, not NXDOMAIN.  This is because the Discovery
   Proxy cannot know all the Multicast DNS domain names that may exist
   on a link at any given time, so any name with no answers may have
   child names that do exist, making it an "empty nonterminal" name.
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   Note that certain aspects of the behavior described here do not have
   to be implemented overtly by the Discovery Proxy; they occur
   naturally as a result of using existing Multicast DNS APIs.

   For example, in the first case above (no LLQ or Push Notifications,
   and no answers in the cache) if a new Multicast DNS query is
   requested (either by a local client, or by the Discovery Proxy on
   behalf of a remote client), and there is not already an identical
   Multicast DNS query active, and there are no matching answers already
   in the Multicast DNS cache on the Discovery Proxy device, then this
   will cause a series of Multicast DNS query packets to be issued with
   exponential backoff.  The exponential backoff sequence in some
   implementations starts at one second and then doubles for each
   retransmission (0, 1, 3, 7 seconds, etc.) and in others starts at one
   second and then triples for each retransmission (0, 1, 4, 13 seconds,
   etc.).  In either case, if no response has been received after six
   seconds, that is long enough that the underlying Multicast DNS
   implementation will have sent three query packets without receiving
   any response.  At that point the Discovery Proxy cancels its
   Multicast DNS query (so no further Multicast DNS query packets will
   be sent for this query) and returns a negative response to the remote
   client via unicast.

   The six-second delay is chosen to be long enough to give enough time
   for devices to respond, yet short enough not to be too onerous for a
   human user waiting for a response.  For example, using the "dig" DNS
   debugging tool, the current default settings result in it waiting a
   total of 15 seconds for a reply (three transmissions of the query
   packet, with a wait of 5 seconds after each packet) which is ample
   time for it to have received a negative reply from a Discovery Proxy
   after six seconds.

   The statement that for a one-shot query (i.e., no LLQ or Push
   Notifications requested), if at least one answer is already available
   in the cache then a Discovery Proxy should not issue additional mDNS
   query packets, also occurs naturally as a result of using existing
   Multicast DNS APIs.  If a new Multicast DNS query is requested
   (either locally, or by the Discovery Proxy on behalf of a remote
   client), for which there are relevant answers already in the
   Multicast DNS cache on the Discovery Proxy device, and after the
   answers are delivered the Multicast DNS query is then cancelled
   immediately, then no Multicast DNS query packets will be generated
   for this query.
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6.  Administrative DNS Records

6.1.  DNS SOA (Start of Authority) Record

   The MNAME field SHOULD contain the host name of the Discovery Proxy
   device (i.e., the same domain name as the rdata of the NS record
   delegating the relevant zone(s) to this Discovery Proxy device).

   The RNAME field SHOULD contain the mailbox of the person responsible
   for administering this Discovery Proxy device.

   The SERIAL field MUST be zero.

   Zone transfers are undefined for Discovery Proxy zones, and
   consequently the REFRESH, RETRY and EXPIRE fields have no useful
   meaning for Discovery Proxy zones.  These fields SHOULD contain
   reasonable default values.  The RECOMMENDED values are: REFRESH 7200,
   RETRY 3600, EXPIRE 86400.

   The MINIMUM field (used to control the lifetime of negative cache
   entries) SHOULD contain the value 10.  The value of ten seconds is
   chosen based on user-experience considerations (see Section 5.5.1).

   In the event that there are multiple Discovery Proxy devices on a
   link for fault tolerance reasons, this will result in clients
   receiving inconsistent SOA records (different MNAME, and possibly
   RNAME) depending on which Discovery Proxy answers their SOA query.
   However, since clients generally have no reason to use the MNAME or
   RNAME data, this is unlikely to cause any problems.
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6.2.  DNS NS Records

   In the event that there are multiple Discovery Proxy devices on a
   link for fault tolerance reasons, the parent zone MUST be configured
   with NS records giving the names of all the Discovery Proxy devices
   on the link.

   Each Discovery Proxy device MUST be configured to answer NS queries
   for the zone apex name by giving its own NS record, and the NS
   records of its fellow Discovery Proxy devices on the same link, so
   that it can return the correct answers for NS queries.

   The target host name in the RDATA of an NS record MUST NOT reference
   a name that falls within any zone delegated to a Discovery Proxy.
   Apart from the zone apex name, all other host names that fall within
   a zone delegated to a Discovery Proxy correspond to local Multicast
   DNS host names, which logically belong to the respective Multicast
   DNS hosts defending those names, not the Discovery Proxy.  Generally
   speaking, the Discovery Proxy does not own or control the delegated
   zone; it is merely a conduit to the corresponding ".local" namespace,
   which is controlled by the Multicast DNS hosts on that link.  If an
   NS record were to reference a manually-determined host name that
   falls within a delegated zone, that manually-determined host name may
   inadvertently conflict with a corresponding ".local" host name that
   is owned and controlled by some device on that link.

6.3.  DNS Delegation Records

   Since the Multicast DNS specification [RFC6762] states that there can
   be no delegation (subdomains) within a ".local" namespace, this
   implies that any name within a zone delegated to a Discovery Proxy
   (except for the zone apex name itself) cannot have any answers for
   any DNS queries for RRTYPEs SOA, NS, or DS.  Consequently:

   o  for any query for the zone apex name of a zone delegated to a
      Discovery Proxy, the Discovery Proxy MUST generate the appropriate
      immediate answers as described above, and

   o  for any query for RRTYPEs SOA, NS, or DS, for any name within a
      zone delegated to a Discovery Proxy, other than the zone apex
      name, instead of translating the query to its corresponding
      Multicast DNS ".local" equivalent, a Discovery Proxy MUST generate
      an immediate negative answer.
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6.4.  DNS SRV Records

   There are certain special DNS records that logically fall within the
   delegated unicast DNS subdomain, but rather than mapping to their
   corresponding ".local" namesakes, they actually contain metadata
   pertaining to the operation of the delegated unicast DNS subdomain
   itself.  They do not exist in the corresponding ".local" namespace of
   the local link.  For these queries a Discovery Proxy MUST generate
   immediate answers, whether positive or negative, to avoid delays
   while clients wait for their query to be answered.  For example, if a
   Discovery Proxy does not implement Long-Lived Queries [LLQ] then it
   MUST return an immediate negative answer to tell the client this
   without delay, instead of passing the query through to the local
   network as a query for "_dns-llq._udp.local.", and then waiting
   unsuccessfully for answers that will not be forthcoming.

   If a Discovery Proxy implements Long-Lived Queries [LLQ] then it MUST
   positively respond to "_dns-llq._udp.<zone> SRV" queries,
   "_dns-llq._tcp.<zone> SRV" queries, and
   "_dns-llq-tls._tcp.<zone> SRV" queries as appropriate, else it MUST
   return an immediate negative answer for those queries.

   If a Discovery Proxy implements DNS Push Notifications [Push] then it
   MUST positively respond to "_dns-push-tls._tcp.<zone>" queries, else
   it MUST return an immediate negative answer for those queries.

   A Discovery Proxy MUST return an immediate negative answer for
   "_dns-update._udp.<zone> SRV" queries, "_dns-update._tcp.<zone> SRV"
   queries, and "_dns-update-tls._tcp.<zone> SRV" queries, since using
   DNS Update [RFC2136] to change zones generated dynamically from local
   Multicast DNS data is not possible.
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7.  DNSSEC Considerations

7.1.  On-line signing only

   The Discovery Proxy acts as the authoritative name server for
   designated subdomains, and if DNSSEC is to be used, the Discovery
   Proxy needs to possess a copy of the signing keys, in order to
   generate authoritative signed data from the local Multicast DNS
   responses it receives.  Off-line signing is not applicable to
   Discovery Proxy.

7.2.  NSEC and NSEC3 Records

   In DNSSEC NSEC [RFC4034] and NSEC3 [RFC5155] records are used to
   assert the nonexistence of certain names, also described as
   "authenticated denial of existence".

   Since a Discovery Proxy only knows what names exist on the local link
   by issuing queries for them, and since it would be impractical to
   issue queries for every possible name just to find out which names
   exist and which do not, a Discovery Proxy cannot programmatically
   synthesize the traditional NSEC and NSEC3 records which assert the
   nonexistence of a large range of names.  Instead, when generating a
   negative response, a Discovery Proxy programmatically synthesizes a
   single NSEC record assert the nonexistence of just the specific name
   queried, and no others.  Since the Discovery Proxy has the zone
   signing key, it can do this on demand.  Since the NSEC record asserts
   the nonexistence of only a single name, zone walking is not a
   concern, so NSEC3 is not necessary.

   Note that this applies only to traditional immediate DNS queries,
   which may return immediate negative answers when no immediate
   positive answer is available.  When used with a DNS Push Notification
   subscription [Push] there are no negative answers, merely the absence
   of answers so far, which may change in the future if answers become
   available.
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8.  IPv6 Considerations

   An IPv4-only host and an IPv6-only host behave as "ships that pass in
   the night".  Even if they are on the same Ethernet [IEEE-3], neither
   is aware of the other’s traffic.  For this reason, each link may have
   *two* unrelated ".local." zones, one for IPv4 and one for IPv6.
   Since for practical purposes, a group of IPv4-only hosts and a group
   of IPv6-only hosts on the same Ethernet act as if they were on two
   entirely separate Ethernet segments, it is unsurprising that their
   use of the ".local." zone should occur exactly as it would if they
   really were on two entirely separate Ethernet segments.

   It will be desirable to have a mechanism to ’stitch’ together these
   two unrelated ".local." zones so that they appear as one.  Such
   mechanism will need to be able to differentiate between a dual-stack
   (v4/v6) host participating in both ".local." zones, and two different
   hosts, one IPv4-only and the other IPv6-only, which are both trying
   to use the same name(s).  Such a mechanism will be specified in a
   future companion document.

   At present, it is RECOMMENDED that a Discovery Proxy be configured
   with a single domain name for both the IPv4 and IPv6 ".local." zones
   on the local link, and when a unicast query is received, it should
   issue Multicast DNS queries using both IPv4 and IPv6 on the local
   link, and then combine the results.

Cheshire               Expires September 25, 2019              [Page 31]



Internet-Draft      Multicast Service Discovery Proxy         March 2019

9.  Security Considerations

9.1.  Authenticity

   A service proves its presence on a link by its ability to answer
   link-local multicast queries on that link.  If greater security is
   desired, then the Discovery Proxy mechanism should not be used, and
   something with stronger security should be used instead, such as
   authenticated secure DNS Update [RFC2136] [RFC3007].

9.2.  Privacy

   The Domain Name System is, generally speaking, a global public
   database.  Records that exist in the Domain Name System name
   hierarchy can be queried by name from, in principle, anywhere in the
   world.  If services on a mobile device (like a laptop computer) are
   made visible via the Discovery Proxy mechanism, then when those
   services become visible in a domain such as "My House.example.com"
   that might indicate to (potentially hostile) observers that the
   mobile device is in my house.  When those services disappear from
   "My House.example.com" that change could be used by observers to
   infer when the mobile device (and possibly its owner) may have left
   the house.  The privacy of this information may be protected using
   techniques like firewalls, split-view DNS, and Virtual Private
   Networks (VPNs), as are customarily used today to protect the privacy
   of corporate DNS information.

   The privacy issue is particularly serious for the IPv4 and IPv6
   reverse zones.  If the public delegation of the reverse zones points
   to the Discovery Proxy, and the Discovery Proxy is reachable
   globally, then it could leak a significant amount of information.
   Attackers could discover hosts that otherwise might not be easy to
   identify, and learn their hostnames.  Attackers could also discover
   the existence of links where hosts frequently come and go.

   The Discovery Proxy could also provide sensitive records only to
   authenticated users.  This is a general DNS problem, not specific to
   the Discovery Proxy.  Work is underway in the IETF to tackle this
   problem [RFC7626].

9.3.  Denial of Service

   A remote attacker could use a rapid series of unique Unicast DNS
   queries to induce a Discovery Proxy to generate a rapid series of
   corresponding Multicast DNS queries on one or more of its local
   links.  Multicast traffic is generally more expensive than unicast
   traffic -- especially on Wi-Fi links -- which makes this attack
   particularly serious.  To limit the damage that can be caused by such
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   attacks, a Discovery Proxy (or the underlying Multicast DNS subsystem
   which it utilizes) MUST implement Multicast DNS query rate limiting
   appropriate to the link technology in question.  For today’s
   802.11b/g/n/ac Wi-Fi links (for which approximately 200 multicast
   packets per second is sufficient to consume approximately 100% of the
   wireless spectrum) a limit of 20 Multicast DNS query packets per
   second is RECOMMENDED.  On other link technologies like Gigabit
   Ethernet higher limits may be appropriate.  A consequence of this
   rate limiting is that a rogue remote client could issue an excessive
   number of queries, resulting in denial of service to other legitimate
   remote clients attempting to use that Discovery Proxy.  However, this
   is preferable to a rogue remote client being able to inflict even
   greater harm on the local network, which could impact the correct
   operation of all local clients on that network.

10.  IANA Considerations

   This document has no IANA Considerations.
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Appendix A.  Implementation Status

   Some aspects of the mechanism specified in this document already
   exist in deployed software.  Some aspects are new.  This section
   outlines which aspects already exist and which are new.

A.1.  Already Implemented and Deployed

   Domain enumeration by the client (the "b._dns-sd._udp" queries) is
   already implemented and deployed.

   Unicast queries to the indicated discovery domain is already
   implemented and deployed.

   These are implemented and deployed in Mac OS X 10.4 and later
   (including all versions of Apple iOS, on all iPhone and iPads), in
   Bonjour for Windows, and in Android 4.1 "Jelly Bean" (API Level 16)
   and later.

   Domain enumeration and unicast querying have been used for several
   years at IETF meetings to make Terminal Room printers discoverable
   from outside the Terminal room.  When an IETF attendee presses Cmd-P
   on a Mac, or selects AirPrint on an iPad or iPhone, and the Terminal
   room printers appear, that is because the client is sending unicast
   DNS queries to the IETF DNS servers.  A walk-through giving the
   details of this particular specific example is given in Appendix A of
   the Roadmap document [Roadmap].

A.2.  Already Implemented

   A minimal portable Discovery Proxy implementation has been produced
   by Markus Stenberg and Steven Barth, which runs on OS X and several
   Linux variants including OpenWrt [ohp].  It was demonstrated at the
   Berlin IETF in July 2013.

   Tom Pusateri has an implementation that runs on any Unix/Linux.  It
   has a RESTful interface for management and an experimental demo CLI
   and web interface.

   Ted Lemon also has produced a portable implementation of Discovery
   Proxy, which is available in the mDNSResponder open source code.

   The Long-Lived Query mechanism [LLQ] referred to in this
   specification exists and is deployed, but was not standardized by the
   IETF.  The IETF has developed a superior Long-Lived Query mechanism
   called DNS Push Notifications [Push], which is built on DNS Stateful
   Operations [RFC8490].  The pragmatic short-term deployment approach
   is for vendors to produce Discovery Proxies that implement both the
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   deployed Long-Lived Query mechanism [LLQ] (for today’s clients) and
   the new DNS Push Notifications mechanism [Push] as the preferred
   long-term direction.

A.3.  Partially Implemented

   The current APIs make multiple domains visible to client software,
   but most client UI today lumps all discovered services into a single
   flat list.  This is largely a chicken-and-egg problem.  Application
   writers were naturally reluctant to spend time writing domain-aware
   UI code when few customers today would benefit from it.  If Discovery
   Proxy deployment becomes common, then application writers will have a
   reason to provide better UI.  Existing applications will work with
   the Discovery Proxy, but will show all services in a single flat
   list.  Applications with improved UI will group services by domain.
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1.  Introduction

   This document defines a Discovery Relay.  A Discovery Relay is a
   companion technology that works in conjunction with Discovery
   Proxies, and other clients.

   The Discovery Proxy for Multicast DNS-Based Service Discovery
   [RFC8766] is a mechanism for discovering services on a subnetted
   network through the use of Discovery Proxies.  Discovery Proxies
   issue Multicast DNS (mDNS) requests [RFC6762] on various multicast
   links in the network on behalf of a remote host performing DNS-Based
   Service Discovery [RFC6763].

   In the original Discovery Proxy specification, it was imagined that
   for every multicast link on which services will be discovered, a host
   will be present running a full Discovery Proxy.  This document
   introduces a lightweight Discovery Relay that can be used in
   conjunction with a central Discovery Proxy to provide discovery
   services on a multicast link without requiring a full Discovery Proxy
   on every multicast link.

   The primary purpose of a Discovery Relay is providing remote virtual
   interface functionality to Discovery Proxies, and this document is
   written with that usage in mind.  However, in principle, a Discovery
   Relay could be used by any properly authorized client.  In the
   context of this specification, a Discovery Proxy is a client to the
   Discovery Relay.  This document uses the terms "Discovery Proxy" and
   "Client" somewhat interchangably; the term "Client" is used when we
   are talking about the communication between the Client and the Relay,
   and the term "Discovery Proxy" when we are referring specifically to
   a Discovery Relay Client that also happens to be a Discovery Proxy.
   One example of another kind of device that can be a client of a
   Discovery Relay is an Advertising Proxy [AdProx].

   The Discovery Relay operates by listening for TCP connections from
   Clients.  When a Client connects, the connection is authenticated and
   secured using TLS.  The Client can then specify one or more multicast
   links from which it wishes to receive mDNS traffic.  The Client can
   also send messages to be transmitted on its behalf on one or more of
   those multicast links.  DNS Stateful Operations (DSO) [RFC8490] is
   used as a framework for conveying interface and IP header information
   associated with each message.  DSO formats its messages using type-
   length-value (TLV) data structures.  This document defines additional
   DSO TLV types, used to implement the Discovery Relay functionality.

   The Discovery Relay functions essentially as a set of one or more
   remote virtual interfaces for the Client, one on each multicast link
   to which the Discovery Relay is connected.  In a complex network, it
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   is possible that more than one Discovery Relay will be connected to
   the same multicast link; in this case, the Client ideally should only
   be using one such Relay Proxy per multicast link, since using more
   than one will generate duplicate traffic.

   How such duplication is detected and avoided is out of scope for this
   document; in principle it could be detected using HNCP [RFC7788] or
   configured using some sort of orchestration software in conjunction
   with NETCONF [RFC6241] or CPE WAN Management Protocol [TR-069].

   Use of a Discovery Relay can be considered similar to using Virtual
   LAN (VLAN) trunk ports to give a Discovery Proxy device a virtual
   presence on multiple links or broadcast domains.  The difference is
   that while a VLAN trunk port operates at the link layer and delivers
   all link-layer traffic to the Discovery Proxy device, a Discovery
   Relay operates further up the network stack and selectively delivers
   only relevant Multicast DNS traffic.  Also, VLAN trunk ports are
   generally only available within a single administrative domain and
   require link-layer configuration and connectivity, whereas the
   Discovery Relay protocol, which runs over TCP, can be used between
   any two devices with IP connectivity to each other.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.  These words may also appear in this
   document in lower case as plain English words, absent their normative
   meanings.

   The following definitions may be of use:

   Client  A network service that uses a Discovery Relay to send and
      receive mDNS multicast traffic on a remote link, to enable it to
      communicate with mDNS Agents on that remote link.

   mDNS Agent  A host which sends and/or responds to mDNS queries
      directly on its local link(s).  Examples include network cameras,
      networked printers, networked home electronics, etc.

   Discovery Proxy  A network service which receives well-formed
      questions using the DNS protocol, performs multicast DNS queries
      to find answers to those questions, and responds with those
      answers using the DNS protocol.  A Discovery Proxy that can
      communicate with remote mDNS Agents, using the services of a
      Discovery Relay, is a Client of the Discovery Relay.
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   Discovery Relay  A network service which relays mDNS messages
      received on a local link to a Client, and on behalf of that Client
      can transmit mDNS messages on a local link.

   multicast link  A maximal set of network connection points, such that
      any host connected to any connection point in the set may send a
      packet with a link-local multicast destination address
      (specifically the mDNS link-local multicast destination address
      [RFC6762]) that will be received by all hosts connected to all
      other connection points in the set.  Note that it is becoming
      increasingly common for a multicast link to be smaller than its
      corresponding unicast link.  For example it is becoming common to
      have multiple Wi-Fi access points on a shared Ethernet backbone,
      where the multiple Wi-Fi access points and their shared Ethernet
      backbone form a single unicast link (a single IPv4 subnet, or
      single IPv6 prefix) but not a single multicast link.  Unicast
      packets sent directly between two hosts on that IPv4 subnet or
      IPv6 prefix, without passing through an intervening IP-layer
      router, are correctly delivered, but multicast packets are not
      forwarded between the various Wi-Fi access points.  Given the
      slowness of Wi-Fi multicast
      [I-D.ietf-mboned-ieee802-mcast-problems], having a packet that may
      be of interest to only one or two end systems transmitted to
      hundreds of devices, across multiple Wi-Fi access points, is
      especially wasteful.  Hence the common configuration decision to
      not forward multicast packets between Wi-Fi access points is very
      reasonable.  This further motivates the need for technologies like
      Discovery Proxy and Discovery Relay to facilitate discovery on
      these networks.

   allow-list  A list of one or more IP addresses from which a Discovery
      Relay may accept connections.

   silently discard  When a message that is not supported or not
      permitted is received, and the required response to that message
      is to "silently discard" it, that means that no response is sent
      by the service that is discarding the message to the service that
      sent it.  The service receiving the message may log the event, and
      may also count such events: "silently" does not preclude such
      behavior.

   Take care when reading this document not to confuse the terms
   "Discovery Proxy" and "Discovery Relay".  A Discovery Proxy [RFC8766]
   provides Multicast DNS discovery service to remote clients.  A
   Discovery Relay is a simple software entity that provides virtual
   link connectivity to one or more Discovery Proxies or other Discovery
   Relay clients.
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3.  Protocol Overview

   This document describes a way for a Client to communicate with mDNS
   agents on remote multicast links to which the client is not directly
   connected, using a Discovery Relay.  As such, there are two parts to
   the protocol: connections between Clients and Discovery Relays, and
   communications between Discovery Relays and mDNS agents.

3.1.  Connections between Clients and Relays (overview)

   Discovery Relays listen for incoming connection requests.
   Connections between Clients and Discovery Relays are established by
   Clients.  Connections are authenticated and encrypted using TLS, with
   both client and server certificates.  Connections are long-lived: a
   Client is expected to send many queries over a single connection, and
   Discovery Relays will forward all mDNS traffic from subscribed
   interfaces over the connection.

   The stream encapsulated in TLS will carry DNS frames as in the DNS
   TCP protocol [RFC1035] Section 4.2.2.  However, all messages will be
   DSO messages [RFC8490].  There will be four types of such messages
   between Discovery Relays and Clients:

   o  Control messages from Client to Relay

   o  Link status messages from Relay to Client

   o  Encapsulated mDNS messages from Client to Relay

   o  Encapsulated mDNS messages from Relay to Client

   Clients can send four different control messages to Relays: Link
   State Request, Link State Discontinue, Link Data Request and Link
   Data Discontinue.  The first two are used by the Client to request
   that the Relay report on the set of links that can be requested, and
   to request that it discontinue such reporting.  The second two are
   used by the Client to indicate to the Discovery Relay that mDNS
   messages from one or more specified multicast links are to be relayed
   to the Client, and to subsequently stop such relaying.

   Link Status messages from a Discovery Relay to the Client inform the
   Client that a link has become available, or that a formerly-available
   link is no longer available.

   Encapsulated mDNS messages from a Discovery Relay to a Client are
   sent whenever an mDNS message is received on a multicast link to
   which the Discovery Relay has subscribed.
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   Encapsulated mDNS messages from a Client to a Discovery Relay cause
   the Discovery Relay to transmit the mDNS message on the specified
   multicast link to which the Discovery Relay host is directly
   attached.

   During periods with no traffic flowing, Clients are responsible for
   generating any necessary keepalive traffic, as stated in the DSO
   specification [RFC8490].

3.2.  mDNS Messages On Multicast Links

   Discovery Relays listen for mDNS traffic on all configured multicast
   links that have at least one active subscription from a Client.  When
   an mDNS message is received on a multicast link, it is forwarded on
   every open Client connection that is subscribed to mDNS traffic on
   that multicast link.  In the event of congestion, where a particular
   Client connection has no buffer space for an mDNS message that would
   otherwise be forwarded to it, the mDNS message is not forwarded to
   it.  Normal mDNS retry behavior is used to recover from this sort of
   packet loss.  Discovery Relays are not expected to buffer more than a
   few mDNS packets.  Excess mDNS packets are silently discarded.  In
   practice this is not expected to be a issue.  Particularly on
   networks like Wi-Fi, multicast packets are transmitted at rates ten
   or even a hundred times slower than unicast packets.  This means that
   even at peak multicast packets rates, it is likely that a unicast TCP
   connection will able to carry those packets with ease.

   Clients send encapsulated mDNS messages they wish to have sent on
   their behalf on remote multicast link(s) on which the Client has an
   active subscription.  A Discovery Relay will not transmit mDNS
   packets on any multicast link on which the Client does not have an
   active subscription, since it makes no sense for a Client to ask to
   have a query sent on its behalf if it’s not able to receive the
   responses to that query.
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4.  Connections between Clients and Relays (details)

   When a Discovery Relay starts, it opens a passive TCP listener to
   receive incoming connection requests from Clients.  This listener may
   be bound to one or more source IP addresses, or to the wildcard
   address, depending on the implementation.  When a connection is
   received, the relay must first validate that it is a connection to an
   IP address to which connections are allowed.  For example, it may be
   that only connections to ULAs are allowed, or to the IP addresses
   configured on certain interfaces.  If the listener is bound to a
   specific IP address, this check is unnecessary.

   If the relay is using an IP address allow-list, the next step is for
   the relay to verify that that the source IP address of the connection
   is on its allow-list.  If the connection is not permitted either
   because of the source address or the destination address, the
   Discovery Relay closes the connection.  If possible, before closing
   the connection, the Discovery Relay first sends a TLS user_canceled
   alert ([RFC8446] Section 6.1).  Discovery Relays SHOULD refuse to
   accept TCP connections to invalid destination addresses, rather than
   accepting and then closing the connection, if this is possible.

   Otherwise, the Discovery Relay will attempt to complete a TLS
   handshake with the Client.  Clients are required to send the
   post_handshake_auth extension ([RFC8446] Section 4.2.5).  If a
   Discovery Relay receives a ClientHello message with no
   post_handshake_auth extension, the Discovery Relay rejects the
   connection with a certificate_required alert ([RFC8446] Section 6.2).

   Once the TLS handshake is complete, the Discovery Relay MUST request
   post-handshake authentication ([RFC8446] Section 4.6.2).  If the
   Client refuses to send a certificate, or the key presented does not
   match the key associated with the IP address from which the
   connection originated, or the CertificateVerify does not validate,
   the connection is dropped with the TLS access_denied alert ([RFC8446]
   Section 6.2).

   Clients MUST validate server certificates.  If the client is
   configured with a server IP address and certificate, it can validate
   the server by comparing the certificate offered by the server to the
   certificate that was provided: they should be the same.  If the
   certificate includes a Distinguished Name that is a fully-qualified
   domain name, the client SHOULD present that domain name to the server
   in an SNI request.

   Rather than being configured with an IP address and a certificate,
   the client may be configured with the server’s FQDN.  In this case,
   the client uses the server’s FQDN as a Authentication Domain Name
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   [RFC8310] Section 7.1, and uses the authentication method described
   in [RFC8310] section 8.1, if the certificate is signed by a root
   authority the client trusts, or the method described in section 8.2
   of the same document if not.  If neither method is available, then a
   locally-configured copy of the server certificate can be used, as in
   the previous paragraph.

   Once the connection is established and authenticated, it is treated
   as a DNS TCP connection [RFC7766].

   Aliveness of connections between Clients and Relays is maintained as
   described in Section 4 of the DSO specification [RFC8490].  Clients
   must also honor the ’Retry Delay’ TLV (section 5 of [RFC8490]) if
   sent by the Discovery Relay.

   Clients SHOULD avoid establishing more than one connection to a
   specific Discovery Relay.  However, there may be situations where
   multiple connections to the same Discovery Relay are unavoidable, so
   Discovery Relays MUST be willing to accept multiple connections from
   the same Client.

   In order to know what links to request, the Client can be configured
   with a list of links supported by the Relay.  However, in some
   networking contexts, dynamic changes in the availability of links are
   likely; therefore Clients may also use the Report Link Changes TLV to
   request that the Relay report on the availability of its links.  In
   some contexts, for example when debugging, a Client may operate with
   no information about the set of links supported by a relay, simply
   relying on the relay to provide one.
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5.  Traffic from Relays to Clients

   The mere act of connecting to a Discovery Relay does not result in
   any mDNS traffic being forwarded.  In order to request that mDNS
   traffic from a particular multicast link be forwarded on a particular
   connection, the Client must send one or more DSO messages, each
   containing a single mDNS Link Data Request TLV (Section 8.1)
   indicating the multicast link from which traffic is requested.

   When an mDNS Link Data Request message is received, the Discovery
   Relay validates that it recognizes the link identifier, and that
   forwarding is enabled for that link.  If both checks are successful,
   it MUST send a response with RCODE=0 (NOERROR).  If the link
   identifier is not recognized, it sends a response with RCODE=3
   (NXDOMAIN/Name Error).  If forwarding from that link to the Client is
   not enabled, it sends a response with RCODE=5 (REFUSED).  If the
   relay cannot satisfy the request for some other reason, for example
   resource exhaustion, it sends a response with RCODE=2 (SERVFAIL).

   If the requested link is valid, the Relay begins forwarding all mDNS
   messages from that link to the Client.  Delivery is not guaranteed:
   if there is no buffer space, packets will be dropped.  It is expected
   that regular mDNS retry processing will take care of retransmission
   of lost packets.  The amount of buffer space is implementation
   dependent, but generally should not be more than the bandwidth delay
   product of the TCP connection [RFC7323].  The Discovery Relay should
   use the TCP_NOTSENT_LOWAT mechanism [NOTSENT][PRIO] or equivalent, to
   avoid building up a backlog of data in excess of the amount necessary
   to have in flight to fill the bandwidth delay product of the TCP
   connection.

   Encapsulated mDNS messages from Relays to Clients are framed within
   DSO messages.  Each DSO message can contain multiple TLVs, but only a
   single encapsulated mDNS message is conveyed per DSO message.  Each
   forwarded mDNS message is sent in an Encapsulated mDNS Message TLV
   (Section 8.4).  The source IP address and port of the message MUST be
   encoded in an IP Source TLV (Section 8.5).  The multicast link on
   which the message was received MUST be encoded in a Link Identifier
   TLV (Section 8.3).  As described in the DSO specification [RFC8490],
   a Client MUST silently ignore unrecognized Additional TLVs in mDNS
   messages, and MUST NOT discard mDNS messages that include
   unrecognized Additional TLVs.

   A Client may discontinue listening for mDNS messages on a particular
   multicast link by sending a DSO message containing an mDNS Link Data
   Discontinue TLV (Section 8.2).  The Discovery Relay MUST discontinue
   forwarding mDNS messages when the Link Data Discontinue request is
   received.  However, messages from that link that had previously been
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   queued may arrive after the Client has discontinued its listening.
   The Client should silently discard such messages.  The Discovery
   Relay does not respond to the Link Data Discontinue message other
   than to discontinue forwarding mDNS messages from the specified
   links.
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6.  Traffic from Clients to Relays

   Like mDNS traffic from relays, each mDNS message sent by a Client to
   a Discovery Relay is communicated in an Encapsulated mDNS Message TLV
   (Section 8.4) within a DSO message.  Each message MUST contain
   exactly one Link Identifier TLV (Section 8.3).  The Discovery Relay
   will transmit the mDNS message to the mDNS port and multicast address
   on the link specified in the message using the specified IP address
   family.

   Although the communication between Clients and Relays uses the DNS
   stream protocol and DNS Stateless Operations, there is no case in
   which a Client would legitimately send a DNS query (or anything else
   other than a DSO message) to a Relay.  Therefore, if a Relay receives
   any message other than a DSO message, it MUST immediately abort that
   DSO session with a TCP reset (RST).

   When defining this behavior, the working group considered making it
   possible to specify more than one link identifier in an mDNSMessage
   TLV.  A superficial evaluation of this suggested that this might be a
   useful optimization, since when a query is issued, it will often be
   issued to all links.  However, on many link types, like Wi-Fi,
   multicast traffic is expensive
   [I-D.ietf-mboned-ieee802-mcast-problems] and should be generated
   frugally, so providing convenient ways to generate additional
   multicast traffic was determined to be an unwise optimization.  In
   addition, because of the way mDNS handles retries, it will almost
   never be the case that the exact same message will be sent on more
   than one link.  Therefore, the complexity that this optimization adds
   is not justified by the potential benefit, and this idea has been
   abandoned.
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7.  Discovery Proxy Behavior

   Discovery Proxies treat multicast links for which Discovery Relay
   service is being used as if they were virtual interfaces; in other
   words, a Discovery Proxy serving multiple remote multicast links
   using multiple remote Discovery Relays behaves the same as a
   Discovery Proxy serving multiple local multicast links using multiple
   local physical network interfaces.  In this section we refer to
   multicast links served directly by the Discovery Proxy as locally-
   connected links, and multicast links served through the Discovery
   Relay as relay-connected links.  A relay-connected link can be
   thought of as similar to a link that a Discovery Proxy connects to
   using a USB Ethernet interface, just with a very long USB cable (that
   runs over TCP).

   When a Discovery Proxy receives a DNS query from a DNS client via
   unicast, it will generate corresponding mDNS query messages on the
   relevant multicast link(s) for which it is acting as a proxy.  For
   locally-connected link(s), those query messages will be sent
   directly.  For relay-connected link(s), the query messages will be
   sent through the Discovery Relay that is being used to serve that
   multicast link.

   Responses from devices on locally-connected links are processed
   normally.  Responses from devices on relay-connected links are
   received by the Discovery Relay, encapsulated, and forwarded to the
   Client; the Client then processes these messages using the link-
   identifying information included in the encapsulation.

   In principle it could be the case that some device is capable of
   performing service discovery using Multicast DNS, but not using
   traditional unicast DNS.  Responding to mDNS queries received from
   the Discovery Relay could address this use case.  However, continued
   reliance on multicast is counter to the goals of the current work in
   service discovery, and to benefit from wide-area service discovery
   such client devices should be updated to support service discovery
   using unicast queries.
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8.  DSO TLVs

   This document defines a modest number of new DSO TLVs.

8.1.  mDNS Link Data Request

   The mDNS Link Data Request TLV conveys a link identifier from which a
   Client is requesting that a Discovery Relay forward mDNS traffic.
   The link identifier comes from the provisioning configuration (see
   Section 9).  The DSO-TYPE for this TLV is TBD-R.  DSO-LENGTH is
   always 5.  DSO-DATA is the 8-bit address family followed by the link
   identifier, a 32-bit unsigned integer in network (big endian) byte
   order, as described in Section 9.  An address family value of 1
   indicates IPv4 and 2 indicates IPv6, as recorded in the IANA Registry
   of Address Family Numbers [AdFam].

   The mDNS Link Data Request TLV can only be used as a primary TLV, and
   requires an acknowledgement.

   At most one mDNS Link Data Request TLV may appear in a DSO message.
   To request multiple link subscriptions, multiple separate DSO
   messages are sent, each containing a single mDNS Link Data Request
   TLV.

   A Client MUST NOT request a link if it already has an active
   subscription to that link on the same DSO connection.  If a Discovery
   Relay receives a duplicate link subscription request, it MUST
   immediately abort that DSO session with a TCP reset (RST).

8.2.  mDNS Link Data Discontinue

   The mDNS Link Data Discontinue TLV is used by Clients to unsubscribe
   to mDNS messages on the specified multicast link.  DSO-TYPE is TBD-D.
   DSO-LENGTH is always 5.  DSO-DATA is the 8-bit address family
   followed by the 32-bit link identifier, a 32-bit unsigned integer in
   network (big endian) byte order, as described in Section 9.

   The mDNS Link Data Discontinue TLV can only be used as a DSO
   unidirectional message TLV, and is not acknowledged.

   At most one mDNS Link Data Discontinue TLV may appear in a DSO
   message.  To unsubscribe from multiple links, multiple separate DSO
   messages are sent, each containing a single mDNS Link Data
   Discontinue TLV.
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8.3.  Link Identifier

   This option is used both in DSO messages from Discovery Relays to
   Clients that contain received mDNS messages, and from Clients to
   Discovery Relays that contain mDNS messages to be transmitted on the
   multicast link.  In the former case, it indicates the multicast link
   on which the message was received; in the latter case, it indicates
   the multicast link on which the message should be transmitted.  DSO-
   TYPE is TBD-L.  DSO-LENGTH is always 5.  DSO-DATA is the 8-bit
   address family followed by the link identifier, a 32-bit unsigned
   integer in network (big endian) byte order, as described in
   Section 9.

   The Link Identifier TLV can only be used as an additional TLV.  The
   Link Identifier TLV can only appear at most once in a Discovery Relay
   DSO message.

8.4.  Encapsulated mDNS Message

   The Encapsulated mDNS Message TLV is used to communicate an mDNS
   message that a Relay is forwarding from a multicast link to a Client,
   or that a Client is sending to a Relay for transmission on a
   multicast link.  Only the application-layer payload of the mDNS
   message is carried in the DSO "Encapsulated mDNS Message" TLV, i.e.,
   just the DNS message itself, beginning with the DNS Message ID, not
   the IP or UDP headers.  The DSO-TYPE for this TLV is TBD-M.  DSO-
   LENGTH is the length of the encapsulated mDNS message.  DSO-DATA is
   the content of the encapsulated mDNS message.

   The Encapsulated mDNS Message TLV can only be used as a DSO
   unidirectional message TLV, and is not acknowledged.

8.5.  IP Source

   The IP Source TLV is used to report the IP source address and port
   from which an mDNS message was received.  This TLV is present in DSO
   messages from Discovery Relays to Clients that contain encapsulated
   mDNS messages.  DSO-TYPE is TBD-S.  DSO-LENGTH is either 6, for an
   IPv4 address, or 18, for an IPv6 address.  DSO-DATA is the two-byte
   source port, followed by the 4- or 16-byte IP Address.  Both port and
   address are in the canonical byte order (i.e., the same
   representation as used in the UDP and IP packet headers, with no byte
   swapping).

   The IP Source TLV can only be used as an additional TLV.  The IP
   Source TLV can only appear at most once in a Discovery Relay DSO
   message.
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8.6.  Link State Request

   The Link State Request TLV requests that the Discovery Relay report
   link changes.  When the relay is reporting link changes and a new
   link becomes available, it sends a Link Available message to the
   Client.  When a link becomes unavailable, it sends a Link Unavailable
   message to the Client.  If there are links available when the request
   is received, then for each such link the relay immediately sends a
   Link Available Message to the Client.  DSO-TYPE is TBD-P.  DSO-LENGTH
   is 0.

   The mDNS Link State Request TLV can only be used as a primary TLV,
   and requires an acknowledgement.  The acknowledgment does not contain
   a Link Available TLV: it is just a response to the Link State Request
   message.

8.7.  Link State Discontinue

   The Link State Discontinue TLV requests that the Discovery Relay stop
   reporting on the availability of links supported by the relay.  This
   cancels the effect of a Link State Request TLV.  DSO-TYPE is TBD-Q.
   DSO-LENGTH is 0.

   The mDNS Link State Discontinue TLV can only be used as a DSO
   unidirectional message TLV, and is not acknowledged.

8.8.  Link Available

   The Link Available TLV is used by Discovery Relays to indicate to
   Clients that a new link has become available.  The format is the same
   as the Link Identifier TLV.  DSO-TYPE is TBD-V.  The Link Available
   TLV may be accompanied by one or more Link Prefix TLVs which indicate
   IP prefixes the Relay knows to be present on the link.

   The mDNS Link Available TLV can only be used as a DSO unidirectional
   message TLV, and is not acknowledged.

8.9.  Link Unavailable

   The Link Unavailable TLV is used by Discovery Relays to indicate to
   Clients that an existing link has become unavailable.  The format is
   the same as the Link Identifier TLV.  DSO-TYPE is TBD-U.

   The mDNS Link Unavailable TLV can only be used as a DSO
   unidirectional message TLV, and is not acknowledged.
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8.10.  Link Prefix

   The Link Prefix TLV represents an IP address or prefix configured on
   a link.  The length is 17 for an IPv6 address or prefix, and 5 for an
   IPv4 address or prefix.  The TLV consists of a prefix length, between
   0 and 32 for IPv4 or between 0 and 128 for IPv6, represented as a
   single byte.  This is followed by the IP address, either four or
   sixteen bytes.  DSO-TYPE is TBD-K.

   The Link Prefix TLV can only be used as a secondary TLV.
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9.  Provisioning

   In order for a Discovery Proxy to use Discovery Relays, it must be
   configured with sufficient information to identify multicast links on
   which service discovery is to be supported and, if it is not running
   on a host that is directly connected to those multicast links,
   connect to Discovery Relays supporting those multicast links.

   A Discovery Relay must be configured both with a set of multicast
   links to which the host on which it is running is connected, on which
   mDNS relay service is to be provided, and also with a list of one or
   more Clients authorized to use it.

   On a network supporting DNS Service Discovery using Discovery Relays,
   more than one different Discovery Relay implementation may be
   present.  While it may be that only a single Discovery Proxy is
   present, that implementation will need to be able to be configured to
   interoperate with all of the Discovery Relays that are present.
   Consequently, it is necessary that a standard set of configuration
   parameters be defined for both Discovery Proxies and Discovery
   Relays.

   DNS Service Discovery generally operates within a constrained set of
   links, not across the entire internet.  This section assumes that
   what will be configured will be a limited set of links operated by a
   single entity or small set of cooperating entities, among which
   services present on each link should be available to users on that
   link and every other link.  This could be, for example, a home
   network, a small office network, or even a network covering an entire
   building or small set of buildings.  The set of Discovery Proxies and
   Discovery Relays within such a network will be referred to in this
   section as a ’Discovery Domain’.

   Depending on the context, several different candidates for
   configuration of Discovery Proxies and Discovery Relays may be
   applicable.  The simplest such mechanism is a manual configuration
   file, but regardless of provisioning mechanism, certain configuration
   information needs to be communicated to the devices, as outlined
   below.

   In the example we provide here, we only refer to configuring of IP
   addresses, private keys and certificates.  It is also possible to use
   FQDNs to identify servers; this then allows for the use of DANE
   ([RFC8310] Section 8.2) or PKIX authentication [RFC6125].  Which
   method is used is to some extent up to the implementation, but at a
   minimum, it should be possible to associate an IP address with a
   self-signed certificate, and it should be possible to validate both
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   self-signed and PKIX-authenticated certificates, with PKIX, DANE or a
   pre-configured trust anchor.

9.1.  Provisioned Objects

   Three types of objects must be described in order for Discovery
   Proxies and Discovery Relays to be provisioned: Discovery Proxies,
   Multicast Links, and Discovery Relays.  "Human-readable" below means
   actual words or proper names that will make sense to an untrained
   human being.  "Machine-readable" means a name that will be used by
   machines to identify the entity to which the name refers.  Each
   entity must have a machine-readable name and may have a human-
   readable name.  No two entities can have the same human-readable
   name.  Similarly, no two entities can have the same machine-readable
   name.
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9.1.1.  Multicast Link

   The description of a multicast link consists of:

   link-identifier  A 32-bit identifier that uniquely identifies that
      link within the Discovery Domain.  Each link MUST have exactly one
      such identifier.  Link Identifiers do not have any special
      semantics, and are not intended to be human-readable.

   ldh-name  A fully-qualified domain name for the multicast link that
      is used to form an LDH domain name as described in section 5.3 of
      the Discovery Proxy specification [RFC8766].  This name is used to
      identify the link during provisioning, and must be present.

   hr-name  A human-readable user-friendly fully-qualified domain name
      for the multicast link.  This name MUST be unique within the
      Discovery Domain.  Each multicast link MUST have exactly one such
      name.  The hr-name MAY be the same as the ldh-name.  (The hr-name
      is allowed to contain spaces, punctuation and rich text, but it is
      not required to do so.)

   The ldh-name and hr-name can be used to form the LDH and human-
   readable domain names as described in [RFC8766], section 5.3.

   Note that the ldh-name and hr-name can be used in two different ways.

   On a small home network with little or no human administrative
   configuration, link names may be directly visible to the user.  For
   example, a search in ’home.arpa’ on a small home network may discover
   services on both ethernet.home.arpa and wi-fi.home.arpa.  In the case
   of a home user who has one Ethernet-connected printer and one Wi-Fi-
   connected printer, discovering that they have one printer on
   ethernet.home.arpa and another on wi-fi.home.arpa is understandable
   and meaningful.

   On a large corporate network with hundreds of Wi-Fi access points,
   the individual link names of the hundreds of multicast links are less
   likely to be useful to end users.  In these cases, Discovery Broker
   functionality [I-D.sctl-discovery-broker] may be used to translate
   the many link names to something more meaningful to users.  For
   example, in a building with 50 Wi-Fi access points, each with their
   own link names, services on all the different physical links may be
   presented to the user as appearing in ’headquarters.example.com’.  In
   this case, the individual link names can be thought of similar to MAC
   addresses or IPv6 addresses.  They are used internally by the
   software as unique identifiers, but generally are not exposed to end
   users.

Lemon & Cheshire         Expires August 26, 2021               [Page 20]



Internet-Draft            mDNS Discovery Relay             February 2021

9.1.2.  Discovery Proxy

   The description of a Discovery Proxy consists of:

   name  a machine-readable name used to reference this Discovery Proxy
      in provisioning.

   hr-name  an optional human-readable name which can appear in
      provisioning, monitoring and debugging systems.  Must be unique
      within a Discovery Domain.

   certificate  a certificate that identifies the Discovery Proxy.  This
      certificate can be shared across services on the Discovery Proxy
      Host.  The public key in the certificate is used both to uniquely
      identify the Discovery Proxy and to authenticate connections from
      it.  The certificate should be signed by its own private key.

   private-key  the private key corresponding to the public key in the
      certificate.

   source-ip-addresses  a list of IP addresses that may be used by the
      Discovery Proxy when connecting to Discovery Relays.  These
      addresses should be addresses that are configured on the Discovery
      Proxy Host.  They should not be temporary addresses.  All such
      addresses must be reachable within the Discovery Domain.

   public-ip-addresses  a list of IP addresses that a Discovery Proxy
      listens on to receive requests from clients.  This is not used for
      interoperation with Discovery Relays, but is mentioned here for
      completeness: the list of addresses listened on for incoming
      client requests may differ from the ’source-ip-addresses’ list of
      addresses used for issuing outbound connection requests to
      Discovery Relays.  If any of these addresses are reachable from
      outside of the Discovery Domain, services in that domain will be
      discoverable outside of the domain.

   multicast links  a list of multicast links on which this Discovery
      Proxy is expected to provide service

   The private key should never be distributed to other hosts; all of
   the other information describing a Discovery Proxy can be safely
   shared with Discovery Relays.

   In some configurations it may make sense for the Discovery Relay not
   to have a list of links, but simply to support the set of all links
   available on relays to which the Discovery Proxy is configured to
   communicate.

Lemon & Cheshire         Expires August 26, 2021               [Page 21]



Internet-Draft            mDNS Discovery Relay             February 2021

9.1.3.  Discovery Relay

   The description of a Discovery Relay consists of:

   name  a required machine-readable identifier used to reference the
      relay

   hr-name  an optional human-readable name which can appear in
      provisioning, monitoring and debugging systems.  Must be unique
      within a Discovery Domain.

   certificate  a certificate that identifies the Discovery Relay.  This
      certificate can be shared across services on the Discovery Relay
      Host.  Indeed, if a Discovery Proxy and Discovery Relay are
      running on the same host, the same certificate can be used for
      both.  The public key in the certificate uniquely identifies the
      Discovery Relay and is used by a Discovery Relay Client (e.g., a
      Discovery Proxy) to verify that it is talking to the intended
      Discovery Relay after a TLS connection has been established.  The
      certificate must either be signed by its own key, or have a
      signature chain that can be validated using PKIX authentication
      [RFC6125].

   private-key  the private key corresponding to the public key in the
      certificate.

   listen-tuple  a list of IP address/port tuples that may be used to
      connect to the Discovery Relay.  The relay may be configured to
      listen on all addresses on a single port, but this is not
      required, so the port as well as the address must be specified.

   multicast links  a list of multicast links to which this relay is
      physically connected.

   The private key should never be distributed to other hosts; all of
   the other information describing a Discovery Relay can be safely
   shared with Discovery Proxies.

   In some cases a Relay may not be configured with a static list of
   links, but may simply discover links by monitoring the set of
   available interfaces on the host on which the Relay is running.  In
   that case, the relay could be configured to identify links based on
   the names of network interfaces, or based on the set of available
   prefixes seen on those interfaces.  The details of this sort of
   configuration are not specified in this document.
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9.2.  Configuration Files

   For this discussion, we assume the simplest possible means of
   configuring Discovery Proxies and Discovery Relays: the configuration
   file.  Any environment where changes will happen on a regular basis
   will either require some automatic means of generating these
   configuration files as the network topology changes, or will need to
   use a more automatic method for configuration, such as HNCP
   [RFC7788].

   There are many different ways to organize configuration files.  This
   discussion assumes that multicast links, relays and proxies will be
   specified as objects, as described above, perhaps in a master file,
   and then the specific configuration of each proxy or relay will
   reference the set of objects in the master file, referencing objects
   by name.  This approach is not required, but is simply shown as an
   example.  In addition, the private keys for each proxy or relay must
   appear only in that proxy or relay’s configuration file.
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   The master file contains a list of Discovery Relays, Discovery
   Proxies and Multicast Links.  Each object has a name and all the
   other data associated with it.  We do not formally specify the format
   of the file, but it might look something like this:

                     Relay upstairs
                       certificate xxx
                       listen-tuple 192.0.2.1 1917
                       listen-tuple fd00::1 1917
                       link upstairs-wifi
                       link upstairs-wired
                       client-allow-list main

                     Relay downstairs
                       certificate yyy
                       listen-tuple 192.51.100.1 2088
                       listen-tuple fd00::2 2088
                       link downstairs-wifi
                       link downstairs-wired
                       client-allow-list main

                     Proxy main
                       certificate zzz
                       address 203.1.113.1

                     Link upstairs-wifi
                       id 1
                       hr-name Upstairs Wifi

                     Link upstairs-wired
                       id 2
                       hr-name Upstairs Wired

                     Link downstairs-wifi
                       id 3
                       hr-name Downstairs Wifi

                     Link downstairs-wired
                       id 4
                       hr-name Downstairs Wired
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9.3.  Discovery Proxy Private Configuration

   The Discovery Proxy configuration contains enough information to
   identify which Discovery Proxy is being configured, enumerate the
   list of multicast links it is intended to serve, and provide keying
   information it can use to authenticate to Discovery Relays.  It may
   also contain custom information about the port and/or IP address(es)
   on which it will respond to DNS queries.

   An example configuration, following the convention used in this
   section, might look something like this:

                       Proxy main
                         private-key zzz
                         subscribe upstairs-wifi
                         subscribe downstairs-wifi
                         subscribe upstairs-wired
                         subscribe downstairs-wired

   When combined with the master file, this configuration is sufficient
   for the Discovery Proxy to identify and connect to the Discovery
   Relays that serve the links it is configured to support.

9.4.  Discovery Relay Private Configuration

   The Discovery Relay configuration just needs to tell the Discovery
   Relay what name to use to find its configuration in the master file,
   and what the private key is corresponding to its certificate (public
   key) in the master file.  For example:

                             Relay Downstairs
                               private-key yyy
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10.  Security Considerations

   Part of the purpose of the Multicast DNS Discovery Relay protocol is
   to place a simple relay, analogous to a BOOTP relay, into routers and
   similar devices that may not be updated frequently.  The BOOTP
   [RFC0951] protocol has been around since 1985, and continues to be
   useful today.  The BOOTP protocol uses no encryption, and in many
   enterprise networks this is considered acceptable.  In contrast, the
   Discovery Relay protocol requires TLS 1.3.  A concern is that after
   20 or 30 years, TLS 1.3, or some of the encryption algorithms it
   uses, may become obsolete, rendering devices that require it
   unusable.  Our assessment is that TLS 1.3 probably will be around for
   many years to come.  TLS 1.0 [RFC2246] was used for about a decade,
   and similarly TLS 1.2 [RFC5246] was also used for about a decade.  We
   expect TLS 1.3 [RFC8446] to have at least that lifespan.  In
   addition, recent IETF efforts are pushing for better software update
   practices for devices like routers, for other security reasons,
   making it likely that in ten years time it will be less common to be
   using routers that haven’t had a software update for ten years.
   However, authors of encryption specifications and libraries should be
   aware of the potential backwards compatibility issues if an
   encryption algorithm becomes deprecated.  This specification
   RECOMMENDS that if an encryption algorithm becomes deprecated, then
   rather than remove that encryption algorithm entirely, encryption
   libraries should disable that encryption algorithm by default, but
   leave the code present with an option for client software to enable
   it in special cases, such as a recent Client talking to an ancient
   Discovery Relay.  Using no encryption, like BOOTP, would eliminate
   this backwards compatibility concern, but we feel that in such a
   future hypothetical scenario, using even a weak encryption algorithm
   still makes passive eavesdropping and tampering harder, and is
   preferable to using no encryption at all.
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11.  IANA Considerations

   The IANA is kindly requested to update the DSO Type Codes Registry
   [RFC8490] by allocating codes for each of the TBD type codes listed
   in the following table, and by updating this document, here and in
   Section 8.  Each type code should list this document as its reference
   document.

            +----------+----------+---------------------------+
            | DSO-TYPE | Status   | Name                      |
            +----------+----------+---------------------------+
            | TBD-R    | Standard | Link Data Request         |
            | TBD-D    | Standard | Link Data Discontinue     |
            | TBD-L    | Standard | Link Identifier           |
            | TBD-M    | Standard | Encapsulated mDNS Message |
            | TBD-S    | Standard | IP Source                 |
            | TBD-P    | Standard | Link State Request        |
            | TBD-Q    | Standard | Link State Discontinue    |
            | TBD-V    | Standard | Link Available            |
            | TBD-U    | Standard | Link Unavailable          |
            | TBD-K    | Standard | Link Prefix               |
            +----------+----------+---------------------------+

                      DSO Type Codes to be allocated
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Abstract

   This document proposes a device pairing mechanism that establishes a
   relation between two devices by agreeing on a secret and manually
   verifying the secret’s authenticity using an SAS (short
   authentication string).  Pairing has to be performed only once per
   pair of devices, as for a re-discovery at any later point in time,
   the exchanged secret can be used for mutual authentication.

   The proposed pairing method is suited for each application area where
   human operated devices need to establish a relation that allows
   configurationless and privacy preserving re-discovery at any later
   point in time.  Since privacy preserving applications are the main
   suitors, we especially care about privacy.
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1.  Introduction

   To engage in secure and privacy preserving communication, hosts need
   to differentiate between authorized peers, which must both know about
   the host’s presence and be able to decrypt messages sent by the host,
   and other peers, which must not be able to decrypt the host’s
   messages and ideally should not obtain information that could be used
   to identify the host.  The necessary relation between host and peer
   can be established by a centralized service, e.g. a certificate
   authority, by a web of trust, e.g.  PGP, or -- without using global
   identities -- by device pairing.

   This document proposes a device pairing mechanism that provides human
   operated devices with pairwise authenticated secrets, allowing mutual
   automatic re-discovery at any later point in time along with mutual
   private authentication.  We especially care about privacy and user-
   friendliness.  This pairing system can provide the pairing secrets
   used in DNSSD Privacy Extensions [I-D.ietf-dnssd-privacy].
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   The proposed pairing mechanism consists of three steps needed to
   establish a relationship between a host and a peer:

   1.  Discovering the peer device.  The host needs a means to discover
       network parameters necessary to establish a connection to the
       peer.  During this discovery process, neither the host nor the
       peer must disclose its presence.

   2.  Agreeing on pairing data.  The devices have to agree on pairing
       data, which can be used by both parties at any later point in
       time to generate identifiers for re-discovery and to prove the
       authenticity of the pairing.  The pairing data can e.g. be a
       shared secret agreed upon via a Diffie-Hellman key exchange.

   3.  Authenticating pairing data.  Since in most cases the messages
       necessary to agree upon pairing data are send over an insecure
       channel, means that guarantee the authenticity of these messages
       are necessary; otherwise the pairing data is in turn not suited
       as a means for a later proof of authenticity.  For the proposed
       pairing mechanism we use manual authentication involving an SAS
       (short authentication string) to proof the authenticity of the
       pairing data.

   The design of this protocol is based on the analysis of pairing
   protocols issues presented in [I-D.ietf-dnssd-pairing-info] and in
   [K17].

   Many pairing scenarios involve cell phones equipped with cameras
   capable of reading a QR code.  In these scenarios, scanning QR codes
   might be more user friendly than selecting names or reading short
   authentication strings from on screen menus.  An optional use of QR
   codes in pairing protocols is presented is Section 3.

   DNSSD privacy requirements are analyzed in [I-D.ietf-dnssd-prireq]
   and scaling considerations are reviewed in
   [I-D.ietf-dnssd-privacyscaling].  Further work on these two drafts
   may lead to reviewing the mechanism proposed here.

1.1.  Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].
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1.2.  Document Organization

   NOTE TO RFC EDITOR: remove or rewrite this section before
   publication.

   The original version of this document was organized in two parts.
   The first part presented the pairing need, the list of requirements
   that shall be met.  This first part was informational in nature.  The
   second part composed the actual specification of the protocol.

   In his early review, Steve Kent observed that the style of the first
   part seems inappropriate for a standards track document, and
   suggested that the two parts should be split into two documents, the
   first part becoming an informational document, and the second
   focusing on standard track specification of the protocol, making
   reference to the informational document as appropriate.

   The DNS-SD working group approved this split during its meeting in
   Prague in July 2017.  This version of the document implements the
   split, only retaining the specification part.

2.  Protocol Specification

   In the proposed pairing protocol, we will consider the device that
   initiates the pairing as the "client" and the device that responds as
   the "server".  The server will publish a "pairing service".  The
   client will discover the service instance during the discovery phase,
   as explained in Section 2.1.  The pairing service itself is specified
   in Section 2.3.

   We divide pairing in three parts: discovery, agreement, and
   authentication, detailed in the following subsections.

2.1.  Discovery

   The goal of the discovery phase is establishing a connection, which
   is later used to exchange the pairing data between the two devices
   that are about to be paired in an IP network without any prior
   knowledge and without publishing any private information.

   When the pairing service starts, the server will advertise the
   pairing service according to DNS-SD [RFC6763] over mDNS [RFC6762].
   In conformance with DNS-SD, the service is described by an SRV record
   and by and empty TXT record.  These records will be organized as
   follows:

   1.  The pairing service is identified in DNS-SD as "_pairing._tcp".
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   2.  The instance name will be a text chosen by the server.  It MAY be
       a random string if the server does not want to advertise its
       identity in the local environment, or the user friendly name of
       the server in other cases.

   3.  The priority and weight fields of the SRV record SHOULD be set
       according to [RFC6763].

   4.  The host name MUST be set to the host name advertised by the
       server in mDNS.  The server MAY use a randomized host name as
       explained in [I-D.ietf-dnssd-privacy], provided that this name is
       properly published in mDNS.

   5.  The port number MUST be set to the number at which the server is
       listening for the pairing service.  This port number SHOULD be
       randomly picked by the server.

   The discovery proceeds as follows:

   1.  The server advertises an instance of the above described pairing
       service and displays its instance name on the server’s screen.

   2.  The client discovers all the instances of the pairing service
       available on the local network.  This may result in the discovery
       of several instance names.

   3.  Among these available instance names, the client’s user selects
       the name that matches the name displayed by the server.

   4.  Per DNS-SD, the client then retrieves the SRV record of the
       selected instance, retrieves the corresponding server’s A (or
       AAAA) record, and establishes the connection.

2.2.  Agreement on a Shared Secret

   Once the server has been selected at the end of the discovery phase,
   the client connects to it without further user intervention.  Client
   and server use this connection for exchanging data that allows them
   to agree on a shared secret by using TLS and a key exporter.

   Devices implementing the service MUST support TLS 1.2 [RFC5246], and
   MAY negotiate TLS 1.3 when it becomes available.  When using TLS, the
   client and server MUST negotiate a ciphersuite providing forward
   secrecy (PFS), and strong encryption (256 bits symmetric key).  All
   implementations using TLS 1.2 MUST be able to negotiate the cipher
   suite TLS_DH_anon_WITH_AES_256_CBC_SHA256.
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   Once the TLS connection has been established, each party extracts the
   pairing secret S_p from the connection context per [RFC5705], using
   the following parameters:

   Disambiguating label string:  "PAIRING SECRET"

   Context value:  empty.

   Length value:  32 bytes (256 bits).

   The secret "S_p" will be authenticated in the authentication part of
   the protocol.

2.3.  Authentication

   The pairing protocol implemented on top of TLS allows the users to
   authenticate the shared secret established in the "Agreement" phase,
   and to minimize the risk of interference by a third party like a
   "man-in-the-middle".  The pairing protocol is built using TLS.  The
   following description uses the presentation language defined in
   section 4 of [RFC5246].  The protocol uses five message types,
   defined in the following enum:

   enum {
      ClientHash(1),
      ServerRandom(2),
      ClientRandom(3),
      ServerSuccess(4),
      ClientSuccess(5)
   } PairingMessageType;

   Once S_p has been obtained, the client picks a random number R_c,
   exactly 32 bytes long.  The client then selects a hash algorithm,
   which MUST be the same algorithm as negotiated for building the PRF
   in the TLS connection.  The client then computes the hash value H_c
   as:

      H_c = HMAC_hash(S_p, R_c)

      Where "HMAC_hash" is the HMAC function constructed with the
      selected algorithm.

   The client transmits the selected hash function and the computed
   value of H_c in the Client Hash message, over the TLS connection:
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   struct {
      PairingMessageType messageType;
      hashAlgorithm hash;
      uint8 hashLength;
      opaque H_c[hashLength];
   } ClientHashMessage;

   messageType:  Set to "ClientHash".

   hash: The code of the selected hash algorithm, per definition of
         HashAlgorithm in section 7.4.1.1.1 of [RFC5246].

   hashLength:  The length of the hash H_c, which MUST be consistent
         with the selected algorithm "hash".

   H_c:  The value of the client hash.

   Upon reception of this message, the server stores its value.  The
   server picks a random number R_s, exactly 32 bytes long, and
   transmits it to the client in the server random message, over the TLS
   connection:

   struct {
      PairingMessageType messageType;
      opaque R_s[32];
   } ServerRandomMessage;

   messageType  Set to "ServerRandom".

   R_s:  The value of the random number chosen by the server.

   Upon reception of this message, the client discloses its own random
   number by transmitting the client random message:

   struct {
      PairingMessageType messageType;
      opaque R_c[32];
   } ClientRandomMessage;

   messageType  Set to "ClientRandom".

   R_c:  The value of the random number chosen by the client.

   Upon reception of this message, the server verifies that the number
   R_c hashes to the previously received value H_c.  If the number does
   not match, the server MUST abandon the pairing attempt and abort the
   TLS connection.
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   At this stage, both client and server can compute the short hash SAS
   as:

      SAS = first 20 bits of HMAC_hash(S_p, R_c || R_s)

      Where "HMAC_hash" is the HMAC function constructed with the hash
      algorithm selected by the client in the ClientHashMessage.

   Both client and server display the SAS as a 7 digit decimal integer,
   including leading zeroes, and ask the user to compare the values.  If
   the SASes match, each user enters an agreement, for example by
   pressing a button labeled "OK", which results in the pairing being
   remembered.  If they do not match, each user should cancel the
   pairing, for example by pressing a button labeled "CANCEL".

   If the values do match and both users agree, the protocol continues
   with the exchange of names, both server and client announcing their
   own preferred name in a Success message

   struct {
      PairingMessageType messageType;
      uint8 nameLength;
      opaque name[nameLength];
   } ClientSuccessMessage;

   messageType:  Set to "ClientSuccess" if transmitted by the client,
         "ServerSuccess" if by the server.

   nameLength:  The length of the string encoding the selected name.

   name: The selected name of the client or the server, encoded as a
         string of UTF8 characters.

   After receiving these messages, client and servers can orderly close
   the TLS connection, terminating the pairing exchange.

3.  Optional Use of QR Codes

   When QR codes are supported, the discovery process can be independent
   of DNS-SD, because QR codes allow the transmission of a sufficient
   amount of data.  The agreement process can also be streamlined by the
   scanning of a second QR code.

3.1.  Discovery Using QR Codes

   If QR code scanning is available as out-of-band channel, the
   discovery data is directly transmitted via QR codes instead of DNS-SD
   over mDNS.  Leveraging QR codes, the discovery proceeds as follows:
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   1.  The server displays a QR code containing the connection data
       otherwise found in the SRV and A or AAAA records: IPv4 or IPv6
       address, port number, and optionally host name.

   2.  The client scans the QR code retrieving the necessary information
       for establishing a connection to the server.

   [[TODO: We should precisely specify the data layout of this QR code.
   It could either be the wire format of the corresponding resource
   records (which would be easier for us), or a more efficient
   representation.  If we chose the wire format, we could use a fixed
   name as instance name.]]

3.2.  Agreement with QR Codes

   When QR codes are available, the agreement on a shared secret
   proceeds exactly as in the general case.

3.3.  Authentication with QR Codes

   The availability of QR codes does not change the required network
   messages or the computation of the SAS, which will performed exactly
   as specified in Section 2.3, but when QR codes are supported, the SAS
   may also be represented as QR code.

   In the general case, both client and server display the SAS as a
   decimal integer, and ask the user to compare the values.  If the
   server supports QR codes, the server displays a QR code encoding the
   decimal string representation of the SAS.  If the client is capable
   of scanning QR codes, it may scan the value and compare it to the
   locally computed value.

   Once user agreement has been obtained, the protocol continues as in
   the general case presented in Section 2.3.

4.  Security Considerations

   We need to consider two types of attacks against a pairing system:
   attacks that occur during the establishment of the pairing relation,
   and attacks that occur after that establishment.

   During the establishment of the pairing system, we are concerned with
   privacy attacks and with MitM attacks.  Privacy attacks reveal the
   existence of a pairing between two devices, which can be used to
   track graphs of relations.  MitM attacks result in compromised
   pairing keys.  The discovery procedures specified in Section 2.1 and
   the authentication procedures specified in Section 2.3 are
   specifically designed to mitigate such attacks, assuming that the
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   client and user are in close, physical proximity and thus a human
   user can visually acquire and verify the pairing information.

   The establishment of the pairing results in the creation of a shared
   secret.  After the establishment of the pairing relation, attackers
   who compromise one of the devices could access the shared secret.
   This will enable them to either track or spoof the devices.  To
   mitigate such attacks, nodes MUST store the secret safely, and MUST
   be able to quickly revoke a compromised pairing.

5.  IANA Considerations

   This draft does not require any IANA action.
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Abstract

   This document discusses issues and problems occuring in the design of
   device pairing mechanism.  It presents experience with existing
   pairing systems and general user interaction requirements to make the
   case for "short authentication strings".  It then reviews the design
   of cryptographic algorithms designed to maximise the robustness of
   the short authentication string mechanisms, as well as implementation
   considerations such as integration with TLS.
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   provisions of BCP 78 and BCP 79.
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1.  Introduction

   To engage in secure and privacy preserving communication, hosts need
   to differentiate between authorized peers, which must both know about
   the host’s presence and be able to decrypt messages sent by the host,
   and other peers, which must not be able to decrypt the host’s
   messages and ideally should not be aware of the host’s presence.  The
   necessary relationship between host and peer can be established by a
   centralized service, e.g. a certificate authority, by a web of trust,
   e.g.  PGP, or -- without using global identities -- by device
   pairing.

   The general pairing requirement is easy to state: establish a trust
   relation between two entities in a secure manner.  But details
   matter, and in this section we explore the detailed requirements that
   will guide the design of a pairing protocol.

   This document does not specify an actual pairing protocol, but it
   served as the basis for the design of the pairing protocol developed
   for DNS-SD privacy [I-D.ietf-dnssd-pairing].  The requirement of a
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   pairing system for private discovery are analyzed in part in
   [I-D.ietf-dnssd-prireq].

1.1.  Document Organization

   NOTE TO RFC EDITOR: remove or rewrite this section before
   publication.

   This document results from a split of an earlier pairing draft that
   contained two parts.  The first part, presented the pairing need, and
   the list of requirements that shall be met.  The second part
   presented the design is the actual specification of the protocol.

   In his early review, Steve Kent observed that the style of the first
   part seems inappropriate for a standards track document, and
   suggested that the two parts should be split into two documents, the
   first part becoming an informational document, and the second
   focusing on standard track specification of the protocol, making
   reference to the informational document as appropriate.

   The working group approved this split.

2.  Protocol Independent Secure Pairing

   Many pairing protocols have already been developed, in particular for
   the pairing of devices over specific wireless networks.  For example,
   the current Bluetooth specifications include a pairing protocol that
   has evolved over several revisions towards better security and
   usability [BTLEPairing].  The Wi-Fi Alliance defined the Wi-Fi
   Protected Setup process to ease the setup of security-enabled Wi-Fi
   networks in home and small office environments [WPS].  Other wireless
   standards have defined or are defining similar protocols, tailored to
   specific technologies.

   In this document we provide background and discuss the design of a
   manually authenticated pairing protocol that is independent of the
   underlying network protocol stack.  We discuss (1) means allowing the
   two parties engaged in the pairing to discover each other in an
   existing unsecured network -- e.g. means for learning about the
   network parameters of the respective other device -- which allows
   them to establish a connection; (2) agreeing on a shared secret via
   this connection; and (3) manually authenticating this secret.  For
   our discussion and our secure pairing protocol specification
   [I-D.ietf-dnssd-pairing], we assume an IP based unsecured network.
   With little adaption, this pairing mechanism can be used on other
   protocol stacks as well.
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   We limit the goal of the protocol to the establishment of a shared
   secret between two parties.  Once that secret has been established,
   it can trivially be used to secure the exchange of other
   informations, such as for example public keys and certificates.

3.  Identity Assurance

   The parties in the pairing must be able to identify each other.  To
   put it simply, if Alice believes that she is establishing a pairing
   with Bob, she must somehow ensure that the pairing is actually
   established with Bob, and not with some interloper like Eve or
   Nessie.  Providing this assurance requires designing both the
   protocol and the user interface (UI) with care.

   Consider for example an attack in which Eve tricks Alice into
   engaging in a pairing process while pretending to be Bob. Alice must
   be able to discover that something is wrong, and refuse to establish
   the pairing.  The parties engaged in the pairing must at least be
   able to verify their identities, respectively.

4.  Manual Authentication

   Because the pairing protocol is executed without prior knowledge, it
   is typically vulnerable to "Man-in-the-Middle" attacks.  While Alice
   is trying to establish a pairing with Bob, Eve positions herself in
   the middle.  Instead of getting a pairing between Alice and Bob, both
   Alice and Bob get paired with Eve. Because of this, the protocol
   requires specific features to detect Man-in-the-Middle attacks, and
   if possible resist them.

   This section discusses existing techniques that are used in practice
   for manually authenticating a Diffie-Hellman key exchange, and
   Section 5 provides a layman description of the MiTM problem and
   countermeasures.  A more in depth exploration of manually
   authenticated pairing protocols may be found in [NR11] and [K17].

4.1.  Short PIN Proved Inadequate

   The initial Bluetooth pairing protocol relied on a four digit PIN,
   displayed by one of the devices to be paired.  The user read that PIN
   and provided it to the other device.  The PIN was then used in a
   Password Authenticated Key Exchange.  Wi-Fi Protected Setup [WPS]
   offered a similar option.  There were various attacks against the
   actual protocol; some of the problems were caused by issues in the
   protocol, but most were tied to the usage of short PINs.

   In the reference implementation, the PIN is picked at random by the
   paired device before the beginning of the exchange.  But this
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   requires that the paired device is capable of generating and
   displaying a four digit number.  It turns out that many devices
   cannot do that.  For example, an audio headset does not have any
   display capability.  These limited devices ended up using static
   PINs, with fixed values like "0000" or "0001".

   Even when the paired device could display a random PIN, that PIN had
   to be copied by the user on the pairing device.  It turns out that
   users do not like copying long series of numbers, and the usability
   thus dictated that the PINs be short -- four digits in practice.  But
   there is only so much assurance as can be derived from a four digit
   key.

   The latest revisions of the Bluetooth Pairing protocol [BTLEPairing]
   do not include the short PIN option anymore.  The PIN entry methods
   have been superseded by the simple "just works" method for devices
   without displays, and by a procedure based on an SAS (short
   authentication string) when displays are available.

   A further problem with these PIN based approaches is that -- in
   contrast to SASes -- the PIN is a secret instrumental in the security
   algorithm.  To guarantee security, this PIN would have to be
   transmitted via a secure out-of-band channel.

4.2.  Push Buttons Just Work, But Are Insecure

   Some devices are unable to input or display any code.  The industry
   more or less converged on a "push button" solution.  When the button
   is pushed, devices enter a "pairing" mode, during which they will
   accept a pairing request from whatever other device connects to them.

   The Bluetooth Pairing protocol [BTLEPairing] denotes that as the
   "just works" method.  It does indeed work, and if the pairing
   succeeds the devices will later be able to use the pairing keys to
   authenticate connections.  However, the procedure does not provide
   any protection against MitM attacks during the pairing process.  The
   only protection is that pushing the button will only allow pairing
   for a limited time, thus limiting the opportunities of attacks.

   As we set up to define a pairing protocol with a broad set of
   applications, we cannot limit ourselves to an insecure "push button"
   method.  But we probably need to allow for a mode of operation that
   works for input-limited and display limited devices.
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4.3.  Short Range Communication

   Many pairing protocols that use out-of-band channels have been
   defined.  Most of them are based on short range communication
   systems, where the short range limits the feasibility for attackers
   to access the channels.  Example of such limited systems include for
   example:

   o  QR codes, displayed on the screen of one device, and read by the
      camera of the other device.

   o  Near Field Communication (NFC) systems, which provides wireless
      communication with a very short range.

   o  Sound systems, in which one systems emits a sequence of sounds or
      ultrasounds that is picked by the microphone of the other system.

   A common problem with these solutions is that they require special
   capabilities that may not be present in every device.  Another
   problem is that they are often one-way channels.

   The pairing protocols should not rely on the secrecy of the out-of-
   band channels; most of these out-of-band channels do not provide
   confidentiality.  QR codes could be read by third parties.  Powerful
   radio antennas might be able to interfere with NFC.  Sensitive
   microphones might pick the sounds.  However, a property that all of
   these channels share is authenticity, i.e. an assurance that the data
   obtained over the out-of-band channel actually comes from the other
   party.  This is because these out-of-band channels involve the user
   transmitting information from one device to the other.  We will
   discuss the specific case of QR codes in Section 8.

4.4.  Short Authentication Strings

   The evolving pairing protocols seem to converge towards using Short
   Authentication Strings and verifying them via the "compare and
   confirm" method.  This is in line with academic studies, such as
   [KFR09] or [USK11], and, from the users’ perspective, results in a
   very simple interaction:

   1.  Alice and Bob compare displayed strings that represent a
       fingerprint of the afore exchanged pairing key.

   2.  If the strings match, Alice and Bob accept the pairing.

   Most existing pairing protocols display the fingerprint of the key as
   a 6 or 7 digit number.  Usability studies show that this method gives
   good results, with little risk that users mistakenly accept two
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   different numbers as matching.  However, the authors of [USK11] found
   that people had more success comparing computer generated sentences
   than comparing numbers.  This is in line with the argument in
   [XKCD936] to use sequences of randomly chosen common words as
   passwords.  On the other hand, standardizing strings is more
   complicated than standardizing numbers.  We would need to specify a
   list of common words, and the process to go from a binary fingerprint
   to a set of words.  We would need to be concerned with
   internationalization issues, such as using different lists of words
   in German and in English.  This could require the negotiation of word
   lists or languages inside the pairing protocols.

   In contrast, numbers are easy to specify, as in "take a 20 bit number
   and display it as an integer using decimal notation".

4.5.  Revisiting the PIN versus SAS discussion

   In section Section 4.1 we presented the drawbacks of using short
   pins.  One could object that many of the technical issues could be
   overcome by use of better PAKE algorithms, or by supporting longer
   PIN.  And one could also argue that if PIN based pairing algorithms
   suffer from failure modes such as static PIN configuration, SAS based
   protocols are vulnerable to SAS bypass.

   The SAS bypass argument is rooted in the psychology of users.  In
   practice, pairing processes can be stressful.  The user has to
   discover on each device the proper combination of key entries that
   brings up the required pairing UI, will be anxious and eager to
   complete the procedure, and may well be predisposed to click "OK" in
   the final stage of the algorithm without actually verifying the SAS.
   Some users may bypass the required comparison step, because they just
   want to be done with the pairing.

   An advantage of PIN based processes is that they cannot be bypassed.
   The user must enter the PIN before continuing.  Also, once the PIN is
   entered, everything is automatic.  The user does not need to input
   more data, or press any additional button.  PIN based protocols would
   be a great fit for the QR-code based interaction.  One device would
   display a QR code that contains the PIN.  Once the QR code is scanned
   by the other device, the process is automated.

   QR based PIN entry may be user friendly, but one of the arguments
   developed in Section 4.1 still holds.  Let’s assume that an adversary
   somehow obtains the PIN, maybe by scanning the QR code at a distance.
   That adversary could mount MITM or impersonation attacks, and
   compromise the pairing process.  It is thus very important to ensure
   that the PIN is only readable by the user doing the pairing.
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   We could also argue that the SAS bypass failure mode may be mitigated
   by specific user designs.  For example, instead of just clicking OK,
   the user could be required to enter the SAS displayed by the other
   device.  This requires about the same interactions as a PIN based
   process, and it would be slightly safer because the SAS does not have
   to be kept secret once the keys have been exchanged.

   If we summarize the debate, we see that both SAS and PIN based
   solutions have failure modes depending on implementations.  In the
   SAS mode, the failure happens when the UI does not force the user to
   copy the PIN and relies on a simple "OK to continue" dialog.  In the
   PIN mode, the failure happens when the device fails to generate a
   random PIN for each session, and comes pre-programmed with a simple
   static PIN of "0000" or "0001".

5.  Resist Cryptographic Attacks

   It is tempting to believe that once two peers are connected, they
   could create a secret with a few simple steps, such as for example
   (1) exchange two nonces, (2) hash the concatenation of these nonces
   with the shared secret that is about to be established, (3) display a
   short authentication string composed of a short version of that hash
   on each device, and (4) verify that the two values match.  This naive
   approach might yield the following sequence of messages:

       Alice                       Bob
       g^xA -->
                              <-- g^xB
       nA -->
                                 <-- nB
       Computes              Computes
       s = g^xAxB            s = g^xAxB
       h = hash(s|nA|nB)     h = hash(s|nA|nB)
       Displays short        Displays short
       version of h          version of h

   If the two short hashes match, Alice and Bob are supposedly assured
   that they have computed the same secret, but there is a problem.
   Let’s redraw the same message flow, this time involving the attacker
   Eve:
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       Alice                Eve                Bob
       g^xA -->
                            g^xA’-->
                                           <-- g^xB
                         <--g^xB’
       nA -->
                            nA -->
                                             <-- nB
                          Picks nB’
                          smartly
                         <--nB’
       Computes                             Computes
       s’ = g^xAxB’                           s" = g^xA’xB
       h’ = hash(s’|nA|nB’)                    h" = hash(s"|nA|nB)
       Displays short                       Displays short
       version of h’                        version of h"

   In order to pick a nonce nB’ that circumvents this naive security
   measure, Eve runs the following algorithm:

       s’ = g^xAxB’
       s" = g^xA’xB
       repeat
          pick a new version of nB’
          h’ = hash(s’|nA|nB’)
          h" = hash(s"|nA|nB)
       until the short version of h’
       matches the short version of h"

   Running this algorithm will take O(2^b) iterations on average
   (assuming a uniform distribution), where b is the bit length of the
   SAS.  Since hash algorithms are fast, it is possible to try millions
   of values in less than a second.  If the short string is made up of
   fewer than 6 digits, Eve will find a matching nonce quickly, and
   Alice and Bob will hardly notice the delay.  Even if the matching
   string is as long as 8 letters, Eve will probably find a value where
   the short versions of h’ and h" are close enough, e.g. start and end
   with the same two or three letters.  Alice and Bob may well be
   fooled.

   Eve could also utilize the fact that she may freely choose the whole
   input for the hash function and thus choose g^xA’ and g^xB’ so that
   an arbitrary collision (birthday attack) instead of a second preimage
   is sufficient for fooling Alice and Bob.

   The classic solution to such problems is to "commit" a possible
   attacker to a nonce before sending it.  This commitment can be
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   realized by a hash.  In the modified exchange, Alice sends a secure
   hash of her nonce before sending the actual value:

       Alice                       Bob
       g^xA -->
                               <-- g^xB

       Computes              Computes
       s = g^xAxB            s = g^xAxB
       h_a = hash(s|nA) -->
                                 <-- nB
       nA -->
                             verifies h_a == hash(s|nA)
       Computes              Computes
       h = hash(s|nA|nB)     h = hash(s|nA|nB)
       Displays short        Displays short
       version of h          version of h

   Alice will only disclose nA after having confirmation from Bob that
   hash(nA) has been received.  At that point, Eve has a problem.  She
   can still forge the values of the nonces, but she needs to pick the
   nonce nA’ before the actual value of nA has been disclosed.  Eve
   would still have a random chance of fooling Alice and Bob, but it
   will be a very small chance: one in a million if the short
   authentication string is made of 6 digits, even fewer if that string
   is longer.

   Nguyen et al.  [NR11] survey these protocols and compare them with
   respect to the amount of necessary user interaction and the
   computation time needed on the devices.  The authors state that such
   a protocol is optimal with respect to user interaction if it suffices
   for users to verify a single b-bit SAS while having a one-shot attack
   success probability of 2^-b.  Further, n consecutive attacks on the
   protocol must not have a better success probability then n one-shot
   attacks.

   There is still a theoretical problem, if Eve has somehow managed to
   "crack" the hash function.  We can build "defense in depth" by some
   simple measures.  In the design presented above, the hash "h_a"
   depends on the shared secret "s", which acts as a "salt" and reduces
   the effectiveness of potential attacks based on pre-computed
   catalogs.  The simplest design uses a concatenation mechanism, but we
   could instead use a keyed-hash message authentication code (HMAC
   [RFC2104], [RFC6151]), using the shared secret as a key, since the
   HMAC construct has proven very robust over time.  Then, we can
   constrain the size of the random numbers to be exactly the same as
   the output of the hash function.  Hash attacks often require padding
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   the input string with arbitrary data; restraining the size limits the
   likelyhood of such padding.

6.  Privacy Requirements

   Pairing exposes a relation between several devices and their owners.
   Adversaries may attempt to collect this information, for example in
   an attempt to track devices, their owners, or their social graph.  It
   is often argued that pairing could be performed in a safe place, from
   which adversaries are assumed absent, but experience shows that such
   assumptions are often misguided.  It is much safer to acknowledge the
   privacy issues and design the pairing process accordingly.

   In order to start the pairing process, devices must first discover
   each other.  We do not have the option of using the private discovery
   protocol [I-D.ietf-dnssd-privacy] since the privacy of that protocol
   depends on a pre-existing pairing.  In the simplest design, one of
   the devices will announce a user-friendly name using DNS-SD.
   Adversaries could monitor the discovery protocol, and record that
   name.  An alternative would be for one device to announce a random
   name, and communicate it to the other device via some private
   channel.  There is an obvious tradeoff here: friendly names are
   easier to use but less private than random names.  We anticipate that
   different users will choose different tradeoffs, for example using
   friendly names if they assume that the environment is safe, and using
   random names in public places.

   During the pairing process, the two devices establish a connection
   and validate a pairing secret.  As discussed in Section 4, we have to
   assume that adversaries can mount MitM attacks.  The pairing protocol
   can detect such attacks and resist them, but the attackers will have
   access to all messages exchanged before the validation is performed.
   It is important to not exchange any privacy sensitive information
   before that validation.  This includes, for example, the identities
   of the parties or their public keys.

7.  Using TLS

   The pairing algorithms typically combine the establishment of a
   shared secret through an [EC]DH exchange with the verification of
   that secret through displaying and comparing a "short authentication
   string" (SAS).  As explained in Section 5, the secure comparison
   requires a "commit before disclose" mechanism.

   We have three possible designs: (1) create a pairing algorithm from
   scratch, specifying our own cryptographic protocol; (2) use an [EC]DH
   version of TLS to negotiate a shared secret, export the key to the
   application as specified in [RFC5705], and implement the "commit

Kaiser & Huitema         Expires April 26, 2019                [Page 11]



Internet-Draft            Device Pairing Issues             October 2018

   before disclose" and SAS verification as part of the pairing
   application; or, (3) use TLS, integrate the "commit before disclose"
   and SAS verification as TLS extensions, and export the verified key
   to the application as specified in [RFC5705].

   When faced with the same choice, the designers of ZRTP [RFC6189]
   chose to design a new protocol integrated in the general framework of
   real time communications.  We don’t want to follow that path, and
   would rather not create yet another protocol.  We would need to
   reinvent a lot of the negotiation capabilities that are part of TLS,
   not to mention algorithm agility, post quantum, and all that sort of
   things.  It is thus pretty clear that we should use TLS.

   It turns out that there was already an attempt to define SAS
   extensions for TLS ([I-D.miers-tls-sas]).  It is a very close match
   to our third design option, full integration of SAS in TLS, but the
   draft has expired, and there does not seem to be any support for the
   SAS options in the common TLS packages.

   In our design, we will choose the middle ground option -- use TLS for
   [EC]DH, and implement the SAS verification as part of the pairing
   application.  This minimizes dependencies on TLS packages to the
   availability of a key export API following [RFC5705].  We will need
   to specify the hash algorithm used for the SAS computation and
   validation, which carries some of the issues associated with
   "designing our own crypto".  One solution would be to use the same
   hash algorithm negotiated by the TLS connection, but common TLS
   packages do not always make this algorithm identifier available
   through standard APIs.  A fallback solution is to specify a state of
   the art keyed MAC algorithm.

8.  QR codes

   In Section 4.3, we reviewed a number of short range communication
   systems that can be used to facilitate pairing.  Out of these, QR
   codes stand aside because most devices that can display a short
   string can also display the image of a QR code, and because many
   pairing scenarios involve cell phones equipped with cameras capable
   of reading a QR code.

   QR codes are displayed as images.  An adversary equipped with
   powerful cameras could read the QR code just as well as the pairing
   parties.  If the pairing protocol design embedded passwords or pins
   in the QR code, adversaries could access these data and compromise
   the protocol.  On the other hand, there are ways to use QR codes even
   without assuming secrecy.
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   QR codes could be used at two of the three stages of pairing:
   Discovering the peer device, and authenticating the shared secret.
   Using QR codes provides advantages in both phases:

   o  Typical network based discovery involves interaction with two
      devices.  The device to be discovered is placed in "server" mode,
      and waits for requests from the network.  The device performing
      the discovery retrieves a list of candidates from the network.
      When there is more than one such candidate, the device user is
      expected to select the desired target from a list.  In QR code
      mode, the discovered device will display a QR code, which the user
      will scan using the second device.  The QR code will embed the
      device’s name, its IP address, and the port number of the pairing
      service.  The connection will be automatic, without relying on the
      network discovery.  This is arguably less error-prone and safer
      than selecting from a network provided list.

   o  SAS based agreement involves displaying a short string on each
      device’s display, and asking the user to verify that both devices
      display the same string.  In QR code mode, one device could
      display a QR code containing this short string.  The other device
      could scan it and compare it to the locally computed version.
      Because the procedure is automated, there is no dependency on the
      user diligence at comparing the short strings.

   Offering QR codes as an alternative to discovery and agreement is
   straightforward.  If QR codes are used, the pairing program on the
   server side might display something like:

      Please connect to "Bob’s phone 359"
      or scan the following QR code:

       mmmmmmm  m  m mmmmmmm
       # mmm # ## "m # mmm #
       # ### # m" #" # ### #
       #mmmmm# # m m #mmmmm#
       mm m  mm"## m mmm mm
       " ##"mm m"# ####"m""#
       #"mmm mm# m"# ""m" "m
       mmmmmmm #mmm###mm# m
       # mmm #  m "mm " "  "
       # ### # " m #  "## "#
       #mmmmm# ### m"m m  m

   If Alice’s device is capable of reading the QR code, it will just
   scan it, establishes a connection, and run the pairing protocol.
   After the protocol messages have been exchanged, Bob’s device will
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   display a new QR code, encoding the hash code that should be matched.
   The UI might look like this:

      Please scan the following QR code,
      or verify that your device displays
      the number: 388125

       mmmmmmm   mmm mmmmmmm
       # mmm # ""#m# # mmm #
       # ### # "#  # # ### #
       #mmmmm# # m"m #mmmmm#
       mmmmm mmm" m m m m m
        #"m mmm#"#"#"#m m#m
       ""mmmmm"m#""#""m #  m
       mmmmmmm # "m"m "m"#"m
       # mmm # mmmm m "# #"
       # ### # #mm"#"#m "
       #mmmmm# #mm"#""m "m"

      Did the number match (Yes/No)?

   With the use of QR code, the pairing is established with little
   reliance on user judgment, which is arguably safer.

9.  Intra User Pairing and Transitive Pairing

   There are two usage modes for pairing: inter-user, and intra-user.
   Users have multiple devices.  The simplest design is to not
   distinguish between pairing devices belonging to two users, e.g.,
   Alice’s phone and Bob’s phone, and devices belonging to the same
   user, e.g., Alice’s phone and her laptop.  This will most certainly
   work, but it raises the problem of transitivity.  If Bob needs to
   interact with Alice, should he install just one pairing for "Alice
   and Bob", or should he install four pairings between Alice phone and
   laptop and Bob phone and laptop?  Also, what happens if Alice gets a
   new phone?

   One tempting response is to devise a synchronization mechanism that
   will let devices belonging to the same user share their pairings with
   other users.  But it is fairly obvious that such service will have to
   be designed cautiously.  The pairing system relies on shared secrets.
   It is much easier to understand how to manage secrets shared between
   exactly two parties than secrets shared with an unspecified set of
   devices.

   Transitive pairing raises similar issues.  Suppose that a group of
   users wants to collaborate.  Will they need to set up a fully
   connected graph of pairings using the simple peer-to-peer mechanism,
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   or could they use some transitive set, so that if Alice is connected
   with Bob and Bob with Carol, Alice automatically gets connected with
   Carol?  Such transitive mechanisms could be designed, e.g. using a
   variation of Needham-Scroeder symmetric key protocol [NS1978], but it
   will require some extensive work.  Groups can of course use simpler
   solution, e.g., build some star topology.

   Given the time required, intra-user pairing synchronization
   mechanisms and transitive pairing mechanisms are left for further
   study.

10.  Security Considerations

   This document lists a set of security issues that have to be met by
   pairing protocols, but does not specify any protocol.

11.  IANA Considerations

   This draft does not require any IANA action.
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1.  Introduction

   DNS-SD [RFC6763] over mDNS [RFC6762] enables configurationless
   service discovery in local networks.  It is very convenient for
   users, but it requires the public exposure of the offering and
   requesting identities along with information about the offered and
   requested services.  Parts of the published information can seriously
   breach the user’s privacy.  These privacy issues and potential
   solutions are discussed in [KW14a] and [KW14b].

   There are cases when nodes connected to a network want to provide or
   consume services without exposing their identity to the other parties
   connected to the same network.  Consider for example a traveler
   wanting to upload pictures from a phone to a laptop when connected to
   the Wi-Fi network of an Internet cafe, or two travelers who want to
   share files between their laptops when waiting for their plane in an
   airport lounge.

   We expect that these exchanges will start with a discovery procedure
   using DNS-SD [RFC6763] over mDNS [RFC6762].  One of the devices will
   publish the availability of a service, such as a picture library or a
   file store in our examples.  The user of the other device will
   discover this service, and then connect to it.

   When analyzing these scenarios in [I-D.ietf-dnssd-prireq], we find
   that the DNS-SD messages leak identifying information such as the
   instance name, the host name or service properties.  We review the
   design constraint of a solution in Section 2, and describe the
   proposed solution in Section 3.

   While we focus on a mDNS-based distribution of the DNS-SD resource
   records, our solution is agnostic about the distribution method and
   also works with other distribution methods, e.g. the classical
   hierarchical DNS.

   The solution presented here relies on 1-1 pairings between clients
   and servers.  Discussions during the IETF 101 in London showed that
   this requirement of a full mesh of pairings poses some scalability
   issues, as explained in [I-D.ietf-dnssd-privacyscaling].  The next
   revision of this draft may propose a different mechanism.
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1.1.  Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Design of the Private DNS-SD Discovery Service

   In this section, we present the design of a two-stage solution that
   enables private use of DNS-SD, without affecting existing users.  The
   solution is largely based on the architecture proposed in [KW14b] and
   [K17], which separates the general private discovery problem in three
   components.  The first component is an offline pairing mechanism,
   which is performed only once per pair of users.  It establishes a
   shared secret over an authenticated channel, allowing devices to
   authenticate using this secret without user interaction at any later
   point in time.  We use the pairing system proposed in
   [I-D.ietf-dnssd-pairing].

   The further two components are online (in contrast to pairing they
   are performed anew each time joining a network) and compose the two
   service discovery stages, namely

   o  Discovery of the Private Discovery Service -- the first stage --
      in which hosts discover the Private Discovery Service (PDS), a
      special service offered by every host supporting our extension.
      After the discovery, hosts connect to the PSD offered by paired
      peers.

   o  Actual Service Discovery -- the second stage -- is performed
      through the Private Discovery Service, which only accepts
      encrypted messages associated with an authenticated session; thus
      not compromising privacy.

   In other words, the hosts first discover paired peers and then
   directly engage in privacy preserving service discovery.

   The stages are independent with respect to means used for
   transmitting the necessary data.  While in our extension the messages
   for the first stage are transmitted using IP multicast, the messages
   for the second stage are transmitted via unicast.  One could also
   imagine using a Distributed Hash Table for the first stage, being
   completely independent of multicast.
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2.1.  Device Pairing

   Any private discovery solution needs to differentiate between
   authorized devices, which are allowed to get information about
   discoverable entities, and other devices, which should not be aware
   of the availability of private entities.  The commonly used solution
   to this problem is establishing a "device pairing".

   Device pairing has to be performed only once per pair of users.  This
   is important for user-friendliness, as it is the only step that
   demands user-interaction.  After this single pairing, privacy
   preserving service discovery works fully automatically.  In this
   document, we utilize [I-D.ietf-dnssd-pairing] as the pairing
   mechanism.

   The pairing yields a mutually authenticated shared secret, and
   optionally mutually authenticated public keys or certificates added
   to a local web of trust.  Public key technology has many advantages,
   but shared secrets are typically easier to handle on small devices.

2.2.  Discovery of the Private Discovery Service

   The first stage of service discovery is to check whether instances of
   compatible Private Discovery Services are available in the local
   scope.  The goal of that stage is to identify devices that share a
   pairing with the querier, and are available locally.  The service
   instances can be browsed using regular DNS-SD procedures, and then
   filtered so that only instances offered by paired devices are
   retained.

2.2.1.  Obfuscated Instance Names

   The instance names for the Private Discovery Service are obfuscated,
   so that authorized peers can associate the instance with its
   publisher, but unauthorized peers can only observe what looks like a
   random name.  To achieve this, the names are composed as the
   concatenation of a nonce and a proof, which is composed by hashing
   the nonce with a pairing key:

      PrivateInstanceName = <nonce>|<proof>
      proof = hash(<nonce>|<key>)

   The publisher will publish as many instances as it has established
   pairings.

   The discovering party that looks for instances of the service will
   receive lists of advertisements from nodes present on the network.
   For each advertisement, it will parse the instance name, and then,
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   for each available pairing key, compares the proof to the hash of the
   nonce concatenated with this pairing key.  If there is no match, it
   discards the instance name.  If there is a match, it has discovered a
   peer.

2.2.2.  Using a Predictable Nonce

   Assume that there are N nodes on the local scope, and that each node
   has on average M pairings.  Each node will publish on average M
   records, and the node engaging in discovery may have to process on
   average N*M instance names.  The discovering node will have to
   compute on average M potential hashes for each nonce.  The number of
   hash computations would scale as O(N*M*M), which means that it could
   cause a significant drain of resource in large networks.

   In order to minimize the amount of computing resource, we suggest
   that the nonce be derived from the current time, for example set to a
   representation of the current time rounded to some period.  With this
   convention, receivers can predict the nonces that will appear in the
   published instances.

   The publishers will have to create new records at the end of each
   rounding period.  If the rounding period is set too short, they will
   have to repeat that very often, which is inefficient.  On the other
   hand, if the rounding period is too long, the system may be exposed
   to replay attacks.  We initially proposed a value of about 5 minutes,
   which would work well for the mDNS variant of DNS-SD.  However, this
   may cause an excessive number of updates for the DNS server based
   version of DNS-SD.  We propose to set a value of about 30 minutes,
   which seems to be a reasonable compromise.

   Receivers can pre-calculate all the M relevant proofs once per time
   interval and then establish a mapping from the corresponding instance
   names to the pairing data in form of a hash table.  These M relevant
   proofs are the proofs resulting from hashing a host’s M pairing keys
   alongside the current nonce.  Each time they receive an instance
   name, they can test in O(1) time if the received service information
   is relevant or not.

   Unix defines a 32 bit time stamp as the number of seconds elapsed
   since January 1st, 1970 not counting leap seconds.  The most
   significant 20 bits of this 32 bit number represent the number of
   2048 seconds intervals since the epoch. 2048 seconds correspond to 34
   minutes and 8 seconds, which is close enough to our design goal of 30
   minutes.  We will thus use this 20 bit number as nonce, which for
   simplicity will be padded zeroes to 24 bits and encoded in 3 octets.
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   For coping with time skew, receivers pre-calculate proofs for the
   respective next time interval and store hash tables for the last, the
   current, and the next time interval.  When receiving a service
   instance name, receivers first check whether the nonce corresponds to
   the current, the last or the next time interval, and if so, check
   whether the instance name is in the corresponding hash table.  For
   (approximately) meeting our design goal of 5 min validity, the last
   time interval may only be considered if the current one is less than
   half way over and the next time interval may only be considered if
   the current time interval is more than half way over.

   Publishers will need to compute O(M) hashes at most once per time
   stamp interval.  If records can be created "on the fly", publishers
   will only need to perform that computation upon receipt of the first
   query during a given interval, and cache the computed results for the
   remainder of the interval.  There are however scenarios in which
   records have to be produced in advance, for example when records are
   published within a scope defined by a domain name and managed by a
   "classic" DNS server.  In such scenarios, publishers will need to
   perform the computations and publication exactly once per time stamp
   interval.

2.2.3.  Using a Short Proof

   Devices will have to publish as many instance names as they have
   peers.  The instance names will have to be represented via a text
   string, which means that the binary concatenation of nonce and proof
   will have to be encoded using a binary-to-text conversion such as
   BASE64 ([RFC2045] section 6.8) or BASE32 ([RFC4648] section 6).

   Using long proofs, such as the full output of SHA256 [RFC4055], would
   generate fairly long instance names: 48 characters using BASE64, or
   56 using BASE32.  These long names would inflate the network traffic
   required when discovering the privacy service.  They would also limit
   the number of DNS-SD PTR records that could be packed in a single
   1500 octet sized packet, to 23 or fewer with BASE64, or 20 or fewer
   with BASE32.

   Shorter proofs lead to shorter messages, which is more efficient as
   long as we do not encounter too many collisions.  A collision will
   happen if the proof computed by the publisher using one key matches a
   proof computed by a receiver using another key.  If a receiver
   mistakenly believes that a proof fits one of its peers, it will
   attempt to connect to the service as explained in section Section 3.5
   but in the absence of the proper pairwise shared key, the connection
   will fail.  This will not create an actual error, but the probability
   of such events should be kept low.
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   The following table provides the probability that a discovery agent
   maintaining 100 pairings will observe a collision after receiving
   100000 advertisement records.  It also provides the number of
   characters required for the encoding of the corresponding instance
   name in BASE64 or BASE32, assuming 24 bit nonces.

                 +-------+------------+--------+--------+
                 | Proof | Collisions | BASE64 | BASE32 |
                 +-------+------------+--------+--------+
                 |   24  |  5.96046%  |   8    |   16   |
                 |   32  |  0.02328%  |   11   |   16   |
                 |   40  |  0.00009%  |   12   |   16   |
                 |   48  |  3.6E-09   |   12   |   16   |
                 |   56  |  1.4E-11   |   15   |   16   |
                 +-------+------------+--------+--------+

                                  Table 1

   The table shows that for a proof, 24 bits would be too short. 32 bits
   might be long enough, but the BASE64 encoding requires padding if the
   input is not an even multiple of 24 bits, and BASE32 requires padding
   if the input is not a multiple of 40 bits.  Given that, the desirable
   proof lengths are thus 48 bits if using BASE64, or 56 bits if using
   BASE32.  The resulting instance name will be either 12 characters
   long with BASE64, allowing 54 advertisements in an 1500 byte mDNS
   message, or 16 characters long with BASE32, allowing 47
   advertisements per message.

   In the specification section, we will assume BASE64, and 48 bit
   proofs composed of the first 6 bytes of a SHA256 hash.

2.2.4.  Direct Queries

   The preceding sections assume that the discovery is performed using
   the classic DNS-SD process, in which a query for all available
   "instance names" of a service provides a list of PTR records.  The
   discoverer will then select the instance names that correspond to its
   peers, and request the SRV and TXT records corresponding to the
   service instance, and then obtain the relevant A or AAAA records.
   This is generally required in DNS-SD because the instance names are
   not known in advance, but for the Private Discovery Service the
   instance names can be predicted, and a more efficient Direct Query
   method can be used.

   At a given time, the node engaged in discovery can predict the nonce
   that its peer will use, since that nonce is composed by rounding the
   current time.  The node can also compute the proofs that its peers
   might use, since it knows the nonce and the keys.  The node can thus
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   build a list of instance names, and directly query the SRV records
   corresponding to these names.  If peers are present, they will answer
   directly.

   This "direct query" process will result in fewer network messages
   than the regular DNS-SD query process in some circumstances,
   depending on the number of peers per node and the number of nodes
   publishing the presence discovery service in the desired scope.

   When using mDNS, it is possible to pack multiple queries in a single
   broadcast message.  Using name compression and 12 characters per
   instance name, it is possible to pack 70 queries in a 1500 octet mDNS
   multicast message.  It is also possible to request unicast replies to
   the queries, resulting in significant efficiency gains in wireless
   networks.

2.3.  Private Discovery Service

   The Private Discovery Service discovery allows discovering a list of
   available paired devices, and verifying that either party knows the
   corresponding shared secret.  At that point, the querier can engage
   in a series of directed discoveries.

   We have considered defining an ad-hoc protocol for the private
   discovery service, but found that just using TLS would be much
   simpler.  The directed Private Discovery Service is just a regular
   DNS-SD service, accessed over TLS, using the encapsulation of DNS
   over TLS defined in [RFC7858].  The main difference with plain DNS
   over TLS is the need for an authentication based on pre-shared keys.

   We assume that the pairing process has provided each pair of
   authorized client and server with a shared secret.  We can use that
   shared secret to provide mutual authentication of clients and servers
   using "Pre-Shared Key" authentication, as defined in [RFC4279] and
   incorporated in the latest version of TLS [I-D.ietf-tls-tls13].

   One difficulty is the reliance on a key identifier in the protocol.
   For example, in TLS 1.3 the PSK extension is defined as:
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      opaque psk_identity<0..2^16-1>;

      struct {
          select (Role) {
              case client:
                  psk_identity identities<2..2^16-1>;

              case server:
                  uint16 selected_identity;
          }
      } PreSharedKeyExtension

   According to the protocol, the PSK identity is passed in clear text
   at the beginning of the key exchange.  This is logical, since server
   and clients need to identify the secret that will be used to protect
   the connection.  But if we used a static identifier for the key,
   adversaries could use that identifier to track server and clients.
   The solution is to use a time-varying identifier, constructed exactly
   like the "proof" described in Section 2.2, by concatenating a nonce
   and the hash of the nonce with the shared secret.

2.3.1.  A Note on Private DNS Services

   Our solution uses a variant of the DNS over TLS protocol [RFC7858]
   defined by the DNS Private Exchange working group (DPRIVE).  DPRIVE
   further published an UDP variant, DNS over DTLS [RFC8094], which
   would also be a candidate.

   DPRIVE and Private Discovery, however, solve two somewhat different
   problems.  While DPRIVE is concerned with the confidentiality of DNS
   transactions addressing the problems outlined in [RFC7626], DPRIVE
   does not address the confidentiality or privacy issues with
   publication of services, and is not a direct solution to DNS-SD
   privacy:

   o  Discovery queries are scoped by the domain name within which
      services are published.  As nodes move and visit arbitrary
      networks, there is no guarantee that the domain services for these
      networks will be accessible using DNS over TLS or DNS over DTLS.

   o  Information placed in the DNS is considered public.  Even if the
      server does support DNS over TLS, third parties will still be able
      to discover the content of PTR, SRV and TXT records.

   o  Neither DNS over TLS nor DNS over DTLS applies to mDNS.
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   In contrast, we propose using mutual authentication of the client and
   server as part of the TLS solution, to ensure that only authorized
   parties learn the presence of a service.

2.4.  Randomized Host Names

   Instead of publishing their actual host names in the SRV records,
   nodes could publish randomized host names.  That is the solution
   argued for in [RFC8117].

   Randomized host names will prevent some of the tracking.  Host names
   are typically not visible by the users, and randomizing host names
   will probably not cause much usability issues.

2.5.  Timing of Obfuscation and Randomization

   It is important that the obfuscation of instance names is performed
   at the right time, and that the obfuscated names change in synchrony
   with other identifiers, such as MAC Addresses, IP Addresses or host
   names.  If the randomized host name changed but the instance name
   remained constant, an adversary would have no difficulty linking the
   old and new host names.  Similarly, if IP or MAC addresses changed
   but host names remained constant, the adversary could link the new
   addresses to the old ones using the published name.

   The problem is handled in [RFC8117], which recommends to pick a new
   random host name at the time of connecting to a new network.  New
   instance names for the Private Discovery Services should be composed
   at the same time.

3.  Private Discovery Service Specification

   The proposed solution uses the following components:

   o  Host name randomization to prevent tracking.

   o  Device pairing yielding pairwise shared secrets.

   o  A Private Discovery Server (PDS) running on each host.

   o  Discovery of the PDS instances using DNS-SD.

   These components are detailed in the following subsections.

Huitema & Kaiser         Expires April 18, 2019                [Page 11]



Internet-Draft          DNS-SD Privacy Extensions           October 2018

3.1.  Host Name Randomization

   Nodes publishing services with DNS-SD and concerned about their
   privacy MUST use a randomized host name.  The randomized name MUST be
   changed when network connectivity changes, to avoid the correlation
   issues described in Section 2.5.  The randomized host name MUST be
   used in the SRV records describing the service instance, and the
   corresponding A or AAAA records MUST be made available through DNS or
   mDNS, within the same scope as the PTR, SRV and TXT records used by
   DNS-SD.

   If the link-layer address of the network connection is properly
   obfuscated (e.g. using MAC Address Randomization), the Randomized
   Host Name MAY be computed using the algorithm described in section
   3.7 of [RFC7844].  If this is not possible, the randomized host name
   SHOULD be constructed by simply picking a 48 bit random number
   meeting the Randomness Requirements for Security expressed in
   [RFC4075], and then use the hexadecimal representation of this number
   as the obfuscated host name.

3.2.  Device Pairing

   Nodes that want to leverage the Private Directory Service for private
   service discovery among peers MUST share a secret with each of these
   peers.  Each shared secret MUST be a 256 bit randomly chosen number.
   We RECOMMEND using the pairing mechanism proposed in
   [I-D.ietf-dnssd-pairing] to establish these secrets.

3.3.  Private Discovery Server

   A Private Discovery Server (PDS) is a minimal DNS server running on
   each host.  Its task is to offer resource records corresponding to
   private services only to authorized peers.  These peers MUST share a
   secret with the host (see Section 3.2).  To ensure privacy of the
   requests, the service is only available over TLS [RFC5246], and the
   shared secrets are used to mutually authenticate peers and servers.

   The Private Name Server SHOULD support DNS push notifications
   [I-D.ietf-dnssd-push], e.g. to facilitate an up-to-date contact list
   in a chat application without polling.

3.3.1.  Establishing TLS Connections

   The PDS MUST only answer queries via DNS over TLS [RFC7858] and MUST
   use a PSK authenticated TLS handshake [RFC4279].  The client and
   server SHOULD negotiate a forward secure cipher suite such as DHE-PSK
   or ECDHE-PSK when available.  The shared secret exchanged during
   pairing MUST be used as PSK.  To guarantee interoperability,
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   implementations of the Private Name Server MUST support
   TLS_PSK_WITH_AES_256_GCM_SHA384.

   When using the PSK based authentication, the "psk_identity" parameter
   identifying the pre-shared key MUST be identical to the "Instance
   Identifier" defined in Section 3.4, i.e. 24 bit nonce and 48 bit
   proof encoded in BASE64 as 12 character string.  The server will use
   the pairing key associated with this instance identifier.

3.4.  Publishing Private Discovery Service Instances

   Nodes that provide the Private Discovery Service SHOULD advertise
   their availability by publishing instances of the service through
   DNS-SD.

   The DNS-SD service type for the Private Discovery Service is
   "_pds._tcp".

   Each published instance describes one server and one pairing.  In the
   case where a node manages more than one pairing, it should publish as
   many instances as necessary to advertise the PDS to all paired peers.

   Each instance name is composed as follows:

      pick a 24 bit nonce, set to the 20 most significant bits of the
      32 bit Unix GMT time padded with 4 zeroes.

         For example, on August 22, 2017 at 20h 4 min and 54 seconds
         international time, the Unix 32 bit time had the
         hexadecimal value 0x599C8E68. The corresponding nonce
         would be set to the 24 bits: 0x599C80.

      compute a 48 bit proof:
         proof = first 48 bits of HASH(<nonce>|<pairing key>)

      set the 72 bit binary identifier as the concatenation
      of nonce and proof

      set instance_name = BASE64(binary identifier)

   In this formula, HASH SHOULD be the function SHA256 defined in
   [RFC4055], and BASE64 is defined in section 6.8 of [RFC2045].  The
   concatenation of a 24 bit nonce and 48 bit proof result in a 72 bit
   string.  The BASE64 conversion is 12 characters long per [RFC6763].
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3.5.  Discovering Private Discovery Service Instances

   Nodes that wish to discover Private Discovery Service Instances
   SHOULD issue a DNS-SD discovery request for the service type
   "_pds._tcp".  They MAY, as an alternative, use the Direct Discovery
   procedure defined in Section 3.6.  When using the Direct Discovery
   procedure over mDNS, nodes SHOULD always set the QU-bit (unicast
   response requested, see [RFC6762] Section 5.4) because responses
   related to a "_pds._tcp" instance are only relevant for the querying
   node itself.

   When nodes send a DNS-SD discovery request, they will receive in
   response a series of PTR records, each providing the name of one of
   the instances present in the scope.

   For each time interval, the querier SHOULD pre-calculate a hash table
   mapping instance names to pairings according to the following
   conceptual algorithm:

     nonce = 20 bit rounded time stamp of the \
       respective next time interval padded to \
       24 bits with four zeroes
     for each available pairing
       retrieve the key Xj of pairing number j
       compute F = first 48 bits of hash(nonce, Xj)
       construct the binary instance_name as described \
         in the previous section
       instance_names[nonce][instance_name] = Xj;

   The querier SHOULD store the hash tables for the previous, the
   current, and the next time interval.

   The querier SHOULD examine each instance to see whether it
   corresponds to one of its available pairings, according to the
   following conceptual algorithm:
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      for each received instance_name:
         convert the instance name to binary using BASE64
         if the conversion fails,
            discard the instance.
         if the binary instance length is not 72 bits,
            discard the instance.

         nonce = first 24 bits of binary.

         Check that the 4 least significant bits of the nonce
         have the value 0, and that the 20 most significant
         bits of the nonce match the first 20 bits of
         the current time, or the previous interval (20 bit number
         minus 1) if the current interval is less than half over,
         or the next interval (20 bit number plus 1) if the
         current interval is more than half over. If the
         nonce does not match an acceptable value, discard
         the instance.

         if ((Xj = instance_names[nonce][instance_name]) != null)
           mark the pairing number j as available

   The check of the current time is meant to mitigate replay attacks,
   while not mandating a time synchronization precision better than 15
   minutes.

   Once a pairing has been marked available, the querier SHOULD try
   connecting to the corresponding instance, using the selected key.
   The connection is likely to succeed, but it MAY fail for a variety of
   reasons.  One of these reasons is the probabilistic nature of the
   proof, which entails a small chance of "false positive" match.  This
   will occur if the hash of the nonce with two different keys produces
   the same result.  In that case, the TLS connection will fail with an
   authentication error or a decryption error.

3.6.  Direct Discovery of Private Discovery Service Instances

   Nodes that wish to discover Private Discovery Service Instances MAY
   use the following Direct Discovery procedure instead of the regular
   DNS-SD Discovery explained in Section 3.5.

   To perform Direct Discovery, nodes should compose a list of Private
   Discovery Service Instances Names.  There will be one name for each
   pairing available to the node.  The Instance name for each name will
   be composed of a nonce and a proof, using the algorithm specified in
   Section 3.4.
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   The querier will issue SRV record queries for each of these names.
   The queries will only succeed if the corresponding instance is
   present, in which case a pairing is discovered.  After that, the
   querier SHOULD try connecting to the corresponding instance, as
   explained in Section 3.4.

3.7.  Using the Private Discovery Service

   Once instances of the Private Discovery Service have been discovered,
   peers can establish TLS connections and send DNS requests over these
   connections, as specified in DNS-SD.

4.  Security Considerations

   This document specifies a method for protecting the privacy of nodes
   that offer and query for services.  This is especially useful when
   operating in a public space.  Hiding the identity of the publishing
   nodes prevents some forms of "targeting" of high value nodes.
   However, adversaries can attempt various attacks to break the
   anonymity of the service, or to deny it.  A list of these attacks and
   their mitigations are described in the following sections.

4.1.  Attacks Against the Pairing System

   There are a variety of attacks against pairing systems, which may
   result in compromised pairing secrets.  If an adversary manages to
   acquire a compromised key, the adversary will be able to perform
   private service discovery according to Section 3.5.  This will allow
   tracking of the service.  The adversary will also be able to discover
   which private services are available for the compromised pairing.

   Attacks on pairing systems are detailed in [I-D.ietf-dnssd-pairing].

4.2.  Denial of Discovery of the Private Discovery Service

   The algorithm described in Section 3.5 scales as O(M*N), where M is
   the number of pairings per node and N is the number of nodes in the
   local scope.  Adversaries can attack this service by publishing
   "fake" instances, effectively increasing the number N in that scaling
   equation.

   Similar attacks can be mounted against DNS-SD: creating fake
   instances will generally increase the noise in the system and make
   discovery less usable.  Private Discovery Service discovery SHOULD
   use the same mitigations as DNS-SD.

   The attack could be amplified if the clients needed to compute proofs
   for all the nonces presented in Private Discovery Service Instance
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   names.  This is mitigated by the specification of nonces as rounded
   time stamps in Section 3.5.  If we assume that timestamps must not be
   too old, there will be a finite number of valid rounded timestamps at
   any time.  Even if there are many instances present, they would all
   pick their nonces from this small number of rounded timestamps, and a
   smart client will make sure that proofs are only computed once per
   valid time stamp.

4.3.  Replay Attacks Against Discovery of the Private Discovery Service

   Adversaries can record the service instance names published by
   Private Discovery Service instances, and replay them later in
   different contexts.  Peers engaging in discovery can be misled into
   believing that a paired server is present.  They will attempt to
   connect to the absent peer, and in doing so will disclose their
   presence in a monitored scope.

   The binary instance identifiers defined in Section 3.4 start with 24
   bits encoding the most significant bits of the "UNIX" time.  In order
   to protect against replay attacks, clients SHOULD verify that this
   time is reasonably recent, as specified in Section 3.5.

4.4.  Denial of Private Discovery Service

   The Private Discovery Service is only available through a mutually
   authenticated TLS connection, which provides state-of-the-art
   protection mechanisms.  However, adversaries can mount a denial of
   service attack against the service.  In the absence of shared
   secrets, the connections will fail, but the servers will expend some
   CPU cycles defending against them.

   To mitigate such attacks, nodes SHOULD restrict the range of network
   addresses from which they accept connections, matching the expected
   scope of the service.

   This mitigation will not prevent denial of service attacks performed
   by locally connected adversaries; but protecting against local denial
   of service attacks is generally very difficult.  For example, local
   attackers can also attack mDNS and DNS-SD by generating a large
   number of multicast requests.

4.5.  Replay Attacks against the Private Discovery Service

   Adversaries may record the PSK Key Identifiers used in successful
   connections to a private discovery service.  They could attempt to
   replay them later against nodes advertising the private service at
   other times or at other locations.  If the PSK identifier is still
   valid, the server will accept the TLS connection, and in doing so
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   will reveal being the same server observed at a previous time or
   location.

   The PSK identifiers defined in Section 3.3.1 start with the 24 most
   significant bits of the "UNIX" time.  In order to mitigate replay
   attacks, servers SHOULD verify that this time is reasonably recent,
   and fail the connection if it is too old, or if it occurs too far in
   the future.

   The processing of timestamps is however affected by the accuracy of
   computer clocks.  If the check is too strict, reasonable connections
   could fail.  To further mitigate replay attacks, servers MAY record
   the list of valid PSK identifiers received in a recent past, and fail
   connections if one of these identifiers is replayed.

4.6.  Replay attacks and clock synchronization

   The mitigation of replay attacks relies on verification of the time
   encoded in the nonce.  This verification assumes that the hosts
   engaged in discovery have a reasonably accurate sense of the current
   time.

4.7.  Fingerprinting the number of published instances

   Adversaries could monitor the number of instances published by a
   particular device, which in the absence of mitigations will reflect
   the number of pairings established by that device.  This number will
   probably vary between 1 and maybe 100, providing the adversary with
   maybe 6 or 7 bits of input in a fingerprinting algorithm.

   Devices MAY protect against this fingerprinting by publishing a
   number of "fake" instances in addition to the real ones.  The fake
   instance identifiers will contain the same nonce as the genuine
   instance identifiers, and random bits instead of the proof.  Peers
   should be able to quickly discard these fake instances, as the proof
   will not match any of the values that they expect.  One plausible
   padding strategy is to ensure that the total number of published
   instances, either fake or genuine, matches one of a few values such
   as 16, 32, 64, or higher powers of 2.

5.  IANA Considerations

   This draft does not require any IANA action.
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Abstract

   The Domain Name System (DNS) was designed to return matching records
   efficiently for queries for data that are relatively static.  When
   those records change frequently, DNS is still efficient at returning
   the updated results when polled, as long as the polling rate is not
   too high.  But there exists no mechanism for a client to be
   asynchronously notified when these changes occur.  This document
   defines a mechanism for a client to be notified of such changes to
   DNS records, called DNS Push Notifications.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 15, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Domain Name System (DNS) records may be updated using DNS Update
   [RFC2136].  Other mechanisms such as a Discovery Proxy [DisProx] can
   also generate changes to a DNS zone.  This document specifies a
   protocol for DNS clients to subscribe to receive asynchronous
   notifications of changes to RRsets of interest.  It is immediately
   relevant in the case of DNS Service Discovery [RFC6763] but is not
   limited to that use case, and provides a general DNS mechanism for
   DNS record change notifications.  Familiarity with the DNS protocol
   and DNS packet formats is assumed [RFC1034] [RFC1035] [RFC6895].

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.  These words may also appear in this
   document in lower case as plain English words, absent their normative
   meanings.

1.2.  Fatal Errors

   Certain invalid situations are described in this specification, like
   a server sending a Push Notification subscription request to a
   client, or a client sending a Push Notification response to a server.
   These should never occur with a correctly implemented client and
   server, and if they do occur then they indicate a serious
   implementation error.  In these extreme cases there is no reasonable
   expectation of a graceful recovery, and the recipient detecting the
   error should respond by unilaterally aborting the session without
   regard for data loss.  Such cases are addressed by having an engineer
   investigate the cause of the failure and fixing the problem in the
   software.

   Where this specification says "forcibly abort", it means sending a
   TCP RST to terminate the TCP connection, and the TLS session running
   over that TCP connection.  In the BSD Sockets API, this is achieved
   by setting the SO_LINGER option to zero before closing the socket.
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2.  Motivation

   As the domain name system continues to adapt to new uses and changes
   in deployment, polling has the potential to burden DNS servers at
   many levels throughout the network.  Other network protocols have
   successfully deployed a publish/subscribe model following the
   Observer design pattern [obs].  XMPP Publish-Subscribe [XEP0060] and
   Atom [RFC4287] are examples.  While DNS servers are generally highly
   tuned and capable of a high rate of query/response traffic, adding a
   publish/subscribe model for tracking changes to DNS records can
   deliver more timely notification of changes with reduced CPU usage
   and lower network traffic.

   Multicast DNS [RFC6762] implementations always listen on a well known
   link-local IP multicast group address, and changes are sent to that
   multicast group address for all group members to receive.  Therefore,
   Multicast DNS already has asynchronous change notification
   capability.  When DNS Service Discovery [RFC6763] is used across a
   wide area network using Unicast DNS (possibly facilitated via a
   Discovery Proxy [DisProx]) it would be beneficial to have an
   equivalent capability for Unicast DNS, to allow clients to learn
   about DNS record changes in a timely manner without polling.

   The DNS Long-Lived Queries (LLQ) mechanism [LLQ] is an existing
   deployed solution to provide asynchronous change notifications, used
   by Apple’s Back to My Mac [RFC6281] service introduced in Mac OS X
   10.5 Leopard in 2007.  Back to My Mac was designed in an era when the
   data center operations staff asserted that it was impossible for a
   server to handle large numbers of mostly-idle TCP connections, so LLQ
   was defined as a UDP-based protocol, effectively replicating much of
   TCP’s connection state management logic in user space, and creating
   its own imitation of existing TCP features like the three-way
   handshake, flow control, and reliability.

   This document builds on experience gained with the LLQ protocol, with
   an improved design.  Instead of using UDP, this specification uses
   DNS Stateful Operations (DSO) [RFC8490] running over TLS over TCP,
   and therefore doesn’t need to reinvent existing TCP functionality.
   Using TCP also gives long-lived low-traffic connections better
   longevity through NAT gateways without depending on the gateway to
   support NAT Port Mapping Protocol (NAT-PMP) [RFC6886] or Port Control
   Protocol (PCP) [RFC6887], or resorting to excessive keepalive
   traffic.
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3.  Overview

   A DNS Push Notification client subscribes for Push Notifications for
   a particular RRset by connecting to the appropriate Push Notification
   server for that RRset, and sending DSO message(s) indicating the
   RRset(s) of interest.  When the client loses interest in receiving
   further updates to these records, it unsubscribes.

   The DNS Push Notification server for a DNS zone is any server capable
   of generating the correct change notifications for a name.  It may be
   a primary, secondary, or stealth name server [RFC7719].

   The "_dns-push-tls._tcp.<zone>" SRV record for a zone MAY reference
   the same target host and port as that zone’s
   "_dns-update-tls._tcp.<zone>" SRV record.  When the same target host
   and port is offered for both DNS Updates and DNS Push Notifications,
   a client MAY use a single DSO session to that server for both DNS
   Updates and DNS Push Notification Subscriptions.  DNS Updates and DNS
   Push Notifications may be handled on different ports on the same
   target host, in which case they are not considered to be the "same
   server" for the purposes of this specification, and communications
   with these two ports are handled independently.  Supporting DNS
   Updates and DNS Push Notifications on the same server is OPTIONAL.  A
   DNS Push Notification server is not required to support DNS Update.

   Standard DNS Queries MAY be sent over a DNS Push Notification (i.e.,
   DSO) session.  For any zone for which the server is authoritative, it
   MUST respond authoritatively for queries for names falling within
   that zone (e.g., the "_dns-push-tls._tcp.<zone>" SRV record) both for
   normal DNS queries and for DNS Push Notification subscriptions.  For
   names for which the server is acting as a recursive resolver (e.g.,
   when the server is the local recursive resolver) for any query for
   which it supports DNS Push Notification subscriptions, it MUST also
   support standard queries.

   DNS Push Notifications impose less load on the responding server than
   rapid polling would, but Push Notifications do still have a cost, so
   DNS Push Notification clients MUST NOT recklessly create an excessive
   number of Push Notification subscriptions.  Specifically:

   (a) A subscription should only be active when there is a valid reason
   to need live data (for example, an on-screen display is currently
   showing the results to the user) and the subscription SHOULD be
   cancelled as soon as the need for that data ends (for example, when
   the user dismisses that display).  In the case of a device like a
   smartphone which, after some period of inactivity, goes to sleep or
   otherwise darkens its screen, it should cancel its subscriptions when
   darkening the screen (since the user cannot see any changes on the
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   display anyway) and reinstate its subscriptions when re-awakening
   from display sleep.

   (b) A DNS Push Notification client SHOULD NOT routinely keep a DNS
   Push Notification subscription active 24 hours a day, 7 days a week,
   just to keep a list in memory up to date so that if the user does
   choose to bring up an on-screen display of that data, it can be
   displayed really fast.  DNS Push Notifications are designed to be
   fast enough that there is no need to pre-load a "warm" list in memory
   just in case it might be needed later.

   Generally, as described in the DNS Stateful Operations specification
   [RFC8490], a client must not keep a DSO session to a server open
   indefinitely if it has no subscriptions (or other operations) active
   on that session.  A client may close a DSO session immediately it
   becomes idle, and then if needed in the future, open a new session
   when required.  Alternatively, a client may speculatively keep an
   idle DSO session open for some time, subject to the constraint that
   it must not keep a session open that has been idle for more than the
   session’s idle timeout (15 seconds by default) [RFC8490].

   Note that a DSO session that has an active DNS Push Notification
   subscription is not considered idle, even if there is no traffic
   flowing for an extended period of time.  In this case the DSO
   inactivity timeout does not apply, because the session is not
   inactive, but the keepalive interval does still apply, to ensure
   generation of sufficient messages to maintain state in middleboxes
   (such at NAT gateways or firewalls) and for the client and server to
   periodically verify that they still have connectivity to each other.
   This is described in Section 6.2 of the DSO specification [RFC8490].

4.  State Considerations

   Each DNS Push Notification server is capable of handling some finite
   number of Push Notification subscriptions.  This number will vary
   from server to server and is based on physical machine
   characteristics, network bandwidth, and operating system resource
   allocation.  After a client establishes a session to a DNS server,
   each subscription is individually accepted or rejected.  Servers may
   employ various techniques to limit subscriptions to a manageable
   level.  Correspondingly, the client is free to establish simultaneous
   sessions to alternate DNS servers that support DNS Push Notifications
   for the zone and distribute subscriptions at the client’s discretion.
   In this way, both clients and servers can react to resource
   constraints.
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5.  Transport

   Other DNS operations like DNS Update [RFC2136] MAY use either User
   Datagram Protocol (UDP) [RFC0768] or Transmission Control Protocol
   (TCP) [RFC0793] as the transport protocol, in keeping with the
   historical precedent that DNS queries must first be sent over UDP
   [RFC1123].  This requirement to use UDP has subsequently been relaxed
   [RFC7766].

   In keeping with the more recent precedent, DNS Push Notification is
   defined only for TCP.  DNS Push Notification clients MUST use DNS
   Stateful Operations [RFC8490] running over TLS over TCP [RFC7858].

   Connection setup over TCP ensures return reachability and alleviates
   concerns of state overload at the server, which is a potential
   problem with connectionless protocols, which can be more vulnerable
   to being exploited by attackers using spoofed source addresses.  All
   subscribers are guaranteed to be reachable by the server by virtue of
   the TCP three-way handshake.  Flooding attacks are possible with any
   protocol, and a benefit of TCP is that there are already established
   industry best practices to guard against SYN flooding and similar
   attacks [SYN] [RFC4953].

   Use of TCP also allows DNS Push Notifications to take advantage of
   current and future developments in TCP, such as Multipath TCP (MPTCP)
   [RFC6824], TCP Fast Open (TFO) [RFC7413], the TCP RACK fast loss
   detection algorithm [I-D.ietf-tcpm-rack], and so on.

   Transport Layer Security (TLS) [RFC8446] is well understood, and used
   by many application-layer protocols running over TCP.  TLS is
   designed to prevent eavesdropping, tampering, and message forgery.
   TLS is REQUIRED for every connection between a client subscriber and
   server in this protocol specification.  Additional security measures
   such as client authentication during TLS negotiation may also be
   employed to increase the trust relationship between client and
   server.
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6.  Protocol Operation

   The DNS Push Notification protocol is a session-oriented protocol,
   and makes use of DNS Stateful Operations (DSO) [RFC8490].

   For details of the DSO message format refer to the DNS Stateful Oper-
   ations specification [RFC8490].  Those details are not repeated here.

   DNS Push Notification clients and servers MUST support DSO.  A single
   server can support DNS Queries, DNS Updates, and DNS Push
   Notifications (using DSO) on the same TCP port.

   A DNS Push Notification exchange begins with the client discovering
   the appropriate server, using the procedure described in Section 6.1,
   and then making a TLS/TCP connection to it.

   A typical DNS Push Notification client will immediately issue a DSO
   Keepalive operation to request a session timeout and/or keepalive
   interval longer than the 15-second default values, but this is not
   required.  A DNS Push Notification client MAY issue other requests on
   the session first, and only issue a DSO Keepalive operation later if
   it determines that to be necessary.  Sending either a DSO Keepalive
   operation or a Push Notification subscription request over the TLS/
   TCP connection to the server signals the client’s support of DSO and
   serves to establish a DSO session.

   In accordance with the current set of active subscriptions, the
   server sends relevant asynchronous Push Notifications to the client.
   Note that a client MUST be prepared to receive (and silently ignore)
   Push Notifications for subscriptions it has previously removed, since
   there is no way to prevent the situation where a Push Notification is
   in flight from server to client while the client’s UNSUBSCRIBE
   message cancelling that subscription is simultaneously in flight from
   client to server.
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6.1.  Discovery

   The first step in establishing a DNS Push Notification subscription
   is to discover an appropriate DNS server that supports DNS Push
   Notifications for the desired zone.

   The client begins by opening a DSO Session to its normal configured
   DNS recursive resolver and requesting a Push Notification
   subscription.  This connection is made to TCP port 853, the default
   port for DNS-over-TLS [RFC7858].  If the request for a Push
   Notification subscription is successful, and the recursive resolver
   doesn’t already have an active subscription for that name, type, and
   class, then the recursive resolver will make a corresponding Push
   Notification subscription on the client’s behalf.  Results received
   are relayed to the client.  This is closely analogous to how a client
   sends a normal DNS query to its configured DNS recursive resolver
   which, if it doesn’t already have appropriate answer(s) in its cache,
   issues an upstream query to satisfy the request.

   In many contexts, the recursive resolver will be able to handle Push
   Notifications for all names that the client may need to follow.  Use
   of VPN tunnels and Private DNS [RFC8499] can create some additional
   complexity in the client software here; the techniques to handle VPN
   tunnels and Private DNS for DNS Push Notifications are the same as
   those already used to handle this for normal DNS queries.

   If the recursive resolver does not support DNS over TLS, or supports
   DNS over TLS but is not listening on TCP port 853, or supports DNS
   over TLS on TCP port 853 but does not support DSO on that port, then
   the DSO Session session establishment will fail [RFC8490].

   If the recursive resolver does support DSO but not Push Notification
   subscriptions, then it will return the DSO error code DSOTYPENI (11).

   In some cases, the recursive resolver may support DSO and Push
   Notification subscriptions, but may not be able to subscribe for Push
   Notifications for a particular name.  In this case, the recursive
   resolver should return SERVFAIL to the client.  This includes being
   unable to establish a connection to the zone’s DNS Push Notification
   server or establishing a connection but receiving a non success
   response code.  In some cases, where the client has a pre-established
   trust relationship with the owner of the zone (that is not handled
   via the usual mechanisms for VPN software) the client may handle
   these failures by contacting the zone’s DNS Push server directly.

   In any of the cases described above where the client fails to
   establish a DNS Push Notification subscription via its configured
   recursive resolver, the client should proceed to discover the
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   appropriate server for direct communication.  The client MUST also
   determine which TCP port on the server is listening for connections,
   which need not be (and often is not) the typical TCP port 53 used for
   conventional DNS, or TCP port 853 used for DNS over TLS.

   The discovery algorithm described here is an iterative algorithm,
   which starts with the full name of the record to which the client
   wishes to subscribe.  Successive SOA queries are then issued,
   trimming one label each time, until the closest enclosing
   authoritative server is discovered.  There is also an optimization to
   enable the client to take a "short cut" directly to the SOA record of
   the closest enclosing authoritative server in many cases.

   1.  The client begins the discovery by sending a DNS query to its
       local resolver, with record type SOA [RFC1035] for the record
       name to which it wishes to subscribe.  As an example, suppose the
       client wishes to subscribe to PTR records with the name
       _ipp._tcp.headoffice.example.com (to discover Internet Printing
       Protocol (IPP) printers [RFC8010] [RFC8011] being advertised in
       the head office of Example Company.).  The client begins by
       sending an SOA query for _ipp._tcp.headoffice.example.com to the
       local recursive resolver.  The goal is to determine the server
       authoritative for the name _ipp._tcp.headoffice.example.com.  The
       closest enclosing DNS zone containing the name
       _ipp._tcp.headoffice.example.com could be example.com, or
       headoffice.example.com, or _tcp.headoffice.example.com, or even
       _ipp._tcp.headoffice.example.com.  The client does not know in
       advance where the closest enclosing zone cut occurs, which is why
       it uses the iterative procedure described here to discover this
       information.

   2.  If the requested SOA record exists, it will be returned in the
       Answer section with a NOERROR response code, and the client has
       succeeded in discovering the information it needs.
       (This language is not placing any new requirements on DNS
       recursive resolvers.  This text merely describes the existing
       operation of the DNS protocol [RFC1034] [RFC1035].)

   3.  If the requested SOA record does not exist, the client will get
       back a NOERROR/NODATA response or an NXDOMAIN/Name Error
       response.  In either case, the local resolver would normally
       include the SOA record for the closest enclosing zone of the
       requested name in the Authority Section.  If the SOA record is
       received in the Authority Section, then the client has succeeded
       in discovering the information it needs.
       (This language is not placing any new requirements on DNS
       recursive resolvers.  This text merely describes the existing
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       operation of the DNS protocol regarding negative responses
       [RFC2308].)

   4.  If the client receives a response containing no SOA record, then
       it proceeds with the iterative approach.  The client strips the
       leading label from the current query name, and if the resulting
       name has at least two labels in it, the client sends an SOA query
       for that new name, and processing continues at step 2 above,
       repeating the iterative search until either an SOA is received,
       or the query name consists of a single label, i.e., a Top Level
       Domain (TLD).  In the case of a single-label name (TLD), this is
       a network configuration error, which should not happen, and the
       client gives up.  The client may retry the operation at a later
       time, of the client’s choosing, such after a change in network
       attachment.

   5.  Once the SOA is known (either by virtue of being seen in the
       Answer Section, or in the Authority Section), the client sends a
       DNS query with type SRV [RFC2782] for the record name
       "_dns-push-tls._tcp.<zone>", where <zone> is the owner name of
       the discovered SOA record.

   6.  If the zone in question is set up to offer DNS Push Notifications
       then this SRV record MUST exist.  (If this SRV record does not
       exist then the zone is not correctly configured for DNS Push
       Notifications as specified in this document.)  The SRV "target"
       contains the name of the server providing DNS Push Notifications
       for the zone.  The port number on which to contact the server is
       in the SRV record "port" field.  The address(es) of the target
       host MAY be included in the Additional Section, however, the
       address records SHOULD be authenticated before use as described
       below in Section 7.2 and in the specification for using DANE TLSA
       Records with SRV Records [RFC7673], if applicable.

   7.  More than one SRV record may be returned.  In this case, the
       "priority" and "weight" values in the returned SRV records are
       used to determine the order in which to contact the servers for
       subscription requests.  As described in the SRV specification
       [RFC2782], the server with the lowest "priority" is first
       contacted.  If more than one server has the same "priority", the
       "weight" indicates the weighted probability that the client
       should contact that server.  Higher weights have higher
       probabilities of being selected.  If a server is not willing to
       accept a subscription request, or is not reachable within a
       reasonable time, as determined by the client, then a subsequent
       server is to be contacted.
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   Each time a client makes a new DNS Push Notification subscription, it
   SHOULD repeat the discovery process in order to determine the
   preferred DNS server for that subscription at that time.  If a client
   already has a DSO session with that DNS server the client SHOULD
   reuse that existing DSO session for the new subscription, otherwise,
   a new DSO session is established.  The client MUST respect the DNS
   TTL values on records it receives while performing the discovery
   process and store them in its local cache with this lifetime (as it
   will generally be do anyway for all DNS queries it performs).  This
   means that, as long as the DNS TTL values on the authoritative
   records are set to reasonable values, repeated application of the
   discovery process can be completed nearly instantaneously by the
   client, using only locally-stored cached data.
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6.2.  DNS Push Notification SUBSCRIBE

   After connecting, and requesting a longer idle timeout and/or
   keepalive interval if necessary, a DNS Push Notification client
   then indicates its desire to receive DNS Push Notifications for
   a given domain name by sending a SUBSCRIBE request to the server.
   A SUBSCRIBE request is encoded in a DSO message [RFC8490].
   This specification defines a primary DSO TLV for DNS Push
   Notification SUBSCRIBE Requests (tentatively DSO Type Code 0x40).

   DSO messages with the SUBSCRIBE TLV as the Primary TLV are permitted
   in TLS early data, provided that the precautions described in
   Section 7.3 are followed.

   The entity that initiates a SUBSCRIBE request is by definition the
   client.  A server MUST NOT send a SUBSCRIBE request over an existing
   session from a client.  If a server does send a SUBSCRIBE request
   over a DSO session initiated by a client, this is a fatal error and
   the client MUST forcibly abort the connection immediately.

   Each SUBSCRIBE request generates exactly one SUBSCRIBE response from
   the server.  The entity that initiates a SUBSCRIBE response is by
   definition the server.  A client MUST NOT send a SUBSCRIBE response.
   If a client does send a SUBSCRIBE response, this is a fatal error and
   the server MUST forcibly abort the connection immediately.

6.2.1.  SUBSCRIBE Request

   A SUBSCRIBE request begins with the standard DSO 12-byte header
   [RFC8490], followed by the SUBSCRIBE primary TLV.  A SUBSCRIBE
   request is illustrated in Figure 1.

   The MESSAGE ID field MUST be set to a unique value, that the client
   is not using for any other active operation on this DSO session.  For
   the purposes here, a MESSAGE ID is in use on this session if the
   client has used it in a request for which it has not yet received a
   response, or if the client has used it for a subscription which it
   has not yet cancelled using UNSUBSCRIBE.  In the SUBSCRIBE response
   the server MUST echo back the MESSAGE ID value unchanged.

   The other header fields MUST be set as described in the DSO spec-
   ification [RFC8490].  The DNS OPCODE field contains the OPCODE value
   for DNS Stateful Operations (6).  The four count fields must be zero,
   and the corresponding four sections must be empty (i.e., absent).

   The DSO-TYPE is SUBSCRIBE (tentatively 0x40).
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   The DSO-LENGTH is the length of the DSO-DATA that follows, which
   specifies the name, type, and class of the record(s) being sought.

                                      1  1  1  1  1  1
        0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
      |                  MESSAGE ID                   |   \
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |QR| OPCODE(6) |         Z          |   RCODE   |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             QDCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
      |             ANCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             NSCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             ARCOUNT (MUST BE ZERO)            |   /
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
      |    DSO-TYPE = SUBSCRIBE (tentatively 0x40)    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      |   DSO-LENGTH (number of octets in DSO-DATA)   |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
      \                     NAME                      \   \
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |                     TYPE                      |     > DSO-DATA
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |                     CLASS                     |   /
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

                        Figure 1: SUBSCRIBE Request

   The DSO-DATA for a SUBSCRIBE request MUST contain exactly one NAME,
   TYPE, and CLASS.  Since SUBSCRIBE requests are sent over TCP,
   multiple SUBSCRIBE DSO request messages can be concatenated in a
   single TCP stream and packed efficiently into TCP segments.

   If accepted, the subscription will stay in effect until the client
   cancels the subscription using UNSUBSCRIBE or until the DSO session
   between the client and the server is closed.

   SUBSCRIBE requests on a given session MUST be unique.  A client MUST
   NOT send a SUBSCRIBE message that duplicates the NAME, TYPE and CLASS
   of an existing active subscription on that DSO session.  For the
   purpose of this matching, the established DNS case-insensitivity for
   US-ASCII letters [RFC0020] applies (e.g., "example.com" and
   "Example.com" are the same).  If a server receives such a duplicate
   SUBSCRIBE message, this is a fatal error and the server MUST forcibly
   abort the connection immediately.
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   DNS wildcarding is not supported.  That is, a wildcard ("*") in a
   SUBSCRIBE message matches only a literal wildcard character ("*") in
   the zone, and nothing else.

   Aliasing is not supported.  That is, a CNAME in a SUBSCRIBE message
   matches only a literal CNAME record in the zone, and no other records
   with the same owner name.

   A client may SUBSCRIBE to records that are unknown to the server at
   the time of the request (providing that the name falls within one of
   the zone(s) the server is responsible for) and this is not an error.
   The server MUST NOT return NXDOMAIN in this case.  The server MUST
   accept these requests and send Push Notifications if and when
   matching records are found in the future.

   If neither TYPE nor CLASS are ANY (255) then this is a specific
   subscription to changes for the given NAME, TYPE and CLASS.  If one
   or both of TYPE or CLASS are ANY (255) then this subscription matches
   any type and/or any class, as appropriate.

   NOTE: A little-known quirk of DNS is that in DNS QUERY requests,
   QTYPE and QCLASS 255 mean "ANY" not "ALL".  They indicate that the
   server should respond with ANY matching records of its choosing, not
   necessarily ALL matching records.  This can lead to some surprising
   and unexpected results, where a query returns some valid answers but
   not all of them, and makes QTYPE = 255 (ANY) queries less useful than
   people sometimes imagine.

   When used in conjunction with SUBSCRIBE, TYPE and CLASS 255 should be
   interpreted to mean "ALL", not "ANY".  After accepting a subscription
   where one or both of TYPE or CLASS are 255, the server MUST send Push
   Notification Updates for ALL record changes that match the
   subscription, not just some of them.
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6.2.2.  SUBSCRIBE Response

   A SUBSCRIBE response begins with the standard DSO 12-byte header
   [RFC8490].  The QR bit in the header is set indicating it is a
   response.  The header MAY be followed by one or more optional TLVs,
   such as a Retry Delay TLV.  A SUBSCRIBE response is illustrated in
   Figure 2.

   The MESSAGE ID field MUST echo the value given in the MESSAGE ID
   field of the SUBSCRIBE request.  This is how the client knows which
   request is being responded to.

   The other header fields MUST be set as described in the DSO spec-
   ification [RFC8490].  The DNS OPCODE field contains the OPCODE value
   for DNS Stateful Operations (6).  The four count fields must be zero,
   and the corresponding four sections must be empty (i.e., absent).

   A SUBSCRIBE response message MUST NOT include a SUBSCRIBE TLV.  If a
   client receives a SUBSCRIBE response message containing a SUBSCRIBE
   TLV then the response message is processed but the SUBSCRIBE TLV MUST
   be silently ignored.

                                      1  1  1  1  1  1
        0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
      |                  MESSAGE ID                   |   \
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |QR| OPCODE(6) |         Z          |   RCODE   |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             QDCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
      |             ANCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             NSCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             ARCOUNT (MUST BE ZERO)            |   /
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

                       Figure 2: SUBSCRIBE Response
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   In the SUBSCRIBE response the RCODE indicates whether or not the
   subscription was accepted.  Supported RCODEs are as follows:

   +-----------+-------+-----------------------------------------------+
   | Mnemonic  | Value | Description                                   |
   +-----------+-------+-----------------------------------------------+
   | NOERROR   |   0   | SUBSCRIBE successful.                         |
   | FORMERR   |   1   | Server failed to process request due to a     |
   |           |       | malformed request.                            |
   | SERVFAIL  |   2   | Server failed to process request due to a     |
   |           |       | problem with the server.                      |
   | NOTIMP    |   4   | Server does not implement DSO.                |
   | REFUSED   |   5   | Server refuses to process request for policy  |
   |           |       | or security reasons.                          |
   | NOTAUTH   |   9   | Server is not authoritative for the requested |
   |           |       | name.                                         |
   | DSOTYPENI |   11  | SUBSCRIBE operation not supported.            |
   +-----------+-------+-----------------------------------------------+

                     Table 1: SUBSCRIBE Response codes

   This document specifies only these RCODE values for SUBSCRIBE
   Responses.  Servers sending SUBSCRIBE Responses SHOULD use one of
   these values.  Note that NXDOMAIN is not a valid RCODE in response to
   a SUBSCRIBE Request.  However, future circumstances may create
   situations where other RCODE values are appropriate in SUBSCRIBE
   Responses, so clients MUST be prepared to accept SUBSCRIBE Responses
   with any other RCODE value.

   If the server sends a nonzero RCODE in the SUBSCRIBE response, that
   means:

   a.  the client is (at least partially) misconfigured, or
   b.  the server resources are exhausted, or
   c.  there is some other unknown failure on the server.

   In any case, the client shouldn’t retry the subscription to this
   server right away.  If multiple SRV records were returned as
   described in Section 6.1, Paragraph 7, a subsequent server MAY be
   tried immediately.

   If the client has other successful subscriptions to this server,
   these subscriptions remain even though additional subscriptions may
   be refused.  Neither the client nor the server are required to close
   the connection, although, either end may choose to do so.

   If the server sends a nonzero RCODE then it SHOULD append a Retry
   Delay TLV [RFC8490] to the response specifying a delay before the
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   client attempts this operation again.  Recommended values for the
   delay for different RCODE values are given below.  These recommended
   values apply both to the default values a server should place in the
   Retry Delay TLV, and the default values a client should assume if the
   server provides no Retry Delay TLV.

      For RCODE = 1 (FORMERR) the delay may be any value selected by the
      implementer.  A value of five minutes is RECOMMENDED, to reduce
      the risk of high load from defective clients.

      For RCODE = 2 (SERVFAIL) the delay should be chosen according to
      the level of server overload and the anticipated duration of that
      overload.  By default, a value of one minute is RECOMMENDED.  If a
      more serious server failure occurs, the delay may be longer in
      accordance with the specific problem encountered.

      For RCODE = 4 (NOTIMP), which occurs on a server that doesn’t
      implement DNS Stateful Operations [RFC8490], it is unlikely that
      the server will begin supporting DSO in the next few minutes, so
      the retry delay SHOULD be one hour.  Note that in such a case, a
      server that doesn’t implement DSO is unlikely to place a Retry
      Delay TLV in its response, so this recommended value in particular
      applies to what a client should assume by default.

      For RCODE = 5 (REFUSED), which occurs on a server that implements
      DNS Push Notifications, but is currently configured to disallow
      DNS Push Notifications, the retry delay may be any value selected
      by the implementer and/or configured by the operator.

      If the server being queried is listed in a
      "_dns-push-tls._tcp.<zone>" SRV record for the zone, then this is
      a misconfiguration, since this server is being advertised as
      supporting DNS Push Notifications for this zone, but the server
      itself is not currently configured to perform that task.  Since it
      is possible that the misconfiguration may be repaired at any time,
      the retry delay should not be set too high.  By default, a value
      of 5 minutes is RECOMMENDED.

      For RCODE = 9 (NOTAUTH), which occurs on a server that implements
      DNS Push Notifications, but is not configured to be authoritative
      for the requested name, the retry delay may be any value selected
      by the implementer and/or configured by the operator.

      If the server being queried is listed in a
      "_dns-push-tls._tcp.<zone>" SRV record for the zone, then this is
      a misconfiguration, since this server is being advertised as
      supporting DNS Push Notifications for this zone, but the server
      itself is not currently configured to perform that task.  Since it
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      is possible that the misconfiguration may be repaired at any time,
      the retry delay should not be set too high.  By default, a value
      of 5 minutes is RECOMMENDED.

      For RCODE = 11 (DSOTYPENI), which occurs on a server that
      implements DSO but doesn’t implement DNS Push Notifications, it is
      unlikely that the server will begin supporting DNS Push
      Notifications in the next few minutes, so the retry delay SHOULD
      be one hour.

      For other RCODE values, the retry delay should be set by the
      server as appropriate for that error condition.  By default, a
      value of 5 minutes is RECOMMENDED.

   For RCODE = 9 (NOTAUTH), the time delay applies to requests for other
   names falling within the same zone.  Requests for names falling
   within other zones are not subject to the delay.  For all other
   RCODEs the time delay applies to all subsequent requests to this
   server.

   After sending an error response the server MAY allow the session to
   remain open, or MAY send a DNS Push Notification Retry Delay
   Operation TLV instructing the client to close the session, as
   described in the DSO specification [RFC8490].  Clients MUST correctly
   handle both cases.
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6.3.  DNS Push Notification Updates

   Once a subscription has been successfully established, the server
   generates PUSH messages to send to the client as appropriate.  In the
   case that the answer set was already non-empty at the moment the
   subscription was established, an initial PUSH message will be sent
   immediately following the SUBSCRIBE Response.  Subsequent changes to
   the answer set are then communicated to the client in subsequent PUSH
   messages.

   A client MUST NOT send a PUSH message.  If a client does send a PUSH
   message, or a PUSH message is sent with the QR bit set indicating
   that it is a response, this is a fatal error and the receiver MUST
   forcibly abort the connection immediately.

6.3.1.  PUSH Message

   A PUSH unidirectional message begins with the standard DSO 12-byte
   header [RFC8490], followed by the PUSH primary TLV.  A PUSH message
   is illustrated in Figure 3.

   In accordance with the definition of DSO unidirectional messages, the
   MESSAGE ID field MUST be zero.  There is no client response to a PUSH
   message.

   The other header fields MUST be set as described in the DSO spec-
   ification [RFC8490].  The DNS OPCODE field contains the OPCODE value
   for DNS Stateful Operations (6).  The four count fields must be zero,
   and the corresponding four sections must be empty (i.e., absent).

   The DSO-TYPE is PUSH (tentatively 0x41).

   The DSO-LENGTH is the length of the DSO-DATA that follows, which
   specifies the changes being communicated.

   The DSO-DATA contains one or more change notifications.  A PUSH
   Message MUST contain at least one change notification.  If a PUSH
   Message is received that contains no change notifications, this is a
   fatal error, and the client MUST forcibly abort the connection
   immediately.

   The change notification records are formatted similarly to how DNS
   Resource Records are conventionally expressed in DNS messages, as
   illustrated in Figure 3, and are interpreted as described below.
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   The TTL field holds an unsigned 32-bit integer [RFC2181].  If the TTL
   is in the range 0 to 2,147,483,647 seconds (0 to 2^31 - 1, or
   0x7FFFFFFF), then a new DNS Resource Record with the given name,
   type, class and RDATA is added.  Type and class MUST NOT be 255
   (ANY).  If either type or class are 255 (ANY) this is a fatal error,
   and the client MUST forcibly abort the connection immediately.  A TTL
   of 0 means that this record should be retained for as long as the
   subscription is active, and should be discarded immediately the
   moment the subscription is cancelled.

   If the TTL has the value 0xFFFFFFFF, then the DNS Resource Record
   with the given name, type, class and RDATA is removed.  Type and
   class MUST NOT be 255 (ANY).  If either type or class are 255 (ANY)
   this is a fatal error, and the client MUST forcibly abort the
   connection immediately.

   If the TTL has the value 0xFFFFFFFE, then this is a ’collective’
   remove notification.  For collective remove notifications RDLEN MUST
   be zero and consequently the RDATA MUST be empty.  If a change
   notification is received where TTL = 0xFFFFFFFE and RDLEN is not
   zero, this is a fatal error, and the client MUST forcibly abort the
   connection immediately.

   There are three types of collective remove notification:

   For collective remove notifications, if CLASS is not 255 (ANY) and
   TYPE is not 255 (ANY) then for the given name this removes all
   records of the specified type in the specified class.

   For collective remove notifications, if CLASS is not 255 (ANY) and
   TYPE is 255 (ANY) then for the given name this removes all records of
   all types in the specified class.

   For collective remove notifications, if CLASS is 255 (ANY), then for
   the given name this removes all records of all types in all classes.
   In this case TYPE MUST be set to zero on transmission, and MUST be
   silently ignored on reception.

Pusateri & Cheshire      Expires April 15, 2020                [Page 21]



Internet-Draft           DNS Push Notifications             October 2019

   Summary of change notification types:

      Remove all RRsets from a name, in all classes
      TTL = 0xFFFFFFFE, RDLEN = 0, CLASS = 255 (ANY)

      Remove all RRsets from a name, in given class:
      TTL = 0xFFFFFFFE, RDLEN = 0, CLASS gives class, TYPE = 255 (ANY)

      Remove specified RRset from a name, in given class:
      TTL = 0xFFFFFFFE, RDLEN = 0
      CLASS and TYPE specify the RRset being removed

      Remove an individual RR from a name:
      TTL = 0xFFFFFFFF
      CLASS, TYPE, RDLEN and RDATA specify the RR being removed

      Add individual RR to a name
      TTL >= 0 and TTL <= 0x7FFFFFFF
      CLASS, TYPE, RDLEN, RDATA and TTL specify the RR being added

   Note that it is valid for the RDATA of an added or removed DNS
   Resource Record to be empty (zero length).  For example, an Address
   Prefix List Resource Record [RFC3123] may have empty RDATA.
   Therefore, a change notification with RDLEN = 0 does not
   automatically indicate a remove notification.  If RDLEN = 0 and TTL
   is the in the range 0 - 0x7FFFFFFF, this change notification signals
   the addition of a record with the given name, type, class, and empty
   RDATA.  If RDLEN = 0 and TTL = 0xFFFFFFFF, this change notification
   signals the removal specifically of that single record with the given
   name, type, class, and empty RDATA.

   If the TTL is any value other than 0xFFFFFFFF, 0xFFFFFFFE, or a value
   in the range 0 - 0x7FFFFFFF, then the receiver SHOULD silently ignore
   this particular change notification record.  The connection is not
   terminated and other valid change notification records within this
   PUSH message are processed as usual.

   For efficiency, when generating a PUSH message, a server SHOULD
   include as many change notifications as it has immediately available
   to send, rather than sending each change notification as a separate
   DSO message.  Once it has exhausted the list of change notifications
   immediately available to send, a server SHOULD then send the PUSH
   message immediately, rather than waiting to see if additional change
   notifications become available.
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   For efficiency, when generating a PUSH message, a server SHOULD use
   standard DNS name compression, with offsets relative to the beginning
   of the DNS message [RFC1035].  When multiple change notifications in
   a single PUSH message have the same owner name, this name compression
   can yield significant savings.  Name compression should be performed
   as specified in Section 18.14 of the Multicast DNS specification
   [RFC6762], namely, owner names should always be compressed, and names
   appearing within RDATA should be compressed for only the RR types
   listed below:

      NS, CNAME, PTR, DNAME, SOA, MX, AFSDB, RT, KX, RP, PX, SRV, NSEC

   Servers may generate PUSH messages up to a maximum DNS message length
   of 16,382 bytes, counting from the start of the DSO 12-byte header.
   Including the two-byte length prefix that is used to frame DNS over a
   byte stream like TLS, this makes a total of 16,384 bytes.  Servers
   MUST NOT generate PUSH messages larger than this.  Where the
   immediately available change notifications are sufficient to exceed a
   DNS message length of 16,382 bytes, the change notifications MUST be
   communicated in separate PUSH messages of up to 16,382 bytes each.
   DNS name compression becomes less effective for messages larger than
   16,384 bytes, so little efficiency benefit is gained by sending
   messages larger than this.

   If a client receives a PUSH message with a DNS message length larger
   than 16,382 bytes, this is a fatal error, and the client MUST
   forcibly abort the connection immediately.
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                                      1  1  1  1  1  1
        0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
      |           MESSAGE ID (MUST BE ZERO)           |   \
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |QR| OPCODE(6) |         Z          |   RCODE   |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             QDCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
      |             ANCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             NSCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             ARCOUNT (MUST BE ZERO)            |   /
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
      |      DSO-TYPE = PUSH (tentatively 0x41)       |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      |   DSO-LENGTH (number of octets in DSO-DATA)   |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
      \                     NAME                      \   \
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |                     TYPE                      |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |                     CLASS                     |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |                      TTL                      |    |
      |     (32-bit unsigned big-endian integer)      |     > DSO-DATA
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |  RDLEN (16-bit unsigned big-endian integer)   |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      \           RDATA (sized as necessary)          \    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      :     NAME, TYPE, CLASS, TTL, RDLEN, RDATA      :    |
      :             Repeated As Necessary             :   /
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

                          Figure 3: PUSH Message

   When processing the records received in a PUSH Message, the receiving
   client MUST validate that the records being added or removed
   correspond with at least one currently active subscription on that
   session.  Specifically, the record name MUST match the name given in
   the SUBSCRIBE request, subject to the usual established DNS case-
   insensitivity for US-ASCII letters.  For individual additions and
   removals, if the TYPE in the SUBSCRIBE request was not ANY (255) then
   the TYPE of the record must match the TYPE given in the SUBSCRIBE
   request, and if the CLASS in the SUBSCRIBE request was not ANY (255)
   then the CLASS of the record must match the CLASS given in the
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   SUBSCRIBE request.  For collective removals, at least one of the
   records being removed must match an active subscription.  If a
   matching active subscription on that session is not found, then that
   particular addition/removal record is silently ignored.  Processing
   of other additions and removal records in this message is not
   affected.  The DSO session is not closed.  This is to allow for the
   unavoidable race condition where a client sends an outbound
   UNSUBSCRIBE while inbound PUSH messages for that subscription from
   the server are still in flight.

   In the case where a single change affects more than one active
   subscription, only one PUSH message is sent.  For example, a PUSH
   message adding a given record may match both a SUBSCRIBE request with
   the same TYPE and a different SUBSCRIBE request with TYPE = 255
   (ANY).  It is not the case that two PUSH messages are sent because
   the new record matches two active subscriptions.

   The server SHOULD encode change notifications in the most efficient
   manner possible.  For example, when three AAAA records are removed
   from a given name, and no other AAAA records exist for that name, the
   server SHOULD send a "remove an RRset from a name" PUSH message, not
   three separate "remove an individual RR from a name" PUSH messages.
   Similarly, when both an SRV and a TXT record are removed from a given
   name, and no other records of any kind exist for that name, the
   server SHOULD send a "remove all RRsets from a name" PUSH message,
   not two separate "remove an RRset from a name" PUSH messages.

   A server SHOULD combine multiple change notifications in a single
   PUSH message when possible, even if those change notifications apply
   to different subscriptions.  Conceptually, a PUSH message is a
   session-level mechanism, not a subscription-level mechanism.

   The TTL of an added record is stored by the client.  While the
   subscription is active, the TTL is not decremented, because a change
   to the TTL would produce a new update.  For as long as a relevant
   subscription remains active, the client SHOULD assume that when a
   record goes away the server will notify it of that fact.
   Consequently, a client does not have to poll to verify that the
   record is still there.  Once a subscription is cancelled
   (individually, or as a result of the DSO session being closed) record
   aging for records covered by the subscription resumes and records are
   removed from the local cache when their TTL reaches zero.
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6.4.  DNS Push Notification UNSUBSCRIBE

   To cancel an individual subscription without closing the entire DSO
   session, the client sends an UNSUBSCRIBE message over the established
   DSO session to the server.

   The entity that initiates an UNSUBSCRIBE message is by definition the
   client.  A server MUST NOT send an UNSUBSCRIBE message over an
   existing session from a client.  If a server does send an UNSUBSCRIBE
   message over a DSO session initiated by a client, or an UNSUBSCRIBE
   message is sent with the QR bit set indicating that it is a response,
   this is a fatal error and the receiver MUST forcibly abort the
   connection immediately.

6.4.1.  UNSUBSCRIBE Message

   An UNSUBSCRIBE unidirectional message begins with the standard DSO
   12-byte header [RFC8490], followed by the UNSUBSCRIBE primary TLV.
   An UNSUBSCRIBE message is illustrated in Figure 4.

   In accordance with the definition of DSO unidirectional messages, the
   MESSAGE ID field MUST be zero.  There is no server response to an
   UNSUBSCRIBE message.

   The other header fields MUST be set as described in the DSO spec-
   ification [RFC8490].  The DNS OPCODE field contains the OPCODE value
   for DNS Stateful Operations (6).  The four count fields must be zero,
   and the corresponding four sections must be empty (i.e., absent).

   The DSO-TYPE is UNSUBSCRIBE (tentatively 0x42).

   The DSO-LENGTH field contains the value 2, the length of the 2-octet
   MESSAGE ID contained in the DSO-DATA.

   The DSO-DATA contains the value previously given in the MESSAGE ID
   field of an active SUBSCRIBE request.  This is how the server knows
   which SUBSCRIBE request is being cancelled.  After receipt of the
   UNSUBSCRIBE message, the SUBSCRIBE request is no longer active.

   It is allowable for the client to issue an UNSUBSCRIBE message for a
   previous SUBSCRIBE request for which the client has not yet received
   a SUBSCRIBE response.  This is to allow for the case where a client
   starts and stops a subscription in less than the round-trip time to
   the server.  The client is NOT required to wait for the SUBSCRIBE
   response before issuing the UNSUBSCRIBE message.
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   Consequently, it is possible for a server to receive an UNSUBSCRIBE
   message that does not match any currently active subscription.  This
   can occur when a client sends a SUBSCRIBE request, which subsequently
   fails and returns an error code, but the client sent an UNSUBSCRIBE
   message before it became aware that the SUBSCRIBE request had failed.
   Because of this, servers MUST silently ignore UNSUBSCRIBE messages
   that do not match any currently active subscription.

                                      1  1  1  1  1  1
        0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
      |           MESSAGE ID (MUST BE ZERO)           |   \
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |QR| OPCODE(6) |         Z          |   RCODE   |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             QDCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
      |             ANCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             NSCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             ARCOUNT (MUST BE ZERO)            |   /
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
      |   DSO-TYPE = UNSUBSCRIBE (tentatively 0x42)   |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      |                DSO-LENGTH (2)                 |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
      |              SUBSCRIBE MESSAGE ID             |   > DSO-DATA
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

                       Figure 4: UNSUBSCRIBE Message
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6.5.  DNS Push Notification RECONFIRM

   Sometimes, particularly when used with a Discovery Proxy [DisProx], a
   DNS Zone may contain stale data.  When a client encounters data that
   it believes may be stale (e.g., an SRV record referencing a target
   host+port that is not responding to connection requests) the client
   can send a RECONFIRM message to ask the server to re-verify that the
   data is still valid.  For a Discovery Proxy, this causes it to issue
   new Multicast DNS queries to ascertain whether the target device is
   still present.  How the Discovery Proxy causes these new Multicast
   DNS queries to be issued depends on the details of the underlying
   Multicast DNS implementation being used.  For example, a Discovery
   Proxy built on Apple’s dns_sd.h API [SD-API] responds to a DNS Push
   Notification RECONFIRM message by calling the underlying API’s
   DNSServiceReconfirmRecord() routine.

   For other types of DNS server, the RECONFIRM operation is currently
   undefined, and SHOULD result in a NOERROR response, but otherwise
   need not cause any action to occur.

   Frequent use of RECONFIRM operations may be a sign of network
   unreliability, or some kind of misconfiguration, so RECONFIRM
   operations MAY be logged or otherwise communicated to a human
   administrator to assist in detecting and remedying such network
   problems.

   If, after receiving a valid RECONFIRM message, the server determines
   that the disputed records are in fact no longer valid, then
   subsequent DNS PUSH Messages will be generated to inform interested
   clients.  Thus, one client discovering that a previously-advertised
   device (like a network printer) is no longer present has the side
   effect of informing all other interested clients that the device in
   question is now gone.

   The entity that initiates a RECONFIRM message is by definition the
   client.  A server MUST NOT send a RECONFIRM message over an existing
   session from a client.  If a server does send a RECONFIRM message
   over a DSO session initiated by a client, or a RECONFIRM message is
   sent with the QR bit set indicating that it is a response, this is a
   fatal error and the receiver MUST forcibly abort the connection
   immediately.
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6.5.1.  RECONFIRM Message

   A RECONFIRM unidirectional message begins with the standard DSO
   12-byte header [RFC8490], followed by the RECONFIRM primary TLV.
   A RECONFIRM message is illustrated in Figure 5.

   In accordance with the definition of DSO unidirectional messages, the
   MESSAGE ID field MUST be zero.  There is no server response to a
   RECONFIRM message.

   The other header fields MUST be set as described in the DSO spec-
   ification [RFC8490].  The DNS OPCODE field contains the OPCODE value
   for DNS Stateful Operations (6).  The four count fields must be zero,
   and the corresponding four sections must be empty (i.e., absent).

   The DSO-TYPE is RECONFIRM (tentatively 0x43).

   The DSO-LENGTH is the length of the data that follows, which
   specifies the name, type, class, and content of the record being
   disputed.

   The DSO-DATA for a RECONFIRM message MUST contain exactly one record.
   The DSO-DATA for a RECONFIRM message has no count field to specify
   more than one record.  Since RECONFIRM messages are sent over TCP,
   multiple RECONFIRM messages can be concatenated in a single TCP
   stream and packed efficiently into TCP segments.

   TYPE MUST NOT be the value ANY (255) and CLASS MUST NOT be the value
   ANY (255).

   DNS wildcarding is not supported.  That is, a wildcard ("*") in a
   RECONFIRM message matches only a literal wildcard character ("*") in
   the zone, and nothing else.

   Aliasing is not supported.  That is, a CNAME in a RECONFIRM message
   matches only a literal CNAME record in the zone, and no other records
   with the same owner name.

   Note that there is no RDLEN field, since the length of the RDATA can
   be inferred from DSO-LENGTH, so an additional RDLEN field would be
   redundant.
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                                      1  1  1  1  1  1
        0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
      |           MESSAGE ID (MUST BE ZERO)           |   \
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |QR| OPCODE(6) |         Z          |   RCODE   |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             QDCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > HEADER
      |             ANCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             NSCOUNT (MUST BE ZERO)            |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |             ARCOUNT (MUST BE ZERO)            |   /
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /
      |    DSO-TYPE = RECONFIRM (tentatively 0x43)    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      |   DSO-LENGTH (number of octets in DSO-DATA)   |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  \
      \                     NAME                      \   \
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      |                     TYPE                      |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+     > DSO-DATA
      |                     CLASS                     |    |
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+    |
      \                     RDATA                     \   /
      +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+  /

                        Figure 5: RECONFIRM Message
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6.6.  DNS Stateful Operations TLV Context Summary

   This document defines four new DSO TLVs.  As recommended in
   Section 8.2 of the DNS Stateful Operations specification [RFC8490],
   the valid contexts of these new TLV types are summarized below.

   The client TLV contexts are:

   C-P:  Client request message, primary TLV
   C-U:  Client unidirectional message, primary TLV
   C-A:  Client request or unidirectional message, additional TLV
   CRP:  Response back to client, primary TLV
   CRA:  Response back to client, additional TLV

               +-------------+-----+-----+-----+-----+-----+
               |    TLV Type | C-P | C-U | C-A | CRP | CRA |
               +-------------+-----+-----+-----+-----+-----+
               |   SUBSCRIBE |  X  |     |     |     |     |
               |        PUSH |     |     |     |     |     |
               | UNSUBSCRIBE |     |  X  |     |     |     |
               |   RECONFIRM |     |  X  |     |     |     |
               +-------------+-----+-----+-----+-----+-----+

                  Table 2: DSO TLV Client Context Summary

   The server TLV contexts are:

   S-P:  Server request message, primary TLV
   S-U:  Server unidirectional message, primary TLV
   S-A:  Server request or unidirectional message, additional TLV
   SRP:  Response back to server, primary TLV
   SRA:  Response back to server, additional TLV

               +-------------+-----+-----+-----+-----+-----+
               |    TLV Type | S-P | S-U | S-A | SRP | SRA |
               +-------------+-----+-----+-----+-----+-----+
               |   SUBSCRIBE |     |     |     |     |     |
               |        PUSH |     |  X  |     |     |     |
               | UNSUBSCRIBE |     |     |     |     |     |
               |   RECONFIRM |     |     |     |     |     |
               +-------------+-----+-----+-----+-----+-----+

                  Table 3: DSO TLV Server Context Summary
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6.7.  Client-Initiated Termination

   An individual subscription is terminated by sending an UNSUBSCRIBE
   TLV for that specific subscription, or all subscriptions can be
   cancelled at once by the client closing the DSO session.  When a
   client terminates an individual subscription (via UNSUBSCRIBE) or all
   subscriptions on that DSO session (by ending the session) it is
   signaling to the server that it is no longer interested in receiving
   those particular updates.  It is informing the server that the server
   may release any state information it has been keeping with regards to
   these particular subscriptions.

   After terminating its last subscription on a session via UNSUBSCRIBE,
   a client MAY close the session immediately, or it may keep it open if
   it anticipates performing further operations on that session in the
   future.  If a client wishes to keep an idle session open, it MUST
   respect the maximum idle time required by the server [RFC8490].

   If a client plans to terminate one or more subscriptions on a session
   and doesn’t intend to keep that session open, then as an efficiency
   optimization it MAY instead choose to simply close the session, which
   implicitly terminates all subscriptions on that session.  This may
   occur because the client computer is being shut down, is going to
   sleep, the application requiring the subscriptions has terminated, or
   simply because the last active subscription on that session has been
   cancelled.

   When closing a session, a client should perform an orderly close of
   the TLS session.  Typical APIs will provide a session close method
   that will send a TLS close_notify alert (see Section 6.1 of the TLS
   1.3 specification [RFC8446]).  This instructs the recipient that the
   sender will not send any more data over the session.  After sending
   the TLS close_notify alert the client MUST gracefully close the
   underlying connection using a TCP FIN, so that the TLS close_notify
   is reliably delivered.  The mechanisms for gracefully closing a TCP
   connection with a TCP FIN vary depending on the networking API.  For
   example, in the BSD Sockets API, sending a TCP FIN is achieved by
   calling "shutdown(s,SHUT_WR)" and keeping the socket open until all
   remaining data has been read from it.

   If the session is forcibly closed at the TCP level by sending a RST
   from either end of the connection, data may be lost.
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6.8.  Client Fallback to Polling

   There are cases where a client may exhaust all avenues for
   establishing a DNS Push Notification subscription without success.
   This can happen if the client’s configured recursive resolver does
   not support DNS over TLS, or supports DNS over TLS but is not
   listening on TCP port 853, or supports DNS over TLS on TCP port 853
   but does not support DSO on that port, or for some other reason is
   unable to provide a DNS Push Notification subscription.  In this case
   the client will attempt to communicate directly with an appropriate
   server, and it may be that the zone apex discovery fails, or there is
   no "_dns-push-tls._tcp.<zone>" SRV record, or server indicated in the
   SRV record is misconfigured, or is unresponsive for some other
   reason.

   Regardless of the reason for the failure, after being unable to
   establish the desired DNS Push Notification subscription, it is
   likely that the client will still wish to know the answer it seeks,
   even if that answer cannot be obtained with the timely change
   notifications provided by DNS Push Notifications.  In such cases it
   is likely that the client will obtain the answer it seeks via a
   conventional DNS query instead, repeated at some interval to detect
   when the answer RRset changes.

   In the case where a client responds to its failure to establish a DNS
   Push Notification subscription by falling back to polling with
   conventional DNS queries instead, the polling rate should be
   controlled to avoid placing excessive burden on the server.  The
   interval between successive DNS queries for the same name, type and
   class SHOULD be at least the minimum of: 900 seconds (15 minutes), or
   two seconds more than the TTL of the answer RRset.

   The reason that for TTLs shorter than 898 seconds the query should
   not be reissued until two seconds *after* the answer RRset has
   expired is to ensure that the answer RRset has also expired from the
   cache on the client’s configured recursive resolver.  Otherwise
   (particularly if the clocks on the client and the recursive resolver
   do not run at precisely the same rate) there’s a risk of a race
   condition where the client queries its configured recursive resolver
   just as the answer RRset has one second remaining in the recursive
   resolver’s cache.  The client would then receive a reply telling it
   that the answer RRset has one second remaining, and then the client
   would then re-query the recursive resolver again one second later
   when the answer RRset actually expires, and only then would the
   recursive resolver issue a new query to fetch new fresh data from the
   authoritative server.  Waiting until the answer RRset has definitely
   expired from the the cache on the client’s configured recursive
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   resolver avoids this race condition and unnecessary additional
   queries it causes.

   Each time a client is about to reissue its query to discover changes
   to the answer RRset, it should first make a new attempt to establish
   a DNS Push Notification subscription, using previously cached DNS
   answers as appropriate.  After a temporary misconfiguration has been
   remedied, this allows a client that is polling to return to using DNS
   Push Notifications for asynchronous notification of changes.

7.  Security Considerations

   The Strict Privacy Usage Profile for DNS over TLS is REQUIRED for DNS
   Push Notifications [RFC8310].  Cleartext connections for DNS Push
   Notifications are not permissible.  Since this is a new protocol,
   transition mechanisms from the Opportunistic Privacy profile are
   unnecessary.

   Also, see Section 9 of the DNS over (D)TLS Usage Profiles document
   [RFC8310] for additional recommendations for various versions of TLS
   usage.

   As a consequence of requiring TLS, client certificate authentication
   and verification may also be enforced by the server for stronger
   client-server security or end-to-end security.  However,
   recommendations for security in particular deployment scenarios are
   outside the scope of this document.

   DNSSEC is RECOMMENDED for the authentication of DNS Push Notification
   servers.  TLS alone does not provide complete security.  TLS
   certificate verification can provide reasonable assurance that the
   client is really talking to the server associated with the desired
   host name, but since the desired host name is learned via a DNS SRV
   query, if the SRV query is subverted then the client may have a
   secure connection to a rogue server.  DNSSEC can provide added
   confidence that the SRV query has not been subverted.
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7.1.  Security Services

   It is the goal of using TLS to provide the following security
   services:

   Confidentiality:  All application-layer communication is encrypted
      with the goal that no party should be able to decrypt it except
      the intended receiver.

   Data integrity protection:  Any changes made to the communication in
      transit are detectable by the receiver.

   Authentication:  An end-point of the TLS communication is
      authenticated as the intended entity to communicate with.

   Anti-replay protection:  TLS provides for the detection of and
      prevention against messages sent previously over a TLS connection
      (such as DNS Push Notifications).  If prior messages are re-sent
      at a later time as a form of a man-in-the-middle attack then the
      receiver will detect this and reject the replayed messages.

   Deployment recommendations on the appropriate key lengths and cypher
   suites are beyond the scope of this document.  Please refer to TLS
   Recommendations [BCP195] for the best current practices.  Keep in
   mind that best practices only exist for a snapshot in time and
   recommendations will continue to change.  Updated versions or errata
   may exist for these recommendations.

7.2.  TLS Name Authentication

   As described in Section 6.1, the client discovers the DNS Push
   Notification server using an SRV lookup for the record name
   "_dns-push-tls._tcp.<zone>".  The server connection endpoint SHOULD
   then be authenticated using DANE TLSA records for the associated SRV
   record.  This associates the target’s name and port number with a
   trusted TLS certificate [RFC7673].  This procedure uses the TLS
   Server Name Indication (SNI) extension [RFC6066] to inform the server
   of the name the client has authenticated through the use of TLSA
   records.  Therefore, if the SRV record passes DNSSEC validation and a
   TLSA record matching the target name is useable, an SNI extension
   must be used for the target name to ensure the client is connecting
   to the server it has authenticated.  If the target name does not have
   a usable TLSA record, then the use of the SNI extension is optional.
   See Usage Profiles for DNS over TLS and DNS over DTLS [RFC8310] for
   more information on authenticating domain names.
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7.3.  TLS Early Data

   DSO messages with the SUBSCRIBE TLV as the Primary TLV are permitted
   in TLS early data.  Using TLS early data can save one network round
   trip, and can result in the client obtaining results faster.

   However, there are some factors to consider before using TLS early
   data.

   TLS Early Data is not forward secret.  In cases where forward secrecy
   of DNS Push Notification subscriptions is required, the client should
   not use TLS Early Data.

   With TLS early data there are no guarantees of non-replay between
   connections.  If packets are duplicated and delayed in the network,
   the later arrivals could be mistaken for new subscription requests.
   Generally this is not a major concern, since the amount of state
   generated on the server for these spurious subscriptions is small and
   short-lived, since the TCP connection will not complete the three-way
   handshake.  Servers MAY choose to implement rate-limiting measures
   that are activated when the server detects an excessive number of
   spurious subscription requests.

   For further guidance please see discussion of zero round-trip data
   (Section 2.3, Section 8, and Appendix E.5) in the TLS 1.3
   specification, [RFC8446].

7.4.  TLS Session Resumption

   TLS Session Resumption [RFC8446] is permissible on DNS Push
   Notification servers.  However, closing the TLS connection terminates
   the DSO session.  When the TLS session is resumed, the DNS Push
   Notification server will not have any subscription state and will
   proceed as with any other new DSO session.  Use of TLS Session
   Resumption may allow a TLS connection to be set up more quickly, but
   the client will still have to recreate any desired subscriptions.
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8.  IANA Considerations

   This document defines a new service name, only applicable for the TCP
   protocol, to be recorded in the IANA Service Type Registry
   [RFC6335][SRVTYPE].

   +-----------------------+------+----------------------+-------------+
   | Name                  | Port |        Value         | Definition  |
   +-----------------------+------+----------------------+-------------+
   | DNS Push Notification | None | "_dns-push-tls._tcp" | Section 6.1 |
   | Service Type          |      |                      |             |
   +-----------------------+------+----------------------+-------------+

                  Table 4: IANA Service Type Assignments

   This document defines four new DNS Stateful Operation TLV types to be
   recorded in the IANA DSO Type Code Registry [RFC8490][DSOTYPE].

   +-------------+------------+--------+-----------------+-------------+
   | Name        |   Value    | Early  |      Status     | Definition  |
   |             |            |  Data  |                 |             |
   +-------------+------------+--------+-----------------+-------------+
   | SUBSCRIBE   | TBA (0x40) |   OK   | Standards Track | Section 6.2 |
   | PUSH        | TBA (0x41) |   NO   | Standards Track | Section 6.3 |
   | UNSUBSCRIBE | TBA (0x42) |   NO   | Standards Track | Section 6.4 |
   | RECONFIRM   | TBA (0x43) |   NO   | Standards Track | Section 6.5 |
   +-------------+------------+--------+-----------------+-------------+

                Table 5: IANA DSO TLV Type Code Assignments

   This document defines no new DNS OPCODEs or RCODEs.
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Abstract

   The DNS-SD Service Registration Protocol uses the standard DNS Update
   mechanism to enable DNS-Based Service Discovery using only unicast
   packets.  This eliminates the dependency on Multicast DNS as the
   foundation layer, which greatly improves scalability and improves
   performance on networks where multicast service is not an optimal
   choice, particularly 802.11 (Wi-Fi) and 802.15.4 (IoT) networks.
   DNS-SD Service registration uses public keys and SIG(0) to allow
   services to defend their registrations against attack.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 15, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

1.  Introduction

   DNS-Based Service Discovery [RFC6763] is a component of Zero
   Configuration Networking [RFC6760] [ZC] [I-D.cheshire-dnssd-roadmap].

   This document describes an enhancement to DNS-Based Service Discovery
   [RFC6763] that allows services to automatically register their
   services using the DNS protocol rather than using mDNS.  There is
   already a large installed base of DNS-SD clients that can do service
   discovery using the DNS protocol.  This extension makes it much
   easier to take advantage of this existing functionality.

   This document is intended for three audiences: implementors of
   software that provides services that should be advertised using DNS-
   SD, implementors of DNS servers that will be used in contexts where
   DNS-SD registration is needed, and administrators of networks where
   DNS-SD service is required.  The document is intended to provide
   sufficient information to allow interoperable implementation of the
   registration protocol.

   DNS-Based Service Discovery (DNS-SD) allows services to advertise the
   fact that they provide service, and to provide the information
   required to access that service.  Clients can then discover the set
   of services of a particular type that are available.  They can then
   select a service from among those that are available and obtain the
   information required to use it.

   The DNS-SD Service Registration protocol, described in this document,
   provides a reasonably secure mechanism for publishing this
   information.  Once published, these services can be readily
   discovered by clients using standard DNS lookups.

   In the DNS-Based Service Discovery specification [RFC6763] Section 10
   "Populating the DNS with Information" briefly discusses ways that
   services can publish their information in the DNS namespace.  In the
   case of Multicast DNS [RFC6762], it allows services to publish their
   information on the local link, using names in the ".local" namespace,
   which makes their services directly discoverable by peers attached to
   that same local link.

   RFC6763 also allows clients to discover services using the DNS
   protocol [RFC1035].  This can be done by having a system
   administrator manually configure service information in the DNS, but
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   manually populating DNS authoritative server databases is costly and
   potentially error-prone, and requires a knowledgable network
   administrator.  Consequently, although all DNS-SD client
   implementations of which we are aware support DNS-SD using DNS
   queries, in practice it is used much less frequently than mDNS.  The
   Discovery Proxy [I-D.ietf-dnssd-hybrid] provides one way to
   automatically populate the DNS namespace, but is only appropriate on
   networks where services are already advertised using mDNS.  This
   document describes a solution more suitable for networks where
   multicast is inefficient, or undesirable for other reasons, by
   supporting both offering of services, and discovery of services,
   using unicast.

2.  Service Registration Protocol

   Services that implement the DNS-SD Service Registration Protocol use
   DNS Update [RFC2136] [RFC3007] to publish service information in the
   DNS.  Two variants exist, one for full-featured devices, and one for
   devices designed for "Constrained-Node Networks" [RFC7228].

   Full-featured devices are either configured manually, or use the
   "dr._dns-sd._udp" query [RFC6763] to learn the default registration
   domain from the network.  Using the chosen service registration
   domain, full-featured devices construct the names of the SRV, TXT,
   and PTR records describing their service(s).  For these names they
   then discover the zone apex of the closest enclosing DNS zone using
   SOA queries [I-D.ietf-dnssd-push].  Having discovered the enclosing
   DNS zone, they query for the "_dns-update._udp<zone>" SRV record to
   discover the server to which they should send DNS updates.

   For devices designed for "Constrained-Node Networks" [RFC7228] some
   simplifications are used.  Instead of being configured with (or
   discovering) the service registration domain, the (proposed) special
   use domain name [RFC6761] "services.arpa" is used.  Instead of
   learning the server to which they should send DNS updates, a fixed
   IPv6 anycast address is used (value TBD).  It is the responsibility
   of a "Constrained-Node Network" supporting DNS-SD Service
   Registration Protocol to provide appropriate anycast routing to
   deliver the DNS updates to the appropriate server.  It is the
   responsibility of the DNS-SD Service Registration server on a
   "Constrained-Node Network" to handle the updates appropriately.  In
   some network environments, updates may be accepted directly into a
   local "services.arpa" zone, which has only local visibility.  In
   other network environments, updates for names ending in
   "services.arpa" may be rewritten internally to names with broader
   visibility.
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   The reason for these different assumptions is that "Constrained-Node
   Networks" generally require special egress support, and Anycast
   packets captured at the "Constrained-Node Network" egress can be
   assumed to have originated locally.  Low-power devices that typically
   use "Constrained-Node Networks" may have very limited battery power.
   The additional DNS lookups required to discover a registration server
   and then communicate with it will increase the power required to
   advertise a service; for low-power devices, the additional
   flexibility this provides does not justify the additional use of
   power.

   General networks have the potential to have more complicated
   topologies at the Internet layer, which makes anycast routing more
   difficult.  Such networks may or may not have the infrastructure
   required to route anycast to a server that can process it.  However,
   they can be assumed to be able to provide registration domain
   discovery and routing.  By requiring the use of TCP, the possibility
   of off-network spoofing is eliminated.

   We will discuss several parts to this process: how to know what to
   publish, how to know where to publish it (under what name), how to
   publish it, how to secure its publication, and how to maintain the
   information once published.

2.1.  What to publish

   We refer to the message that services using the DNSSD Registration
   Protocol send as a Registration.  Three types of updates appear in a
   Registration: Service Discovery records, Service Description records,
   and Host Description records.

   o  Service Discovery records are one or more PTR RRs, mapping from
      the generic service type (or subtype) to the specific Service
      Instance Name.

   o  Service Description records are exactly one SRV RR, and one or
      more TXT RRs, both with the same name, the Service Instance Name
      ([RFC6763] section 4.1).  In principle Service Description records
      can include other record types, with the same Service Instance
      Name, though in practice they rarely do.  The Service Instance
      Name MUST be referenced by one or more Service Discovery PTR
      records, unless it is a placeholder service registration for an
      intentionally non-discoverable service name.

   o  The Host Description records for a service are a KEY RR, used to
      claim exclusive ownership of the service registration, and one or
      more RRs of type A or AAAA, giving the IPv4 or IPv6 address(es) of
      the host where the service resides.
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   RFC 6763 describes the details of what each of these types of updates
   contains and is the definitive source for information about what to
   publish; the reason for mentioning it here is to provide the reader
   with enough information about what will be published that the service
   registration process can be understood at a high level without first
   learning the full details of DNS-SD.  Also, the "Service Instance
   Name" is an important aspect of first-come, first-serve naming, which
   we describe later on in this document.

2.2.  Where to publish it

   Multicast DNS uses a single namespace, ".local", which is valid on
   the local link.  This convenience is not available for DNS-SD using
   the DNS protocol: services must exist in some specific unicast
   namespace.

   As described above, full-featured devices are responsible for knowing
   in what domain they should register their services.  Devices made for
   "Constrained-Node Networks" register in the (proposed) special use
   domain name [RFC6761] "services.arpa", and let the DNS-SD Service
   Registration server handle rewriting that to a different domain if
   necessary.

2.3.  How to publish it

   It is possible to issue a DNS Update that does several things at
   once; this means that it’s possible to do all the work of adding a
   PTR resource record to the PTR RRset on the Service Name if it
   already exists, or creating one if it doesn’t, and creating or
   updating the Service Instance Name and Host Description in a single
   transaction.

   A Registration is therefore implemented as a single DNS Update
   message that contains a service’s Service Discovery records, Service
   Description records, and Host Description records.

   Updates done according to this specification are somewhat different
   than regular DNS Updates as defined in RFC2136.  RFC2136 assumes that
   updating is a fairly heavyweight process, so you might first attempt
   to add a name if it doesn’t exist, and then in a second message
   update the name if it does exist but matches certain preconditions.
   Because the registration protocol uses a single transaction, some of
   this adaptability is lost.

   In order to allow updates to happen in a single transaction,
   Registrations do not include update constraints.  The constraints
   specified in Section 2.4.2 are implicit in the processing of
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   Registrations, and so there is no need for the service sending the
   Registration to put in any explicit constraints.

2.3.1.  How DNS-SD Service Registration differs from standard RFC2136
        DNS Update

   DNS-SD Service Registration is based on standard RFC2136 DNS Update,
   with some differences:

   o  It implements first-come first-served name allocation, protected
      using SIG(0).

   o  It enforces policy about what updates are allowed.

   o  It optionally performs rewriting of "services.arpa" to some other
      domain.

   o  It optionally performs automatic population of the address-to-name
      reverse mapping domains.

   o  A DNS-SD Service Registration server is not required to implement
      general DNS Update prerequsite processing.

   o  Simplified clients are allowed to send updates to an anycast
      address, for names ending in "services.arpa"

2.3.2.  Testing using standard RFC2136-compliant servers

   It may be useful to set up a DNS server for testing that does not
   implement the Registration protocol.  This can be done by configuring
   the server to listen on the anycast address, or advertising it in the
   _dns-update._udp SRV record.  It must be configured to be
   authoritative for "services.arpa", and to accept updates from hosts
   on local networks for names under "services.arpa" without
   authentication.

   A server configured in this way will be able to successfully accept
   and process Registrations from services that send Registrations.
   However, no constraints will be applied, and this means that the test
   server will accept internally inconsistent Registrations, and will
   not stop two Registrations, sent by different services, that claim
   the same name(s), from overwriting each other.

Cheshire & Lemon        Expires January 15, 2019                [Page 6]



Internet-Draft        Service Registration Protocol            July 2018

2.3.3.  How to allow services to update standard RFC2136-compliant
        servers

   Ordinarily Registrations will fail when sent to any non-Registration
   Protocol server because the zone being updated is "services.arpa",
   and no DNS server that is not a Registration Protocol server should
   normally be configured to be authoritative for "services.arpa".
   Therefore, a service that sends a Registration can tell that the
   receiving server does not support the Registration Protocol, but does
   support RFC2136, because the RCODE will either be NOTZONE, NOTAUTH or
   REFUSED, or because there is no response to the update request (when
   using the anycast address)

   In this case a service MAY attempt to register itself using regular
   RFC2136 DNS updates.  To do so, it must discover default registration
   zone and the DNS server designated to receive updates for that zone,
   as described earlier using the _dns-update._udp SRV record.  It can
   then make the update using the port and host pointed to by the SRV
   record, and should use appropriate constraints to avoid overwriting
   competing records.  Such updates are out of scope for the DNSSD
   Registration Protocol, and a service that implements the DNSSD
   Registration Protocol MUST first attempt to use the Registration
   Protocol to register itself, and should only attempt to use RFC2136
   backwards compatibility if that fails.

2.4.  How to secure it

   Traditional DNS update is secured using the TSIG protocol, which uses
   a secret key shared between the client (which issues the update) and
   the server (which authenticates it).  This model does not work for
   automatic service registration.

   The goal of securing the DNS-SD Registration Protocol is to provide
   the best possible security given the constraint that service
   registration has to be automatic.  It is possible to layer more
   operational security on top of what we describe here, but what we
   describe here improves upon the security of mDNS.  The goal is not to
   provide the level of security of a network managed by a skilled
   operator.

2.4.1.  First-Come First-Served Naming

   First-Come First-Serve naming provides a limited degree of security:
   a service that registers its service using DNS-SD Registration
   protocol is given ownership of a name for an extended period of time
   based on the key used to authenticate the DNS Update.  As long as the
   registration service remembers the Service Instance Name and the key
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   used to register that Service Instance Name, no other service can add
   or update the information associated with that Service Instance Name.

2.4.1.1.  Service Behavior

   The service generates a public/private key pair.  This key pair MUST
   be stored in stable storage; if there is no writable stable storage
   on the client, the client MUST be pre-configured with a public/
   private key pair that can be used.

   When sending DNS updates, the service includes a KEY record
   containing the public portion of the key in each Host Description
   update.  The update is signed using SIG(0), using the private key
   that corresponds to the public key in the KEY record.  The lifetimes
   of the records in the update is set using the EDNS(0) Update Lease
   option.

   The lifetime of the DNS-SD PTR, SRV, A, AAAA and TXT records
   [RFC6763] is typically set to two hours.  This means that if a device
   is disconnected from the network, it does not appear in the user
   interfaces of devices looking for services of that type for too long.

   However, the lifetime of its KEY record should be set to a much
   longer time, typically 14 days.  The result of this is that even
   though a device may be temporarily unplugged, disappearing from the
   network for a few days, it makes a claim on its name that lasts much
   longer.

   This way, even if a device is unplugged from the network for a few
   days, and its services are not available for that time, no other
   rogue device can come along and immediately claim its name the moment
   it disappears from the network.  In the event that a device is
   unplugged from the network and permanently discarded, then its name
   is eventually cleaned up and made available for re-use.

2.4.2.  Registration Server Behavior

   The Registration server checks each update in the Registration to see
   that it contains a Service Discovery update, a Service Description
   update, and a Host Description update.

   An update is a Service Discovery update if it contains

   o  exactly one RRset update,
   o  which is for a PTR RR,
   o  which points to a Service Instance Name
   o  for which an update is present in the Registration.
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   An update is a Service Description update if, for the appropriate
   Service Instance Name, it contains

   o  exactly one "Delete all RRsets from a name" update,
   o  exactly one SRV RRset update,
   o  one or more TXT RRset updates,
   o  and the target of the SRV record update references a hostname for
      which there is a Host Description update in the Registration.

   An update is a Host Description update if, for the appropriate
   hostname, it contains

   o  exactly one "Delete all RRsets from a name" update,
   o  A or AAAA RR update(s)
   o  a KEY RR update that adds a KEY RR that contains the public key
      corresponding to the private key that was used to sign the
      message,
   o  there is a Service Instance Name update in the Registration that
      updates an SRV RR so that it points to the hostname being updated
      by this update.

   A Registration MUST include at least one Service Name update, at
   least one Service Description update, and exactly one Host
   Description update.  An update message that does not is not a
   Registration.  An update message that contains any other updates, or
   any update constraints, is not a Registration.  Such messages should
   either be processed as regular RFC2136 updates, including access
   control checks and constraint checks, if supported, or else rejected
   with RCODE=REFUSED.

   Note that if the definitions of each of these update types are
   followed carefully, this means that many things that look very much
   like Registrations nevertheless are not.  For example, a Registration
   that contains an update to a Service Name and an update to a Service
   Instance Name, where the Service Name does not reference the Service
   Instance Name, is not a valid Registration message, but may be a
   valid RFC2136 update.

   Assuming that an update message has been validated with these
   conditions and is a valid Registration, the server checks that the
   name in the Host Description update exists.  If so, then the server
   checks to see if the KEY record on the name is the same as the KEY
   record in the update.  If it is not, then the server MUST reject the
   Registration with the YXDOMAIN RCODE.

   Otherwise, the server validates the update using SIG(0) on the public
   key in the KEY record of the Host Description update.  If the
   validation fails, the server MUST reject the rejectration rejected
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   with the REFUSED RCODE.  Otherwise, the update is considered valid
   and authentic, and is processed according to the method described in
   RFC2136.  The status that is returned depends on the result of
   processing the update.

   The server MAY add a Reverse Mapping that corresponds to the Host
   Description.  This is not required because the Reverse Mapping serves
   no protocol function, but it may be useful for debugging, e.g. in
   annotating network packet traces or logs.

   The server MAY apply additional criteria when accepting updates.  In
   some networks, it may be possible to do out-of-band registration of
   keys, and only accept updates from pre-registered keys.  In this
   case, an update for a key that has not been registered should be
   rejected with the REFUSED RCODE.

   There are at least two benefits to doing this rather than simply
   using normal SIG(0) DNS updates.  First, the same registration
   protocol can be used in both cases, so both use cases can be
   addressed by the same service implementation.  Second, the
   registration protocol includes maintenance functionality not present
   with normal DNS updates.

   Note that the semantics of using the Registration Protocol in this
   way are different than for typical RFC2136 implementations: the KEY
   used to sign the update in the Registration Protocol only allows the
   client to update records that refer to its Host Description.  RFC2136
   implementations do not normally provide a way to enforce a constraint
   of this type.

   The server may also have a dictionary of names or name patterns that
   are not permitted.  If such a list is used, updates for Service
   Instance Names that match entries in the dictionary are rejected with
   YXDOMAIN.

2.5.  TTL Consistency

   All RRs within an RRset are required to have the same TTL
   (Clarifications to the DNS Specification [RFC2181], Section 5.2).  In
   order to avoid inconsistencies, the Registration Protocol places
   restrictions on TTLs sent by services and requires that Registration
   Protocol Servers enforce consistency.

   Services sending Registrations MUST use consistent TTLs in all RRs
   within the Registration.
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   Registration Protocol servers MUST check that the TTLs for all RRs
   within the Registration are the same.  If they are not, the
   Registration MUST be rejected with a REFUSED RCODE.

   Additionally, when adding RRs to an RRset, for example when
   processing Service Discovery records, the server MUST use the same
   TTL on all RRs in the RRset.  How this consistency is enforced is up
   to the implementation.

2.6.  Maintenance

2.6.1.  Cleaning up stale data

   Because the DNS-SD registration protocol is automatic, and not
   managed by humans, some additional bookkeeping is required.  When an
   update is constructed by the client, it MUST include include an
   EDNS(0) Update Lease Option [I-D.sekar-dns-ul].  The Update Lease
   Option contains two lease times: the Update Lease Time and the
   Instance Lease Time.

   These leases are promises, similar to DHCP leases [RFC2131], from the
   client that it will send a new update for the service registration
   before the lease time expires.  The Update Lease time is chosen to
   represent the time after the update during which the registered
   records other than the KEY record should be assumed to be valid.  The
   Instance Lease time represents the time after the update during which
   the KEY record should be assumed to be valid.

   The reasoning behind the different lease times is discussed in the
   section on first-come, first-served naming Section 2.4.1.  DNS-SD
   Registration Protocol servers may be configured with limits for these
   values.  A default limit of two hours for the Update Lease and 14
   days for the SIG(0) KEY are currently thought to be good choices.
   Clients that are going to continue to use names on which they hold
   leases should update well before the lease ends, in case the
   registration service is unavailable or under heavy load.

   The Registration Protocol server MUST include an EDNS(0) Update Lease
   option in the response if the lease time proposed by the service has
   been shortened.  The service MUST check for the EDNS(0) Update Lease
   option in the response and MUST use the lease times from that option
   in place of the options that it sent to the server when deciding when
   to update its registration.

   Clients should assume that each lease ends N seconds after the update
   was first transmitted, where N is the lease duration.  Servers should
   assume that each lease ends N seconds after the update that was
   successfully processed was received.  Because the server will always
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   receive the update after the client sent it, this avoids the
   possibility of misunderstandings.

   DNS-SD Registration Protocol servers MUST reject updates that do not
   include an EDNS(0) Update Lease option.  Dual-use servers MAY accept
   updates that don’t include leases, but SHOULD differentiate between
   DNS-SD registration protocol updates and other updates, and MUST
   reject updates that are known to be DNS-SD Registration Protocol
   updates if they do not include leases.

2.6.2.  Sleep Proxy

   Another use of Service Registration Protocol is for devices that
   sleep to reduce power consumption.

   In this case, in addition to the DNS Update Lease option
   [I-D.sekar-dns-ul] described above, the device includes an EDNS(0)
   OWNER Option [I-D.cheshire-edns0-owner-option].

   The EDNS(0) Update Lease option constitutes a promise by the device
   that it will wake up before this time elapses, to renew its
   registration and thereby demonstrate that it is still attached to the
   network.  If it fails to renew the registration by this time, that
   indicates that it is no longer attached to the network, and its
   registration (except for the KEY in the Host Description) should be
   deleted.

   The EDNS(0) OWNER Option indicates that the device will be asleep,
   and will not be receptive to normal network traffic.  When a DNS
   server receives a DNS Update with an EDNS(0) OWNER Option, that
   signifies that the Registration Protocol server should set up a proxy
   for any IPv4 or IPv6 address records in the DNS Update message.  This
   proxy should send ARP or ND messages claiming ownership of the IPv4
   and/or IPv6 addresses in the records in question.  In addition, proxy
   should answer future ARP or ND requests for those IPv4 and/or IPv6
   addresses, claiming ownership of them.  When the DNS server receives
   a TCP SYN or UDP packet addressed to one of the IPv4 or IPv6
   addresses for which it proxying, it should then wake up the sleeping
   device using the information in the EDNS(0) OWNER Option.  At present
   version 0 of the OWNER Option specifies the "Wake-on-LAN Magic
   Packet" that needs to be sent; future versions could be extended to
   specify other wakeup mechanisms.

   Note that although the authoritative DNS server that implements the
   DNSSD Service Registration Protocol function need not be on the same
   link as the sleeping host, the Sleep Proxy must be on the same link.
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3.  Security Considerations

   DNS-SD Service Registration Protocol updates have no authorization
   semantics other than first-come, first-served.  This means that if an
   attacker from outside of the administrative domain of the server
   knows the server’s IP address, it can in principle send updates to
   the server that will be processed successfully.  Servers should
   therefore be configured to reject updates from source addresses
   outside of the administrative domain of the server.

   For Anycast updates, this validation must be enforced by every router
   that connects the CDN to the unconstrained portion of the network.
   For TCP updates, the initial SYN-SYN+ACK handshake prevents updates
   being forged from off-network.  In order to ensure that this
   handshake happens, Service Discovery Protocol servers MUST NOT accept
   0-RTT TCP payloads.

   Note that these rules only apply to the validation of DNS-SD
   registration protocol updates.  A server that accepts updates from
   DNS-SD registration protocol clients may also accept other DNS
   updates, and those DNS updates may be validated using different
   rules.  However, in the case of a DNS service that accepts automatic
   updates, the intersection of the DNS-SD service registration update
   rules and whatever other update rules are present must be considered
   very carefully.

   For example, a normal, authenticated RFC2136 update to any RR that
   was added using the Registration protocol, but that is authenticated
   using a different key, could be used to override a promise made by
   the registration protocol, by replacing all or part of the service
   registration information with information provided by a different
   client.  An implementation that allows both kinds of updates should
   not allow updates to records added by Registrations using different
   authentication and authorization credentials.

4.  Privacy Considerations
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