
Network Working Group C. Huitema
Internet-Draft Private Octopus Inc.
Intended status: Informational June 29, 2018
Expires: December 31, 2018

 DNS-SD Privacy and Security Requirements
 draft-huitema-dnssd-prireq-00

Abstract

 DNS-SD (DNS Service Discovery) normally discloses information about
 devices offering and requesting services. This information includes
 host names, network parameters, and possibly a further description of
 the corresponding service instance. Especially when mobile devices
 engage in DNS Service Discovery over Multicast DNS at a public
 hotspot, serious privacy problems arise. We analyze the requirements
 of a privacy respecting discovery service.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Huitema Expires December 31, 2018 [Page 1]

Internet-Draft DNS-SD Privacy Requirements June 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements . 3
 2. DNS-SD Discovery Scenarios 3
 2.1. Private client and public server 3
 2.2. Private client and private server 4
 2.3. Wearable client and server 5
 3. Privacy Considerations 6
 3.1. Privacy Implication of Publishing Service Instance Names 7
 3.2. Privacy Implication of Publishing Node Names 7
 3.3. Privacy Implication of Publishing Service Attributes . . 8
 3.4. Device Fingerprinting 8
 3.5. Privacy Implication of Discovering Services 9
 4. Security Considerations 10
 4.1. Authenticity, Integrity & Freshness 10
 4.2. Confidentiality . 10
 4.3. Resistance to Dictionary Attacks 10
 4.4. Resistance to Denial-of-Service Attack 10
 4.5. Resistance to Sender Impersonation 11
 4.6. Sender Deniability 11
 5. Operational Considerations 11
 5.1. Power Management . 11
 5.2. Protocol Efficiency 11
 5.3. Secure Initialization and Trust Models 12
 5.4. External Dependencies 13
 6. IANA Considerations . 13
 7. Acknowledgments . 13
 8. Informative References 13
 Author’s Address . 15

1. Introduction

 DNS-SD [RFC6763] over mDNS [RFC6762] enables zero-configuration
 service discovery in local networks. It is very convenient for
 users, but it requires the public exposure of the offering and
 requesting identities along with information about the offered and
 requested services. Parts of the published information can seriously
 breach the user’s privacy. These privacy issues and potential
 solutions are discussed in [KW14a], [KW14b] and [K17].

 There are cases when nodes connected to a network want to provide or
 consume services without exposing their identity to the other parties
 connected to the same network. Consider for example a traveler
 wanting to upload pictures from a phone to a laptop when connected to

Huitema Expires December 31, 2018 [Page 2]

Internet-Draft DNS-SD Privacy Requirements June 2018

 the Wi-Fi network of an Internet cafe, or two travelers who want to
 share files between their laptops when waiting for their plane in an
 airport lounge.

 We expect that these exchanges will start with a discovery procedure
 using DNS-SD [RFC6763] over mDNS [RFC6762]. One of the devices will
 publish the availability of a service, such as a picture library or a
 file store in our examples. The user of the other device will
 discover this service, and then connect to it.

 When analyzing these scenarios in Section 3, we find that the DNS-SD
 messages leak identifying information such as the instance name, the
 host name or service properties.

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. DNS-SD Discovery Scenarios

 DNS-Based Service Discovery (DNS-SD) is defined in [RFC6763]. It
 allows nodes to publish the availability of an instance of a service
 by inserting specific records in the DNS ([RFC1033], [RFC1034],
 [RFC1035]) or by publishing these records locally using multicast DNS
 (mDNS) [RFC6762]. Available services are described using three types
 of records:

 PTR Record: Associates a service type in the domain with an
 "instance" name of this service type.

 SRV Record: Provides the node name, port number, priority and weight
 associated with the service instance, in conformance with
 [RFC2782].

 TXT Record: Provides a set of attribute-value pairs describing
 specific properties of the service instance.

 In the remaining sections, we review common discovery scenarios
 provided by DNS-SD and discuss their privacy requirements.

2.1. Private client and public server

 Perhaps the simplest private discovery scenario involves a single
 client connecting to a public server through a public network. A
 common example would be a traveler using a publicly available printer
 in a business center, in an hotel or at an airport.

Huitema Expires December 31, 2018 [Page 3]

Internet-Draft DNS-SD Privacy Requirements June 2018

 (Taking notes:
 (David is printing
 (a document
 ˜˜˜˜˜˜˜˜˜˜˜
 o
 ___ o ___
 / \ _|___|_
 | | |* *|
 _/ __ _/
 | / / Discovery +----------+ |
 /|\ /_/ <-----------> | +----+ | /|\
 / | __/ +--| |--+ / | \
 / | |____/ / | \
 / | / | \
 / \ / \
 / \ / \
 / \ / \
 / \ / \
 / \ / \

 In that scenario, the server is public and wants to be discovered,
 but the client is private. The adversary will be listening to the
 network traffic, trying to identify the visitors’ devices and their
 activity. Identifying devices leads to identifying people, either
 just for tracking people or as a preliminary to targeted attacks.

 The requirement in that scenario is that the discovery activity
 should not disclose the identity of the client.

2.2. Private client and private server

 The second private discovery scenario involves private client
 connecting to a private server. A common example would be two people
 engaging in a collaborative application in a public place, such as
 for example an airport’s lounge.

Huitema Expires December 31, 2018 [Page 4]

Internet-Draft DNS-SD Privacy Requirements June 2018

 (Taking notes:
 (David is meeting
 (with Stuart
 ˜˜˜˜˜˜˜˜˜˜˜
 o
 ___ ___ o ___
 / \ / \ _|___|_
 | | | | |* *|
 _/ __ __ _/ _/
 | / / Discovery \ \ | |
 /|\ /_/ <-----------> _\ /|\ /|\
 / | __/ __/ | \ / | \
 / | | \ / | \
 / | | \ / | \
 / \ / \ / \
 / \ / \ / \
 / \ / \ / \
 / \ / \ / \
 / \ / \ / \

 In that scenario, the collaborative application on one of the device
 will act as server, and the application on the other device will act
 as client. The server wants to be discovered by the client, but has
 no desire to be discovered by anyone else. The adversary will be
 listening to network traffic, attempting to discover the identity of
 devices as in the first scenario, and also attempting to discover the
 patterns of traffic, as these patterns reveal the business and social
 interactions between the owners of the devices.

 The requirement in that scenario is that the discovery activity
 should not disclose the identity of either the client or the server.

2.3. Wearable client and server

 The third private discovery scenario involves wearable devices. A
 typical example would be the watch on someone’s wrist connecting to
 the phone in their pocket.

Huitema Expires December 31, 2018 [Page 5]

Internet-Draft DNS-SD Privacy Requirements June 2018

 (Taking notes:
 (David’ is here. His watch is
 (talking to his phone
 ˜˜˜˜˜˜˜˜˜˜˜
 o
 ___ o ___
 / \ _|___|_
 | | |* *|
 _/ _/
 | _/ |
 /|\ // /|\
 / | __/ ^ / | \
 / |__ | Discovery / | \
 / |\ \ v / | \
 / _\ / \
 / \ / \
 / \ / \
 / \ / \
 / \ / \

 This third scenario is in many ways similar to the second scenario.
 It involves two devices, one acting as server and the other acting as
 client, and it leads to the same requirement that the discovery
 traffic not disclose the identity of either the client or the server.
 The main difference is that the devices are managed by a single
 owner, which can lead to different methods for establishing secure
 relations between the device. There is also an added emphasis in
 hiding the type of devices that the person wears.

 In addition to tracking the identity of the owner of the devices, the
 adversary is interested by the characteristics of the devices, such
 as type, brand, and model. Identifying the type of device can lead
 to further attacks, from theft to device specific hacking. The
 combination of devices worn by the same person will also provide a
 "fingerprint" of the person, allowing identification.

3. Privacy Considerations

 The discovery scenarios in Section Section 2 illustrate three
 separate privacy requirements that vary based on use case:

 1. Client identity privacy: Client identities are not leaked during
 service discovery or use.

 2. Multi-owner, mutual client and server identity privacy: Neither
 client nor server identities are leaked during service discovery
 or use.

Huitema Expires December 31, 2018 [Page 6]

Internet-Draft DNS-SD Privacy Requirements June 2018

 3. Single-owner, mutual client and server identity privacy:
 Identities of clients and servers owned and managed by the same
 application, device, or user are not leaked during service
 discovery or use.

 In the remaining subsections, we describe aspects of DNS-SD that make
 these requirements difficult to achieve in practice.

3.1. Privacy Implication of Publishing Service Instance Names

 In the first phase of discovery, client obtain all PTR records
 associated with a service type in a given naming domain. Each PTR
 record contains a Service Instance Name defined in Section 4 of
 [RFC6763]:

 Service Instance Name = <Instance> . <Service> . <Domain>

 The <Instance> portion of the Service Instance Name is meant to
 convey enough information for users of discovery clients to easily
 select the desired service instance. Nodes that use DNS-SD over mDNS
 [RFC6762] in a mobile environment will rely on the specificity of the
 instance name to identify the desired service instance. In our
 example of users wanting to upload pictures to a laptop in an
 Internet Cafe, the list of available service instances may look like:

 Alice’s Images . _imageStore._tcp . local
 Alice’s Mobile Phone . _presence._tcp . local
 Alice’s Notebook . _presence._tcp . local
 Bob’s Notebook . _presence._tcp . local
 Carol’s Notebook . _presence._tcp . local

 Alice will see the list on her phone and understand intuitively that
 she should pick the first item. The discovery will "just work".

 However, DNS-SD/mDNS will reveal to anybody that Alice is currently
 visiting the Internet Cafe. It further discloses the fact that she
 uses two devices, shares an image store, and uses a chat application
 supporting the _presence protocol on both of her devices. She might
 currently chat with Bob or Carol, as they are also using a _presence
 supporting chat application. This information is not just available
 to devices actively browsing for and offering services, but to
 anybody passively listening to the network traffic.

3.2. Privacy Implication of Publishing Node Names

 The SRV records contain the DNS name of the node publishing the
 service. Typical implementations construct this DNS name by
 concatenating the "host name" of the node with the name of the local

Huitema Expires December 31, 2018 [Page 7]

Internet-Draft DNS-SD Privacy Requirements June 2018

 domain. The privacy implications of this practice are reviewed in
 [RFC8117]. Depending on naming practices, the host name is either a
 strong identifier of the device, or at a minimum a partial
 identifier. It enables tracking of both the device, and, by
 extension, the device’s owner.

3.3. Privacy Implication of Publishing Service Attributes

 The TXT record’s attribute-value pairs contain information on the
 characteristics of the corresponding service instance. This in turn
 reveals information about the devices that publish services. The
 amount of information varies widely with the particular service and
 its implementation:

 o Some attributes like the paper size available in a printer, are
 the same on many devices, and thus only provide limited
 information to a tracker.

 o Attributes that have freeform values, such as the name of a
 directory, may reveal much more information.

 Combinations of attributes have more information power than specific
 attributes, and can potentially be used for "fingerprinting" a
 specific device.

 Information contained in TXT records does not only breach privacy by
 making devices trackable, but might directly contain private
 information about the user. For instance the _presence service
 reveals the "chat status" to everyone in the same network. Users
 might not be aware of that.

 Further, TXT records often contain version information about services
 allowing potential attackers to identify devices running exploit-
 prone versions of a certain service.

3.4. Device Fingerprinting

 The combination of information published in DNS-SD has the potential
 to provide a "fingerprint" of a specific device. Such information
 includes:

 o List of services published by the device, which can be retrieved
 because the SRV records will point to the same host name.

 o Specific attributes describing these services.

 o Port numbers used by the services.

Huitema Expires December 31, 2018 [Page 8]

Internet-Draft DNS-SD Privacy Requirements June 2018

 o Priority and weight attributes in the SRV records.

 This combination of services and attributes will often be sufficient
 to identify the version of the software running on a device. If a
 device publishes many services with rich sets of attributes, the
 combination may be sufficient to identify the specific device.

 A sometimes heard argument is that devices providing services can be
 identified by observing the local traffic, and that trying to hide
 the presence of the service is futile. This argument, however, does
 not carry much weight because

 1. Proving privacy at the discovery layer is of the essence for
 enabling automatically configured privacy-preserving network
 applications. Application layer protocols are not forced to
 leverage the offered privacy, but if device tracking is not
 prevented at the deeper layers, including the service discovery
 layer, obfuscating a certain service’s protocol at the
 application layer is futile.

 2. Further, even if the application layer does not protect privacy,
 it is hard to record and analyse the unicast traffic (which most
 applications will generate) compared to just listening to the
 multicast messages sent by DNS-SD/mDNS.

 The same argument can be extended to say that the pattern of services
 offered by a device allows for fingerprinting the device. This may
 or may not be true, since we can expect that services will be
 designed or updated to avoid leaking fingerprints. In any case, the
 design of the discovery service should avoid making a bad situation
 worse, and should as much as possible avoid providing new
 fingerprinting information.

3.5. Privacy Implication of Discovering Services

 The consumers of services engage in discovery, and in doing so reveal
 some information such as the list of services they are interested in
 and the domains in which they are looking for the services. When the
 clients select specific instances of services, they reveal their
 preference for these instances. This can be benign if the service
 type is very common, but it could be more problematic for sensitive
 services, such as for example some private messaging services.

 One way to protect clients would be to somehow encrypt the requested
 service types. Of course, just as we noted in Section 3.4, traffic
 analysis can often reveal the service.

Huitema Expires December 31, 2018 [Page 9]

Internet-Draft DNS-SD Privacy Requirements June 2018

4. Security Considerations

 For each of the operations described above, we must also consider
 security threats we are concerned about.

4.1. Authenticity, Integrity & Freshness

 Can we trust the information we receive? Has it been modified in
 flight by an adversary? Do we trust the source of the information?
 Is the source of information fresh, i.e., not replayed? Freshness
 may or may not be required depending on whether the discovery process
 is meant to be online. In some cases, publishing discovery
 information to a shared directory or registry, rather than to each
 online recipient through a broadcast channel, may suffice.

4.2. Confidentiality

 Confidentiality is about restricting information access to only
 authorized individuals. Ideally this should only be the appropriate
 trusted parties, though it can be challenging to define who are "the
 appropriate trusted parties." In some uses cases, this may mean that
 only mutually authenticated and trusting clients and servers can read
 messages sent for one another. The "Discover" operation in
 particular is often used to discover new entities that the device did
 not previously know about. It may be tricky to work out how a device
 can have an established trust relationship with a new entity it has
 never previously communicated with.

4.3. Resistance to Dictionary Attacks

 It can be tempting to use (publicly computable) hash functions to
 obscure sensitive identifiers. This transforms a sensitive unique
 identifier such as an email address into a "scrambled" (but still
 unique) identifier. Unfortunately simple solutions may be vulnerable
 to offline dictionary attacks.

4.4. Resistance to Denial-of-Service Attack

 In any protocol where the receiver of messages has to perform
 cryptographic operations on those messages, there is a risk of a
 brute-force flooding attack causing the receiver to expend excessive
 amounts of CPU time (and battery power) just processing and
 discarding those messages.

Huitema Expires December 31, 2018 [Page 10]

Internet-Draft DNS-SD Privacy Requirements June 2018

4.5. Resistance to Sender Impersonation

 Sender impersonation is an attack wherein messages such as service
 offers are forged by entities who do not possess the corresponding
 secret key material. These attacks may be used to learn the identity
 of a communicating party, actively or passively.

4.6. Sender Deniability

 Deniability of sender activity, e.g., of broadcasting a discovery
 request, may be desirable or necessary in some use cases. This
 property ensures that eavesdroppers cannot prove senders issued a
 specific message destined for one or more peers.

5. Operational Considerations

5.1. Power Management

 Many modern devices, especially battery-powered devices, use power
 management techniques to conserve energy. One such technique is for
 a device to transfer information about itself to a proxy, which will
 act on behalf of the device for some functions, while the device
 itself goes to sleep to reduce power consumption. When the proxy
 determines that some action is required which only the device itself
 can perform, the proxy may have some way (such as Ethernet "Magic
 Packet") to wake the device.

 In many cases, the device may not trust the network proxy
 sufficiently to share all its confidential key material with the
 proxy. This poses challenges for combining private discovery that
 relies on per-query cryptographic operations, with energy-saving
 techniques that rely on having (somewhat untrusted) network proxies
 answer queries on behalf of sleeping devices.

5.2. Protocol Efficiency

 Creating a discovery protocol that has the desired security
 properties may result in a design that is not efficient. To perform
 the necessary operations the protocol may need to send and receive a
 large number of network packets. This may consume an unreasonable
 amount of network capacity (particularly problematic when it’s shared
 wireless spectrum), cause an unnecessary level of power consumption
 (particularly problematic on battery devices) and may result in the
 discovery process being slow.

 It is a difficult challenge to design a discovery protocol that has
 the property of obscuring the details of what it is doing from

Huitema Expires December 31, 2018 [Page 11]

Internet-Draft DNS-SD Privacy Requirements June 2018

 unauthorized observers, while also managing to do that quickly and
 efficiently.

5.3. Secure Initialization and Trust Models

 One of the challenges implicit in the preceding discussions is that
 whenever we discuss "trusted entities" versus "untrusted entities",
 there needs to be some way that trust is initially established, to
 convert an "untrusted entity" into a "trusted entity".

 One way to establish trust between two entities is to trust a third
 party to make that determination for us. For example, the X.509
 certificates used by TLS and HTTPS web browsing are based on the
 model of trusting a third party to tell us who to trust. There are
 some difficulties in using this model for establishing trust for
 service discovery uses. If we want to print our tax returns or
 medical documents on "our" printer, then we need to know which
 printer on the network we can trust be be "our" printer. All of the
 printers we discover on the network may be legitimate printers made
 by legitimate printer manufacturers, but not all of them are "our"
 printer. A third-party certificate authority cannot tell us which
 one of the printers is ours.

 Another common way to establish a trust relationship is Trust On
 First Use (TOFU), as used by ssh. The first usage is a Leap Of
 Faith, but after that public keys are exchanged and at least we can
 confirm that subsequent communications are with the same entity. In
 today’s world, where there may be attackers present even at that
 first use, it would be preferable to be able to establish a trust
 relationship without requiring an initial Leap Of Faith.

 Techniques now exist for securely establishing a trust relationship
 without requiring an initial Leap Of Faith. Trust can be established
 securely using a short passphrase or PIN with cryptographic
 algorithms such as Secure Remote Password (SRP) [RFC5054] or a
 Password Authenticated Key Exchange like J-PAKE [RFC8236] using a
 Schnorr Non-interactive Zero-Knowledge Proof [RFC8235].

 Such techniques require a user to enter the correct passphrase or PIN
 in order for the cryptographic algorithms to establish working
 communication. This avoids the human tendency to simply press the
 "OK" button when asked if they want to do something on their
 electronic device. It removes the human fallibility element from the
 equation, and avoids the human users inadvertently sabotaging their
 own security.

 Using these techniques, if a user tries to print their tax return on
 a printer they’ve never used before (even though the name looks

Huitema Expires December 31, 2018 [Page 12]

Internet-Draft DNS-SD Privacy Requirements June 2018

 right) they’ll be prompted to enter a pairing PIN, and the user
 cannot ignore that warning. They can’t just press an "OK" button.
 They have to walk to the printer and read the displayed PIN and enter
 it. And if the intended printer is not displaying a pairing PIN, or
 is displaying a different pairing PIN, that means the user may be
 being spoofed, and the connection will not succeed, and the failure
 will not reveal any secret information to the attacker. As much as
 the human desires to "just give me an OK button to make it print"
 (and the attacker desires them to click that OK button too) the
 cryptographic algorithms do not give the user the ability to opt out
 of the security, and consequently do not give the attacker any way to
 persuade the user to opt out of the security protections.

5.4. External Dependencies

 Trust establishment may depend on external, and optionally online,
 parties. Systems which have such a dependency may be attacked by
 interfering with communication to external dependencies. Where
 possible, such dependencies should be minimized. Local trust models
 are best for secure initialization in the presence of active
 attackers.

6. IANA Considerations

 This draft does not require any IANA action.

7. Acknowledgments

 This draft incorporates many contributions from Stuart Cheshire and
 Chris Wood.

8. Informative References

 [K17] Kaiser, D., "Efficient Privacy-Preserving
 Configurationless Service Discovery Supporting Multi-Link
 Networks", 2017,
 <http://nbn-resolving.de/urn:nbn:de:bsz:352-0-422757>.

 [KW14a] Kaiser, D. and M. Waldvogel, "Adding Privacy to Multicast
 DNS Service Discovery", DOI 10.1109/TrustCom.2014.107,
 2014, <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=7011331>.

 [KW14b] Kaiser, D. and M. Waldvogel, "Efficient Privacy Preserving
 Multicast DNS Service Discovery",
 DOI 10.1109/HPCC.2014.141, 2014,
 <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=7056899>.

Huitema Expires December 31, 2018 [Page 13]

Internet-Draft DNS-SD Privacy Requirements June 2018

 [RFC1033] Lottor, M., "Domain Administrators Operations Guide",
 RFC 1033, DOI 10.17487/RFC1033, November 1987,
 <https://www.rfc-editor.org/info/rfc1033>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <https://www.rfc-editor.org/info/rfc2782>.

 [RFC5054] Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
 "Using the Secure Remote Password (SRP) Protocol for TLS
 Authentication", RFC 5054, DOI 10.17487/RFC5054, November
 2007, <https://www.rfc-editor.org/info/rfc5054>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC8117] Huitema, C., Thaler, D., and R. Winter, "Current Hostname
 Practice Considered Harmful", RFC 8117,
 DOI 10.17487/RFC8117, March 2017,
 <https://www.rfc-editor.org/info/rfc8117>.

 [RFC8235] Hao, F., Ed., "Schnorr Non-interactive Zero-Knowledge
 Proof", RFC 8235, DOI 10.17487/RFC8235, September 2017,
 <https://www.rfc-editor.org/info/rfc8235>.

 [RFC8236] Hao, F., Ed., "J-PAKE: Password-Authenticated Key Exchange
 by Juggling", RFC 8236, DOI 10.17487/RFC8236, September
 2017, <https://www.rfc-editor.org/info/rfc8236>.

Huitema Expires December 31, 2018 [Page 14]

Internet-Draft DNS-SD Privacy Requirements June 2018

Author’s Address

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net
 URI: http://privateoctopus.com/

Huitema Expires December 31, 2018 [Page 15]

Network Working Group C. Huitema
Internet-Draft Private Octopus Inc.
Intended status: Informational June 29, 2018
Expires: December 31, 2018

 DNS-SD Privacy Scaling Tradeoffs
 draft-huitema-dnssd-privacyscaling-01

Abstract

 DNS-SD (DNS Service Discovery) normally discloses information about
 both the devices offering services and the devices requesting
 services. This information includes host names, network parameters,
 and possibly a further description of the corresponding service
 instance. Especially when mobile devices engage in DNS Service
 Discovery over Multicast DNS at a public hotspot, a serious privacy
 problem arises.

 The draft currently progressing in the DNS-SD Working Group assumes
 peer-to-peer pairing between the service to be discovered and each of
 its clients. This has good security properties, but creates scaling
 issues, because each server needs to publish as many announcements as
 it has paired clients. This leads to large number of operations when
 servers are paired with many clients.

 Different designs are possible. For example, if there was only one
 server "discovery key" known by each authorized client, each server
 would only have to announce a single record, and clients would only
 have to process one response for each server that is present on the
 network. Yet, these designs will present different privacy profiles,
 and pose different management challenges. This draft analyses the
 tradeoffs between privacy and scaling in a set of different designs,
 using either shared secrets or public keys.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Huitema Expires December 31, 2018 [Page 1]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Privacy and Secrets . 3
 2.1. Pairing secrets . 3
 2.2. Group public keys . 4
 2.3. Shared symmetric secret 4
 2.4. Shared public key . 4
 3. Scaling properties of different solutions 5
 4. Comparing privacy posture of different solutions 7
 4.1. Effects of compromized client 7
 4.2. Revocation . 8
 4.3. Effect of compromized server 9
 5. Summary of tradeoffs . 9
 6. Security Considerations 10
 7. IANA Considerations . 10
 8. Acknowledgments . 10
 9. Informative References 10
 Appendix A. Survey of Implementations 11
 A.1. DNS-SD Privacy Extensions 11
 A.2. Private IoT . 12
 Author’s Address . 13

1. Introduction

 DNS-SD [RFC6763] over mDNS [RFC6762] enables configurationless
 service discovery in local networks. It is very convenient for
 users, but it requires the public exposure of the offering and

Huitema Expires December 31, 2018 [Page 2]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 requesting identities along with information about the offered and
 requested services. Parts of the published information can seriously
 breach the users’ privacy. These privacy issues and potential
 solutions are discussed in [KW14a] and [KW14b].

 A recent draft [I-D.ietf-dnssd-privacy] proposes to solve this
 problem by relying on device pairing. Only clients that have paired
 with a device would be able to discover that device, and the
 discovery would not be observable by third parties. This design has
 a number of good privacy and security properties, but it has a cost,
 because each server must provide separate annoucements for each
 client. In this draft, we compare scaling and privacy properties of
 three different designs:

 o The individual pairing defined in [I-D.ietf-dnssd-privacy],

 o A single server discovery secret, shared by all authorized
 clients,

 o A single server discovery public key, known by all authorized
 clients.

 After presenting briefly these three solutions, the draft presents
 the scaling and privacy properties of each of them.

2. Privacy and Secrets

 Private discovery tries to ensure that clients and servers can
 discover each other in a potentially hostile network context, while
 maintaining privacy. Unauthorized third parties must not be able to
 discover that a specific server or device is currently present on the
 network, and they must not be able to discover that a particular
 client is trying to discover a particular service. This cannot be
 achieved without some kind of shared secret between client and
 servers. We review here three particular designs for sharing these
 secrets.

2.1. Pairing secrets

 The solution proposed in [I-D.ietf-dnssd-privacy] relies on pairing
 secrets. Each client obtains a pairing secret from each server that
 they are authorized to use. The servers publish announcements of the
 form "nonce|proof", in which the proof is the hash of the nonce and
 the pairing secret. The proof is of course different for each
 client, because the secrets are different. For better scaling, the
 nonce is common to all clients, and defined as a coarse function of
 time, such as the current 30 minutes interval.

Huitema Expires December 31, 2018 [Page 3]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 Clients discover the required server by issuing queries containing
 the current nonce and proof. Servers respond to these queries if the
 nonce matches the current time interval, and if the proof matches the
 hash of the nonce with one of the pairing key of an authorized
 client.

2.2. Group public keys

 In contrast to pair-wise shared secrets, applications may associate
 public and private key pairs with groups of equally authorized
 clients. This is identical to the pairwise sharing case if each
 client is given a unique key pair. However, this option permits
 multiple users to belong to the same group associated with a public
 key, depending on the type of public key and cryptographic scheme
 used. For example, broadcast encryption is a scheme where many
 users, each with their own private key, can access content encrypted
 under a single broadcast key. The scaling properties of this variant
 depend not only on how private keys are managed, but also on the
 associated cryptographic algorithm(s) by which those keys are used.

2.3. Shared symmetric secret

 Instead of using a different secret for each client as in
 Section 2.1, another design is to have a single secret per server,
 shared by all authorized clients of that server. As in the previous
 solution, the servers publish announcements of the form
 "nonce|proof", but this time they only need to publish a single
 announcement per server, because each server maintains a single
 discovery secret. Again, the nonce can be common to all clients, and
 defined as a coarse function of time.

 Clients discover the required server by issuing queries containing
 the current nonce and proof. Servers respond to these queries if the
 nonce matches the current time interval, and if the proof matches the
 hash of the nonce with one of the discovery secrets.

2.4. Shared public key

 Instead of a discovery secret used in Section 2.3, clients could
 obtain the public keys of the servers that they are authorized to
 use.

 Many public key systems assume that the public key of the server is,
 well, not secret. But if adversaries know the public key of a
 server, they can use that public key as a unique identifier to track
 the server. Moreover, they could use variations of the padding
 oracle to observe discovery protocol messages and attribute them to a
 specific public key, thus breaking server privacy. For these

Huitema Expires December 31, 2018 [Page 4]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 reasons, we assume here that the discovery public key is kept secret,
 only known to authorized clients.

 As in the previous solution, the servers publish announcements of the
 form "nonce|proof", but this time they only need to publish a single
 announcement per server, because each server maintains a single
 discovery secret. The proof is obtained by either hashing the nonce
 with the public key, or using the public key to encrypt the nonce --
 the point being that both clients and server can construct the proof.
 Again, the nonce can be common to all clients, and defined as a
 coarse function of time.

 The advantage of public key based solutions is that the clients can
 easily verify the identity of the server, for example if the service
 is accessed over TLS. On the other hand, just using standard TLS
 would disclose the certificate of the server to any client that
 attempts a connection, not just to authorized clients. The server
 should thus only accept connections from clients that demonstrate
 knowledge of its public key.

3. Scaling properties of different solutions

 To analyze scaling issues we will use the following variables:

 N: The average number of authorized clients per server.

 G: The average number of authorized groups per server.

 M: The average number of servers per client.

 P: The average total number of servers present during discovery.

 The big difference between the three proposals is the number of
 records that need to be published by a server when using DNS-SD in
 server mode, or the number of broadcast messages that needs to be
 announced per server in mDNS mode:

 Pairing secrets: O(N): One record per client.

 Group public keys: O(G): One record per group.

 Shared symmetric secret: O(1): One record for all (shared) clients.

 Shared public key: O(1): One record for all (shared) clients.

 There are other elements of scaling, linked to the mapping of the
 privacy discovery service to DNS-SD. DNS-SD identifies services by a
 combination of a service type and an instance name. In classic

Huitema Expires December 31, 2018 [Page 5]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 mapping behavior, clients send a query for a service type, and will
 receive responses from each server instance supporting that type:

 Pairing secrets: O(P*N): There are O(P) servers present, and each
 publishes O(N) instances.

 Group public keys: O(P*G): There are O(P) servers present, and each
 publishes O(G) instances.

 Shared symmetric secret: O(P): One record per server present.

 Shared public secret: O(P): One record per server present.

 The DNS-SD Privacy draft suggests an optimization that considerably
 reduces the considerations about scaling of responses -- see section
 4.6 of [I-D.ietf-dnssd-privacy]. In that case, clients compose the
 list of instance names that they are looking for, and specifically
 query for these instance names:

 Pairing secrets: O(M): The client will compose O(M) queries to
 discover all the servers that it is interested in. There will be
 at most O(M) responses.

 Group public keys: O(M): The client will compose O(M) queries to
 discover all the servers that it is interested in. There will be
 at most O(M) responses.

 Shared symmetric secret: O(M): Same behavior as in the pairing
 secret case.

 Shared public secret: O(M): Same behavior as in the pairing secret
 case.

 Finally, another element of scaling is cacheability. Responses to
 DNS queries can be cached by DNS resolvers, and mDNS responses can be
 cached by mDNS resolvers. If several clients send the same queries,
 and if previous responses could be cached, the client can be served
 immediately. There are of course differences between the solutions:

 Pairing secrets: No caching possible, since there are separate
 server instances for separate clients.

 Group public keys: Caching is possible for among members of a group.

 Shared symmetric secret: Caching is possible, since there is just
 one server instance.

Huitema Expires December 31, 2018 [Page 6]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 Shared public secret: Caching is possible, since there is just one
 server instance.

4. Comparing privacy posture of different solutions

 The analysis of scaling issues in Section 3 shows that the solutions
 base on a common discovery secret or discovery public key scale much
 better than the solutions based on pairing secret. All these
 solutions protect against tracking of clients or servers by third
 parties, as long as the secret on which they rely are kept secret.
 There are however significant differences in privacy properties,
 which become visible when one of the clients becomes compromised.

4.1. Effects of compromized client

 If a client is compromised, an adversary will take possession of the
 secrets owned by that client. The effects will be the following:

 Pairing secrets: With a valid pairing key, the adversary can issue
 queries and parse announcements. It will be able to track the
 presence of all the servers to which the compromised client was
 paired. It may be able to track other clients of these servers if
 it can infer that multiple independent instances are tied to the
 same server, for example by assessing the IP address associated
 with a specific instance. It will not be able to impersonate the
 servers for other clients.

 Group public keys: With a valid group private key, the adversary can
 issue queries and parse announcements. It will be able to track
 the presence of all the servers with which the compromised group
 was authenticated. It may be able to track other clients of these
 servers if it can infer that multiple independent instances are
 tied to the same server, for example by assessing the IP address
 associated with a specific instance. It will not be able to
 impersonate the servers for other clients or groups.

 Shared symmetric secret: With a valid discovery secret, the
 adversary can issue queries and parse announcements. It will be
 able to track the presence of all the servers that the compromised
 client could discover. It will also be able to detect the clients
 that try to use one of these servers. This will not reveal the
 identity of the client, but it can provide clues for network
 analysis. The adversary will also be able to spoof the server’s
 announcements, which could be the first step in a server
 impersonation attack.

 Shared public secret: With a valid discovery public key, the
 adversary can issue queries and parse announcements. It will be

Huitema Expires December 31, 2018 [Page 7]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 able to track the presence of all the servers that the compromised
 client could discover. It will also be able to detect the clients
 that try to use one of these servers. This will not reveal the
 identity of the client, but it can provide clues for network
 analysis. The adversary will not be able to spoof the server’s
 announcements, or to impersonate the server.

4.2. Revocation

 Assume an administrator discovers that a client has been compromised.
 As seen in Section 4.1, compromising a client entails a loss of
 privacy for all the servers that the client was authorized to use,
 and also to all other users of these servers. The worse situation
 happens in the solutions based on "discovery secrets", but no
 solution provides a great defense. The administrator will have to
 remedy the problem, which means different actions based on the
 different solutions:

 Pairing secrets: The administrator will need to revoke the pairing
 keys used by the compromised client. This implies contacting the
 O(M) servers to which the client was paired.

 Group public key: The administrator must revoke the private key
 associated with the compromised group members and, depending on
 the cryptographic scheme in use, generate new private keys for
 each existing, non-compromised group member. The latter is
 necessary for public key encryption schemes wherein group access
 is permitted based on ownership (or not) to an included private
 key. Some public key encryption schemes permit revocation without
 rotating any non-compromised group member private keys.

 Shared symmetric secret: The administrator will need to revoke the
 discovery secrets used by the compromised client. This implies
 contacting the O(M) servers that the client was authorized to
 discover, and then the O(N) clients of each of these servers.
 This will require a total of O(N*M) management operations.

 Shared public secret: The administrator will need to revoke the
 discovery public keys used by the compromised client. This
 implies contacting the O(M) servers that the client was authorized
 to discover, and then the O(N) clients of each of these servers.
 Just as in the case of discovery secrets, this will require O(N*M)
 management operations.

 The revocation of public keys might benefit from some kind of
 centralized revocation list, and thus may actually be easier to
 organize than simple scaling considerations would dictate.

Huitema Expires December 31, 2018 [Page 8]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

4.3. Effect of compromized server

 If a server is compromised, an adversary will take possession of the
 secrets owned by that server. The effects are pretty much the same
 in all configurations. With a set of valid credentials, the
 adversary can impersonate the server. It can track all of the
 server’s clients. There are no differences between the various
 solutions.

 As remedy, once the compromise is discovered, the administrator will
 have to revoke the credentials of O(N) clients, or O(G) groups,
 connected to that server. In all cases, this could be done by
 notifying all potential clients to not trust this particular server
 anymore.

5. Summary of tradeoffs

 In the preceding sections, we have reviewed the scaling and privacy
 properties of three possible secret sharing solutions for privacy
 discovery. The comparison can be summed up as follow:

 +-------------------------+---------+------------+-------------+
 | Solution | Scaling | Resistance | Remediation |
 +-------------------------+---------+------------+-------------+
 | Pairing secret | Poor | Bad | Good |
 | Group public key | Medium | Bad | Maybe |
 | Shared symmetric secret | Good | Really bad | Poor |
 | Shared public secret | Good | Bad | Maybe |
 +-------------------------+---------+------------+-------------+

 Table 1: Comparison of secret sharing solutions

 All four types of solutions provide reasonable privacy when the
 secrets are not compromised. They all have poor resistance to the
 compromise of a client, as explained in Section 4.1, but sharing a
 symmetric secret is much worse because it does not prevent server
 impersonation. The pairing secret solution scales worse than the
 discovery secret and discovery public key solutions. The group
 public key scales as the number of groups for the total set of
 clients; this depends on group assignment and will be intermediate
 between the pairing secret and shared secret solutions. The pairing
 secret solution can recover from a compromise with a smaller number
 of updates, but the public key solutions may benefit from a simple
 recovery solution using some form of "revocation list".

Huitema Expires December 31, 2018 [Page 9]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

6. Security Considerations

 This document does not specify a solution, but discusses future
 choices when providing privacy for discovery protocols.

7. IANA Considerations

 This draft does not require any IANA action.

8. Acknowledgments

 This draft results from initial feedback in the DNS SD working group
 on [I-D.ietf-dnssd-privacy]. The text on Group public keys is based
 on Chris Wood’s contributions.

9. Informative References

 [I-D.ietf-dnssd-pairing]
 Huitema, C. and D. Kaiser, "Device Pairing Using Short
 Authentication Strings", draft-ietf-dnssd-pairing-04 (work
 in progress), April 2018.

 [I-D.ietf-dnssd-privacy]
 Huitema, C. and D. Kaiser, "Privacy Extensions for DNS-
 SD", draft-ietf-dnssd-privacy-04 (work in progress), April
 2018.

 [KW14a] Kaiser, D. and M. Waldvogel, "Adding Privacy to Multicast
 DNS Service Discovery", DOI 10.1109/TrustCom.2014.107,
 2014, <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=7011331>.

 [KW14b] Kaiser, D. and M. Waldvogel, "Efficient Privacy Preserving
 Multicast DNS Service Discovery",
 DOI 10.1109/HPCC.2014.141, 2014,
 <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=7056899>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

Huitema Expires December 31, 2018 [Page 10]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [SIGMA] Krawczyk, H., "SIGMA: The ’SIGn-and-MAc’approach to
 authenticated Diffie-Hellman and its use in the IKE
 protocols", 2003, <http://link.springer.com/content/
 pdf/10.1007/978-3-540-45146-4_24.pdf>.

 [Wu16] Wu, D., Taly, A., Shankar, A., and D. Boneh, "Privacy,
 discovery, and authentication for the internet of things",
 2016, <https://arxiv.org/pdf/1604.06959.pdf%22>.

Appendix A. Survey of Implementations

 This section surveys several private service discovery designs in the
 context of the threat model detailed above.

A.1. DNS-SD Privacy Extensions

 Huitema and Kaiser [I-D.ietf-dnssd-privacy] decompose private service
 discovery into two stages: (1) identify specific peers offering
 private services, and (2) issue unicast DNS-SD queries to those hosts
 after connecting over TLS using a previously agreed upon pre-shared
 key (PSK), or pairing key. Any out-of-band pairing mechanism will
 suffice for PSK establishment, though the authors specifically
 mention [I-D.ietf-dnssd-pairing] as the pairing mechanism. Step (1)
 is done by broadcasting "private instance names" to local peers,
 using service-specific pairing keys. A private instance name N’ for
 some service with name N is composed of a unique nonce r and
 commitment to r using N_k. Commitments are constructed by hashing
 N_k with the nonce. Only owners of N_k may verify its correctness
 and, upon doing so, answer as needed. The draft recommends
 randomizing hostnames in SRV responses along with other identifiers,
 such as MAC addresses, to minimize likability to specific hosts.
 Note that this alone does not prevent fingerprinting and tracking
 using that hostname. However, when done in conjunction with steps
 (1) and (2) above, this mitigates fingerprinting and tracking since
 different hostnames are used across venues and real discovered
 services remain hidden behind private instance names.

 After discovering its peers, a node will directly connect to each
 device using TLS, authenticated with a PSK derived from each
 associated pairing key, and issue DNS-SD queries per usual. DNS
 messages are formulated as per [RFC7858].

Huitema Expires December 31, 2018 [Page 11]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 As an optimization, the authors recommend that each nonce be
 deterministically derived based on time so that commitment proofs may
 be precomputed asynchronously. This avoids O(N*M) computation, where
 N is the number of nodes in a local network and M is the number of
 per-node pairings.

 This system has the following properties:

 1. Symmetric work load: clients and servers can pre-compute private
 instance names as a function of their pairing secret and
 predictable nonce.

 2. Mutual identity privacy: Both client and server identities are
 hidden from active and passive attackers that do not subvert the
 pairing process.

 3. No client set size hiding: The number of private instance names
 reveals the number of unique pairings a server has with its
 clients. (Servers may pad the list of records with random
 instance names, though this introduces more work for clients.)

 4. Unlinkability: Private service names are unlinkable to post-
 discovery TLS connections. (Note that if deterministic nonces
 repeat, servers risk linkability across private service names.)

 5. No fingerprinting: Assuming servers use fresh nonces per private
 instance name, advertisements change regularly.

A.2. Private IoT

 Boneh et al. [Wu16] developed an approach for private service
 discovery that reduces to private mutual authentication. Moreover,
 it should be infeasible for any adversary to forge advertisements or
 impersonate anyone else on the network. Specifically, service
 discoverers only wish to reveal their identity to services they
 trust, and vice versa. Existing protocols such as TLS, IKE, and
 SIGMA [SIGMA] require that one side reveal its identity first. Their
 approach first allocates, via some policy manager, key pairs
 associated with human-readable policy names. For example, user Alice
 might have a key pair associated with the names /Alice, /Alice/
 Family, and /Alice/Device. Her key is bound to each of these names.
 Authentication policies (and trust models) are then expressed as
 policy prefix patterns, e.g., /Alice/*. Broadcast messages are
 encrypted to policies. For example, Alice might encrypt a message m
 to the policy /Bob/*. Only Bob, who owns a private key bound to,
 e.g., /Bob/Devices, can decrypt m. (This procedure uses a form of
 identity-based encryption called prefix-based encryption. Readers
 are referred to [Wu16] for a thorough description.)

Huitema Expires December 31, 2018 [Page 12]

Internet-Draft DNS-SD Privacy Scaling Tradeoffs June 2018

 Using prefix- and policy-based encryption, service discovery is
 decomposed into two steps: (1) service announcement and (2) key
 exchange, similar to [I-D.ietf-dnssd-privacy]. Announcements carry
 service identities, ephemeral key shares, and a signature, all
 encrypted under the service’s desired policy prefix, e.g., /Alice/
 Family/*. Upon receipt of an announcement, clients with matching
 policy private keys can decrypt the announcement and use the
 ephemeral key share to perform an Authenticated Diffie Hellman key
 exchange with the service. Upon completion, the derived shared
 secret may be used for any further communication, e.g., DNS-SD
 queries, if needed.

 This system has the following properties:

 1. Asymmetric work load: computation for clients is on the order of
 advertisements.

 2. Mutual identity privacy: Both client and server identities are
 hidden from active and passive attackers.

 3. Client set size hiding: Policy-based encryption advertisements
 hides the number of clients with matching policy keys.

 4. Unlinkability: Client initiated connections are unlinkable to
 service advertisements (modulo network-layer connection
 information, such as advertisement origin and connection
 destination).

Author’s Address

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net

Huitema Expires December 31, 2018 [Page 13]

CoRE P. van der Stok
Internet-Draft Consultant
Intended status: Standards Track M. Koster
Expires: January 8, 2020 SmartThings
 C. Amsuess
 Energy Harvesting Solutions
 July 07, 2019

 CoRE Resource Directory: DNS-SD mapping
 draft-ietf-core-rd-dns-sd-05

Abstract

 Resource and service discovery are complementary. Resource discovery
 provides fine-grained detail about the content of a web server, while
 service discovery can provide a scalable method to locate servers in
 large networks. This document defines a method for mapping between
 CoRE Link Format attributes and DNS-Based Service Discovery records
 to facilitate the use of either method to locate RESTful service
 interfaces (APIs) in heterogeneous HTTP/CoAP environments.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 8, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

van der Stok, et al. Expires January 8, 2020 [Page 1]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction and Background 2
 1.1. Terminology . 3
 1.2. CoRE Resource Discovery 4
 1.3. CoRE Resource Directories 5
 1.4. DNS-Based Service Discovery 5
 2. New Link-Format Attributes 6
 2.1. Export attribute "exp" 7
 2.2. Resource Instance attribute "ins=" 7
 2.3. Service Type attribute "st=" 7
 3. Mapping CoRE Link Attributes to DNS-SD Record Fields 7
 3.1. Mapping Resource Instance attribute "ins=" to <Instance> 7
 3.2. Mapping Service Type attribute "st=" to <ServiceType> . . 8
 3.3. <Domain> Mapping . 8
 3.4. TXT Record key=value strings 9
 3.5. Exporting resource links into DNS-SD 9
 4. Exporting Resource Directory Service to DNS 10
 5. IANA considerations . 10
 5.1. RD Parameters Registry 10
 5.2. Service Name and Transport Protocol Port Number Registry 11
 6. Security considerations 11
 7. Contributors . 11
 8. Acknowledgments . 11
 9. References . 11
 9.1. Normative References 11
 9.2. Informative References 13
 Authors’ Addresses . 14

1. Introduction and Background

 The Constrained RESTful Environments (CoRE) working group aims at
 realizing the [REST] architecture in a suitable form for the most
 constrained devices (e.g. 8-bit microcontrollers with limited RAM and
 ROM) and networks (e.g. 6LoWPAN [RFC4944]). CoRE is aimed at
 machine-to-machine (M2M) applications such as smart energy and
 building automation. The main deliverable of CoRE is the Constrained
 Application Protocol (CoAP) specification [RFC7252].

 CoRE Link Format [RFC6690] is intended to support fine-grained
 discovery of hosted resources, their attributes, and possibly other
 related resources. Automated dynamic discovery of resources hosted

van der Stok, et al. Expires January 8, 2020 [Page 2]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 by a constrained server is critical in M2M applications, where human
 intervention is minimal and static configurations result in
 brittleness.

 DNS-Based Service Discovery (DNS-SD) [RFC6763] supports wide-area
 search for instances of a given service type (i.e. servers that
 support a particular application protocol stack). A service instance
 consists of a server’s name, IP address, and port number plus
 additional meta-data about the server. This data may extend to
 support multi-function devices, where multiple services are available
 at the same endpoint. The result of the discovery process may
 include a path to a resource representing the entry point to each
 function’s RESTful service interface and possibly a link to a formal
 description of that interface (e.g. a JSON Hyper-Schema document
 [I-D.handrews-json-schema-hyperschema]).

 Resource and service discovery are complementary in the case of large
 networks, where the latter can facilitate scaling. This document
 defines a mapping between CoRE Link Format attributes and DNS-Based
 Service Discovery records that permits discovery of CoAP services by
 either method. It also addresses the CoRE charter goal to
 interoperate with DNS-SD.

 The primary use case for mapping between resource and service
 discovery is to support heterogeneous HTTP/CoAP environments where,
 for example, HTTP clients may discover and communicate with CoAP
 servers that are behind a "cross proxy" [RFC8075].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119]. The term "byte" is used in its now conventional sense as
 a synonym for "octet".

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in [RFC6690] and [RFC8288]. Readers
 should also be familiar with the terms and concepts discussed in
 [RFC7252].

 This specification also incorporates the terminology of
 [I-D.ietf-core-resource-directory].

 In particular, the following terms are used frequently:

van der Stok, et al. Expires January 8, 2020 [Page 3]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 Endpoint: a web server associated with a specific IP address and
 port; thus a physical device may host one or more endpoints.
 Endpoints may also act as clients.

 Link: Web Linking [RFC8288] defines a Web Link (link) as a typed
 connection between two resources, comprised of:

 o a link context,

 o a link relation type (see Section 2.1 of [RFC8288],

 o a link target, and

 o optionally, target attributes (see Section 2.2 of [RFC8288]).

 A link can be viewed as a statement of the form "link context has a
 link relation type resource at link target, which (optionally) has
 target attributes", where link target and context are typically
 Universal Resource Identifiers (URIs) [RFC3986]. For example,
 "https://www.example.com/" has a "canonical" resource at
 "https://example.com", which has a "type" of "text/html".

1.2. CoRE Resource Discovery

 The main function of Resource Discovery is to return links to the
 resources hosted by a server, complemented by attributes about those
 resources and additional link relations. In CoRE this collection of
 links and attributes is itself a resource (in contrast to HTTP, where
 headers delivered with a specific resource describe its attributes).

 Resource Discovery can be performed either unicast or multicast.
 When a server’s IP address is already known, either a priori or
 resolved via the Domain Name System (DNS) [RFC1034][RFC1035], unicast
 discovery is performed in order to locate the entry point to the
 resource of interest. This is performed using a GET to "/.well-
 known/core" on the server, which returns a payload in the CoRE Link
 Format [RFC6690]. A client would then match the appropriate Resource
 Type, Interface Description, and possible media type [RFC2045] for
 its application. These attributes may also be included in the query
 string in order to filter the number of links returned in a response.

 Multicast Resource Discovery is useful when a client needs to locate
 a resource within a limited scope, and that scope supports IP
 multicast. A GET request to the appropriate multicast address is
 made for "/.well-known/core". In order to limit the number and size
 of responses, a query string is recommended with the known
 attributes. Typically, a resource would be discovered based on its

van der Stok, et al. Expires January 8, 2020 [Page 4]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 Resource Type and/or Interface Description, along with possible
 application-specific attributes.

1.3. CoRE Resource Directories

 In many M2M scenarios, direct discovery of resources is not practical
 due to sleeping nodes, limited bandwidth, or networks where multicast
 traffic is inefficient. These problems can be solved by deploying a
 network element called a Resource Directory (RD), which hosts
 descriptions of resources that originate on other endpoints and
 allows indirect lookups to be performed for those resources.

 The Resource Directory implements a set of REST interfaces for
 endpoints to register and maintain collections of links, called
 Resource Directory registrations. [I-D.ietf-core-resource-directory]
 specifies the web interfaces that an RD supports for endpoints to
 discover the RD and to register, maintain, lookup and remove resource
 descriptions; for the RD to validate entries; and for clients to
 lookup resources from the RD.

1.4. DNS-Based Service Discovery

 DNS-Based Service Discovery (DNS-SD) defines a conventional method of
 naming and configuring DNS PTR, SRV, and TXT resource records to
 facilitate discovery of services (such as CoAP servers in a
 subdomain) using the existing DNS infrastructure. This section gives
 a brief overview of DNS-SD; for a detailed specification see
 [RFC6763].

 DNS-SD Service Names are limited to 255 bytes and are of the form:

 Service Name = <Instance>.<ServiceType>.<Domain>

 The Service Name identifies a SRV/TXT Resource Record (RR) pair. The
 SRV RR specifies the hostname and port of an endpoint. The TXT RR
 provides additional information in the form of key/value pairs. DNS-
 Based Service Discovery is accomplished by sending a DNS request for
 PTR records with the name <ServiceType>.<Domain>, which will return a
 list of zero or more Service Names.

 The <Domain> part of the Service Name is identical to the global (DNS
 subdomain) part of the authority in URIs [RFC3986] that identify the
 resources on an individual server or group of servers.

 The <ServiceType> part is generally composed of two labels. The
 first label of the pair is the application protocol name [RFC6335]
 preceded by an underscore character. For example, an organization
 such as the Open Connectivity Foundation [OCF] that specifies

van der Stok, et al. Expires January 8, 2020 [Page 5]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 Resource Types [RFC6335] might register application protocol names
 beginning with "oic", which all servers that advertise OCF resources
 would use as part of their ServiceType. The second label indicates
 the transport protocol binding and is typically "_udp" for CoAP
 services.

 The default <Instance> part of the Service Name SHOULD be set to a
 default value at the factory and MAY be modified during the
 commissioning process. It MUST uniquely identify an instance of
 <ServiceType> within a <Domain>. Taken together, these three
 elements comprise a unique name for an SRV/TXT record pair within the
 DNS subdomain.

 The granularity of a Service Name MAY be that of a host or group, or
 it might represent a particular resource within a CoAP server. The
 SRV record contains the host name (AAAA record name) and port of the
 endpoint, while protocol is part of the Service Name. In the case
 where a Service Name identifies a particular resource, the path part
 of the URI must be carried in a corresponding TXT record.

 A DNS TXT record is in practice limited to a few hundred bytes in
 length, which is indicated in the resource record header in the DNS
 response message (See section 6 of [RFC6763]). The data consist of
 one or more strings comprising a key/value pair. By convention, the
 first pair is txtver=<number> (to support different versions of a
 service description). Each string is formatted as a single length
 byte followed by 0-255 bytes of text. An example string is:

 --
 | 0x08 | t | x | t | v | e | r | = | 1 |
 --

2. New Link-Format Attributes

 When using the CoRE Link Format to describe resources being
 discovered by or posted to a resource directory service, additional
 information about those resources is often useful. This
 specification defines the following new attributes for use in the
 CoRE Link Format [RFC6690] to enable the data-driven mappings
 described in Section 3:

 link-extension = ("exp")
 link-extension = ("ins" "=" (ptoken | quoted-string))
 ; The token or string is max 63 bytes
 link-extension = ("st" "=" (ptoken | quoted-string))
 ; The token or string is max 15 bytes

van der Stok, et al. Expires January 8, 2020 [Page 6]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

2.1. Export attribute "exp"

 The Export "exp" attribute is used as a flag to indicate that a link
 description MAY be exported from a resource directory to external
 directories.

 The CoRE Link Format is used for many purposes between CoAP
 endpoints. Some are useful mainly locally; for example checking the
 observability of a resource before accessing it, determining the size
 of a resource, or traversing dynamic resource structures. However,
 other links are very useful to be exported to other directories, for
 example the entry point resource to a functional service. This
 attribute MAY be used as a query parameter in the RD Lookup Function
 Set defined in Section 6 of [I-D.ietf-core-resource-directory].

2.2. Resource Instance attribute "ins="

 The Resource Instance "ins=" attribute is an identifier for this
 resource, which makes it possible to distinguish it from other
 similar resources in a Resource Directory. This attribute specifies
 the value to be used for the <Instance> portion of an exported DNS-SD
 Service Name (see Section 1.4), and SHOULD be unique across resources
 with the same Resource Type "rt=" attribute in the domain in which it
 is used.

 A Resource Instance SHOULD be a descriptive human readable string
 like "Ceiling Light, Room 3". This attribute MUST NOT be more than
 63 bytes in length. The resource identifier attribute MUST NOT
 appear more than once in a link description. This attribute MAY be
 used as a query parameter in the RD Lookup Function Set defined in
 Section 7 of [I-D.ietf-core-resource-directory].

2.3. Service Type attribute "st="

 The Service Type instance "st=" attribute specifies the value to be
 used for the <ServiceType> portion of an exported DNS-SD Service Name
 (see Section 1.4). This attribute MUST NOT be more than 15 bytes in
 length (see [RFC6335], Section 5.1) and MUST be present in the IANA
 Service Name registry [st].

3. Mapping CoRE Link Attributes to DNS-SD Record Fields

3.1. Mapping Resource Instance attribute "ins=" to <Instance>

 The Resource Instance "ins=" attribute maps directly to the
 <Instance> part of a DNS-SD Service Name. It is stored directly in
 the DNS as a single DNS label of canonical precomposed UTF-8
 [RFC3629] "Net-Unicode" (Unicode Normalization Form C) [RFC5198]

van der Stok, et al. Expires January 8, 2020 [Page 7]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 text. However, if the "ins=" attribute is chosen to match the DNS
 host name of a service, it SHOULD use the syntax defined in
 Section 3.5 of [RFC1034] and Section 2.1 of [RFC1123].

 The <Instance> part of the name of a service being offered on the
 network SHOULD be configurable by the user setting up the service, so
 that he or she may give it an informative name. However, the device
 or service SHOULD NOT require the user to configure a name before it
 can be used. A sensible choice of default name can allow the device
 or service to be accessed in many cases without any manual
 configuration at all (see Appendix D of [RFC6763]).

 DNS labels are limited to 63 bytes in length and the entire Service
 Name may not exceed 255 bytes.

3.2. Mapping Service Type attribute "st=" to <ServiceType>

 The Service Type "st=" attribute maps directly to the <ServiceType>
 part of a DNS-SD Service Name.

 In practice, the ServiceType should unambiguously identify
 interoperable devices. It is up to individual SDOs to specify how to
 represent their registered Resource Type "rt=" values as registered
 application protocol names according to [RFC6335]. The application
 name is then used as the value of the resource "st=" attribute.

 The resulting application protocol name MUST be composed of at least
 a single Net-Unicode text string, without underscore ’_’ or period
 ’.’ and limited to 15 bytes in length (see Section 5.1 of [RFC6335]).
 This string is mapped to the DNS-SD <ServiceType> by prepending an
 underscore and appending a period followed by the "_udp" label. For
 example, rt="oic.d.light" might correspond to the registered
 application protocol name st="oic-d-light" and would be mapped into
 Service Type "_oic-d-light._udp".

 The resulting string is used to form labels for DNS-SD records which
 are stored directly in the DNS.

3.3. <Domain> Mapping

 TBD: A method must be specified to determine which DNS zone the CoAP
 service description should be exported to. See, for example,
 Section 11 in [RFC6763] and Section 2 in
 [I-D.sctl-service-registration].

van der Stok, et al. Expires January 8, 2020 [Page 8]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

3.4. TXT Record key=value strings

 DNS-SD key/value pairs may be derived from CoRE Link Format
 information and exported as key=value strings in a DNS-SD TXT record
 (See Section 6.3 of [RFC6763]).

 The resource <URI> is exported as key/value pair "path=<URI>".

 The Interface Description "if=" attribute is exported as key/value
 pair "if=<Interface Description>".

 The DNS TXT record can be further populated by importing any other
 resource description attributes as they share the same key=value
 format specified in Section 6 of [RFC6763].

3.5. Exporting resource links into DNS-SD

 Assuming the ability to query a Resource Directory or multicast a GET
 (?exp) over the local link, CoAP resource discovery may be used to
 populate the DNS-SD database in an automated fashion. CoAP resource
 descriptions (links) can be exported to DNS-SD for exposure to
 service discovery by using the Resource Instance attribute as the
 basis for a unique Service Name, composed with the Service Type
 attribute as the <ServiceType>, and registered in the appropriate
 <Domain>. The agent responsible for exporting records to the DNS
 zone file SHOULD be authenticated to the DNS server. The following
 example, using the example lookup location /rd-lookup, shows an agent
 discovering a resource to be exported:

 Req: GET /rd-lookup/res?exp

 Res: 2.05 Content
 <coap://[FDFD::1234]:5683/light/1>;
 exp;st=oic-d-light;rt="oic.d.light";ins="Spot";
 d="sector";ep="node1"

 The agent subsequently registers the following DNS-SD RRs, assuming a
 derived DNS zone name "office.example.com":

 _oic-d-light._udp.office.example.com IN PTR
 Spot._oic-d-light._udp.office.example.com
 Spot._oic-d-light._udp.office.example.com IN TXT
 txtver=1;path=/light/1;rt=oic.d.light;d=sector
 Spot._oic-d-light._udp.office.example.com IN SRV
 0 0 5683 node1.office.example.com.
 node1.office.example.com. IN AAAA FDFD::1234

van der Stok, et al. Expires January 8, 2020 [Page 9]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

4. Exporting Resource Directory Service to DNS

 In some cases it is required that one (or more) Resource Directories
 (RD) in a given DNS domain can be discoverable from DNS. The /.well-
 known/core resource of the RD should reflect this by specifying the
 "ins", "exp", and the "st" attributes in the the link of the RD
 service. This document specifies in Section 5 two servicetypes: _rd-
 lookup-res._udp and _rd-lookup-ep._udp for resource types rt =
 core.rd-lookup-res and rt = core.rd-lookup-ep respectively. The
 default coap and coaps ports are respectively: 5683 and 5684.

 The value of the instance MAY be specified by the manager of the
 resource directories. In case of an unmanaged RD (for example in a
 home network) it is recommended that the ins parameter takes a value
 provided by an Authorization Server during the acceptance of the RD
 to the network (see for example section 7 of
 [I-D.ietf-core-resource-directory]).

 With the assumption that the "ins" value is attributed by
 Authorization Server, and [FDFD::1234] is IP address of RD, Example
 links for RD are:

 Req: GET coap://[FDFD::1234]/.well-known/core?exp

 Res: 2.05 Content
 <rd-lookup/res>;
 exp;st=rd-lookup-res;rt="core.rd-lookup-res";
 ins="505567",
 <rd-lookup/ep>;
 exp;st=rd-lookup-ep;rt="core.rd-lookup-ep";
 ins="505572"

 The link atributes can be exported to RR by the mapping process
 described in Section 3.

5. IANA considerations

 Two registries are affected by this document: (1) "RD Parameters"
 registry under "Core Parameters" registry, and (2) Service Name and
 Transport Protocol Port Number Registry

5.1. RD Parameters Registry

 This specification defines new parameters for the registry "RD
 Parameters" provided under "CoRE Parameters" (TBD).

van der Stok, et al. Expires January 8, 2020 [Page 10]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 +----------------+-------+---------------+-----+--------------------+
 | Full name | Short | Validity | Use | Description |
 +----------------+-------+---------------+-----+--------------------+
ServiceType	st		RLA	Name of the
				Service Type,
				max 63 bytes
Resource	ins		RLA	Instance identifier
Instance				of the resource
Export	exp		RLA	flag to indicate
				exportation
 +----------------+-------+---------------+-----+--------------------+

5.2. Service Name and Transport Protocol Port Number Registry

 This specification defines new parameters for the Service Name and
 Transport Protocol Port Number Registry:

 * _rd-lookup-res._udp at ports 5683 and 5684
 * _rd-lookup-ep._udp at ports 5683 and 5684

6. Security considerations

 Malicious nodes can export fake link attributes to DNS. It is
 recommended that the RD can be authenticated, and is authorized to
 both join the network and export its link attributes. Authentication
 is specified in [I-D.ietf-ace-oauth-authz].

7. Contributors

 Keryy lynn was the initiator of, and major contributor to this
 document. This document was split out from
 [I-D.ietf-core-resource-directory]. Zach Shelby was a co-author of
 the original version of this draft.

8. Acknowledgments

 The authors wish to thank Stuart Cheshire, Ted Lemon, and David
 Thaler for their thorough reviews and clarifying suggestions.

9. References

9.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

van der Stok, et al. Expires January 8, 2020 [Page 11]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 DOI 10.17487/RFC1123, October 1989,
 <https://www.rfc-editor.org/info/rfc1123>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

van der Stok, et al. Expires January 8, 2020 [Page 12]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8075] Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Guidelines for Mapping Implementations: HTTP to
 the Constrained Application Protocol (CoAP)", RFC 8075,
 DOI 10.17487/RFC8075, February 2017,
 <https://www.rfc-editor.org/info/rfc8075>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

9.2. Informative References

 [I-D.handrews-json-schema-hyperschema]
 Andrews, H. and A. Wright, "JSON Hyper-Schema: A
 Vocabulary for Hypermedia Annotation of JSON", draft-
 handrews-json-schema-hyperschema-01 (work in progress),
 January 2018.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-24
 (work in progress), March 2019.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.
 Amsuess, "CoRE Resource Directory", draft-ietf-core-
 resource-directory-22 (work in progress), July 2019.

 [I-D.sctl-service-registration]
 Cheshire, S. and T. Lemon, "Service Registration Protocol
 for DNS-Based Service Discovery", draft-sctl-service-
 registration-02 (work in progress), July 2018.

 [OCF] Foundation, O., "OCF Specification 2.0", 2018,
 <https://openconnectivity.org/developer/specifications>.

van der Stok, et al. Expires January 8, 2020 [Page 13]

Internet-Draft CoRE Resource Directory: DNS-SD mapping July 2019

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000,
 <http://www.ics.uci.edu/˜fielding/pubs/dissertation/
 fielding_dissertation.pdf>.

 [rt] IANA, ., "Resource Type (rt=) Link Target Attribute
 Values", 2012, <https://www.iana.org/assignments/core-
 parameters/
 core-parameters.xhtml#rt-link-target-att-value>.

 [st] IANA, ., "Service Name and Transport Protocol Port Number
 Registry", 2018, <https://www.iana.org/assignments/
 service-names-port-numbers/
 service-names-port-numbers.xml>.

Authors’ Addresses

 Peter van der Stok
 Consultant

 Phone: +31 492474673 (Netherlands), +33 966015248 (France)
 Email: consultancy@vanderstok.org
 URI: www.vanderstok.org

 Michael Koster
 SmartThings
 665 Clyde Avenue
 Mountain View, CA 94043
 USA

 Phone: +1 707-502-5136
 Email: Michael.Koster@smartthings.com

 Christian Amsuess
 Energy Harvesting Solutions
 Hollandstr. 12/4
 1020
 Austria

 Phone: +43 664-9790639
 Email: c.amsuess@energyharvesting.at

van der Stok, et al. Expires January 8, 2020 [Page 14]

DNSOP Working Group R. Bellis
Internet-Draft ISC
Updates: 1035, 7766 (if approved) S. Cheshire
Intended status: Standards Track Apple Inc.
Expires: June 9, 2019 J. Dickinson
 S. Dickinson
 Sinodun
 T. Lemon
 Nibbhaya Consulting
 T. Pusateri
 Unaffiliated
 December 06, 2018

 DNS Stateful Operations
 draft-ietf-dnsop-session-signal-20

Abstract

 This document defines a new DNS OPCODE for DNS Stateful Operations
 (DSO). DSO messages communicate operations within persistent
 stateful sessions, using type-length-value (TLV) syntax. Three TLVs
 are defined that manage session timeouts, termination, and encryption
 padding, and a framework is defined for extensions to enable new
 stateful operations. This document updates RFC 1035 by adding a new
 DNS header opcode which has different message semantics, and a new
 result code. This document updates RFC 7766 by redefining a session,
 providing new guidance on connection re-use, and providing a new
 mechanism for handling session idle timeouts.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 9, 2019.

Bellis, et al. Expires June 9, 2019 [Page 1]

Internet-Draft DNS Stateful Operations December 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 5
 3. Terminology . 6
 4. Applicability . 9
 4.1. Use Cases . 9
 4.1.1. Session Management 9
 4.1.2. Long-lived Subscriptions 9
 4.2. Applicable Transports 10
 5. Protocol Details . 11
 5.1. DSO Session Establishment 12
 5.1.1. Session Establishment Failure 13
 5.1.2. Session Establishment Success 14
 5.2. Operations After Session Establishment 14
 5.3. Session Termination 15
 5.3.1. Handling Protocol Errors 15
 5.4. Message Format . 16
 5.4.1. DNS Header Fields in DSO Messages 17
 5.4.2. DSO Data . 19
 5.4.3. TLV Syntax . 21
 5.4.4. EDNS(0) and TSIG 24
 5.5. Message Handling . 25
 5.5.1. Delayed Acknowledgement Management 26
 5.5.2. MESSAGE ID Namespaces 27
 5.5.3. Error Responses 28
 5.6. Responder-Initiated Operation Cancellation 29
 6. DSO Session Lifecycle and Timers 30
 6.1. DSO Session Initiation 30
 6.2. DSO Session Timeouts 31
 6.3. Inactive DSO Sessions 32
 6.4. The Inactivity Timeout 33
 6.4.1. Closing Inactive DSO Sessions 33

Bellis, et al. Expires June 9, 2019 [Page 2]

Internet-Draft DNS Stateful Operations December 2018

 6.4.2. Values for the Inactivity Timeout 34
 6.5. The Keepalive Interval 35
 6.5.1. Keepalive Interval Expiry 35
 6.5.2. Values for the Keepalive Interval 35
 6.6. Server-Initiated Session Termination 37
 6.6.1. Server-Initiated Retry Delay Message 38
 6.6.2. Misbehaving Clients 39
 6.6.3. Client Reconnection 39
 7. Base TLVs for DNS Stateful Operations 41
 7.1. Keepalive TLV . 41
 7.1.1. Client handling of received Session Timeout values . 43
 7.1.2. Relationship to edns-tcp-keepalive EDNS0 Option . . . 44
 7.2. Retry Delay TLV . 45
 7.2.1. Retry Delay TLV used as a Primary TLV 45
 7.2.2. Retry Delay TLV used as a Response Additional TLV . . 47
 7.3. Encryption Padding TLV 48
 8. Summary Highlights . 49
 8.1. QR bit and MESSAGE ID 49
 8.2. TLV Usage . 50
 9. Additional Considerations 52
 9.1. Service Instances . 52
 9.2. Anycast Considerations 53
 9.3. Connection Sharing 54
 9.4. Operational Considerations for Middlebox 55
 9.5. TCP Delayed Acknowledgement Considerations 56
 10. IANA Considerations . 59
 10.1. DSO OPCODE Registration 59
 10.2. DSO RCODE Registration 59
 10.3. DSO Type Code Registry 59
 11. Security Considerations 60
 11.1. TLS 0-RTT Considerations 61
 12. Acknowledgements . 62
 13. References . 62
 13.1. Normative References 62
 13.2. Informative References 63
 Authors’ Addresses . 65

1. Introduction

 This document specifies a mechanism for managing stateful DNS
 connections. DNS most commonly operates over a UDP transport, but
 can also operate over streaming transports; the original DNS RFC
 specifies DNS over TCP [RFC1035] and a profile for DNS over TLS
 [RFC7858] has been specified. These transports can offer persistent,
 long-lived sessions and therefore when using them for transporting
 DNS messages it is of benefit to have a mechanism that can establish
 parameters associated with those sessions, such as timeouts. In such

Bellis, et al. Expires June 9, 2019 [Page 3]

Internet-Draft DNS Stateful Operations December 2018

 situations it is also advantageous to support server-initiated
 messages (such as DNS Push Notifications [I-D.ietf-dnssd-push]).

 The existing EDNS(0) Extension Mechanism for DNS [RFC6891] is
 explicitly defined to only have "per-message" semantics. While
 EDNS(0) has been used to signal at least one session-related
 parameter (edns-tcp-keepalive EDNS0 Option [RFC7828]) the result is
 less than optimal due to the restrictions imposed by the EDNS(0)
 semantics and the lack of server-initiated signalling. For example,
 a server cannot arbitrarily instruct a client to close a connection
 because the server can only send EDNS(0) options in responses to
 queries that contained EDNS(0) options.

 This document defines a new DNS OPCODE, DSO ([TBA1], tentatively 6),
 for DNS Stateful Operations. DSO messages are used to communicate
 operations within persistent stateful sessions, expressed using type-
 length-value (TLV) syntax. This document defines an initial set of
 three TLVs, used to manage session timeouts, termination, and
 encryption padding.

 All three TLVs defined here are mandatory for all implementations of
 DSO. Further TLVs may be defined in additional specifications.

 DSO messages may or may not be acknowledged; this is signalled by
 providing a non-zero message ID for messages that must be
 acknowledged (DSO request messages) and a zero message ID for
 messages that are not to be acknowledged (DSO unidirectional
 messages), and is also specified in the definition of a particular
 DSO message type. Messages are pipelined; answers may appear out of
 order when more than one answer is pending.

 The format for DSO messages (Section 5.4) differs somewhat from the
 traditional DNS message format used for standard queries and
 responses. The standard twelve-byte header is used, but the four
 count fields (QDCOUNT, ANCOUNT, NSCOUNT, ARCOUNT) are set to zero and
 accordingly their corresponding sections are not present.

 The actual data pertaining to DNS Stateful Operations (expressed in
 TLV syntax) is appended to the end of the DNS message header. Just
 as in traditional DNS over TCP [RFC1035] [RFC7766] the stream
 protocol carrying DSO messages (which are just another kind of DNS
 message) frames them by putting a 16-bit message length at the start,
 so the length of the DSO message is determined from that length,
 rather than from any of the DNS header counts.

 When displayed using packet analyzer tools that have not been updated
 to recognize the DSO format, this will result in the DSO data being

Bellis, et al. Expires June 9, 2019 [Page 4]

Internet-Draft DNS Stateful Operations December 2018

 displayed as unknown additional data after the end of the DNS
 message.

 This new format has distinct advantages over an RR-based format
 because it is more explicit and more compact. Each TLV definition is
 specific to its use case, and as a result contains no redundant or
 overloaded fields. Importantly, it completely avoids conflating DNS
 Stateful Operations in any way with normal DNS operations or with
 existing EDNS(0)-based functionality. A goal of this approach is to
 avoid the operational issues that have befallen EDNS(0), particularly
 relating to middlebox behaviour (see for example
 [I-D.ietf-dnsop-no-response-issue] sections 3.2 and 4).

 With EDNS(0), multiple options may be packed into a single OPT
 pseudo-RR, and there is no generalized mechanism for a client to be
 able to tell whether a server has processed or otherwise acted upon
 each individual option within the combined OPT pseudo-RR. The
 specifications for each individual option need to define how each
 different option is to be acknowledged, if necessary.

 In contrast to EDNS(0), with DSO there is no compelling motivation to
 pack multiple operations into a single message for efficiency
 reasons, because DSO always operates using a connection-oriented
 transport protocol. Each DSO operation is communicated in its own
 separate DNS message, and the transport protocol can take care of
 packing several DNS messages into a single IP packet if appropriate.
 For example, TCP can pack multiple small DNS messages into a single
 TCP segment. This simplification allows for clearer semantics. Each
 DSO request message communicates just one primary operation, and the
 RCODE in the corresponding response message indicates the success or
 failure of that operation.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Bellis, et al. Expires June 9, 2019 [Page 5]

Internet-Draft DNS Stateful Operations December 2018

3. Terminology

 DSO: DNS Stateful Operations.

 connection: a bidirectional byte (or message) stream, where the
 bytes (or messages) are delivered reliably and in-order, such as
 provided by using DNS over TCP [RFC1035] [RFC7766] or DNS over TLS
 [RFC7858].

 session: The unqualified term "session" in the context of this
 document refers to a persistent network connection between two
 endpoints which allows for the exchange of DNS messages over a
 connection where either end of the connection can send messages to
 the other end. (The term has no relationship to the "session
 layer" of the OSI "seven-layer model".)

 DSO Session: a session established between two endpoints that
 acknowledge persistent DNS state via the exchange of DSO messages
 over the connection. This is distinct from a DNS-over-TCP session
 as described in the previous specification for DNS over TCP
 [RFC7766].

 close gracefully: a normal session shutdown, where the client closes
 the TCP connection to the server using a graceful close, such that
 no data is lost (e.g., using TCP FIN, see Section 5.3).

 forcibly abort: a session shutdown as a result of a fatal error,
 where the TCP connection is unilaterally aborted without regard
 for data loss (e.g., using TCP RST, see Section 5.3).

 server: the software with a listening socket, awaiting incoming
 connection requests, in the usual DNS sense.

 client: the software which initiates a connection to the server’s
 listening socket, in the usual DNS sense.

 initiator: the software which sends a DSO request message or a DSO
 unidirectional message during a DSO session. Either a client or
 server can be an initiator

 responder: the software which receives a DSO request message or a
 DSO unidirectional message during a DSO

 session. Either a client or server can be a responder.

 sender: the software which is sending a DNS message, a DSO message,
 a DNS response, or a DSO response.

Bellis, et al. Expires June 9, 2019 [Page 6]

Internet-Draft DNS Stateful Operations December 2018

 receiver: the software which is receiving a DNS message, a DSO
 message, a DNS response, or a DSO response.

 service instance: a specific instance of server software running on
 a specific host (Section 9.1).

 long-lived operation: a long-lived operation is an outstanding
 operation on a DSO session where either the client or server,
 acting as initiator, has requested that the responder send new
 information regarding the request, as it becomes available.

 Early Data: A TLS 1.3 handshake containing early data that begins a
 DSO session ([RFC8446] section 2.3). TCP Fast Open is only permitted
 when using TLS.

 DNS message: any DNS message, including DNS queries, response,
 updates, DSO messages, etc.

 DNS request message: any DNS message where the QR bit is 0.

 DNS response message: any DNS message where the QR bit is 1.

 DSO message: a DSO request message, DSO unidirectional message, or a
 DSO response to a DSO request message. If the QR bit is 1 in a
 DSO message, it is a DSO response message. If the QR bit is 0 in
 a DSO message, it is a DSO request message or DSO unidirectional
 message, as determined by the specification of its primary TLV.

 DSO response message: a response to a DSO request message.

 DSO request message: a DSO message that requires a response.

 DSO unidirectional message: a DSO message that does not require and
 cannot induce a response.

 Primary TLV: The first TLV in a DSO message or DSO response; in the
 DSO message this determines the nature of the operation being
 performed.

 Additional TLV: Any TLVs in a DSO message response that follow the
 primary TLV.

 Response Primary TLV: The (optional) first TLV in a DSO response.

 Response Additional TLV: Any TLVs in a DSO response that follow the
 (optional) Response Primary TLV.

Bellis, et al. Expires June 9, 2019 [Page 7]

Internet-Draft DNS Stateful Operations December 2018

 inactivity timer: the time since the most recent non-keepalive DNS
 message was sent or received. (see Section 6.4)

 keepalive timer: the time since the most recent DNS message was sent
 or received. (see Section 6.5)

 session timeouts: the inactivity timer and the keepalive timer.

 inactivity timeout: the maximum value that the inactivity timer can
 have before the connection is gracefully closed.

 keepalive interval: the maximum value that the keepalive timer can
 have before the client is required to send a keepalive. (see
 Section 7.1)

 resetting a timer: setting the timer value to zero and restarting
 the timer.

 clearing a timer: setting the timer value to zero but not restarting
 the timer.

Bellis, et al. Expires June 9, 2019 [Page 8]

Internet-Draft DNS Stateful Operations December 2018

4. Applicability

 DNS Stateful Operations are applicable to several known use cases and
 are only applicable on transports that are capable of supporting a
 DSO Session.

4.1. Use Cases

 There are several use cases for DNS Stateful operations that can be
 described here.

4.1.1. Session Management

 Firstly, establishing session parameters such as server-defined
 timeouts is of great use in the general management of persistent
 connections. For example, using DSO sessions for stub-to-recursive
 DNS-over-TLS [RFC7858] is more flexible for both the client and the
 server than attempting to manage sessions using just the edns-tcp-
 keepalive EDNS0 Option [RFC7828]. The simple set of TLVs defined in
 this document is sufficient to greatly enhance connection management
 for this use case.

4.1.2. Long-lived Subscriptions

 Secondly, DNS-SD [RFC6763] has evolved into a naturally session-based
 mechanism where, for example, long-lived subscriptions lend
 themselves to ’push’ mechanisms as opposed to polling. Long-lived
 stateful connections and server-initiated messages align with this
 use case [I-D.ietf-dnssd-push].

 A general use case is that DNS traffic is often bursty but session
 establishment can be expensive. One challenge with long-lived
 connections is to maintain sufficient traffic to maintain NAT and
 firewall state. To mitigate this issue this document introduces a
 new concept for the DNS, that is DSO "Keepalive traffic". This
 traffic carries no DNS data and is not considered ’activity’ in the
 classic DNS sense, but serves to maintain state in middleboxes, and
 to assure client and server that they still have connectivity to each
 other.

Bellis, et al. Expires June 9, 2019 [Page 9]

Internet-Draft DNS Stateful Operations December 2018

4.2. Applicable Transports

 DNS Stateful Operations are applicable in cases where it is useful to
 maintain an open session between a DNS client and server, where the
 transport allows such a session to be maintained, and where the
 transport guarantees in-order delivery of messages, on which DSO
 depends. Examples of transports that can support DNS Stateful
 Operations are DNS-over-TCP [RFC1035] [RFC7766] and DNS-over-TLS
 [RFC7858].

 Note that in the case of DNS over TLS, there is no mechanism for
 upgrading from DNS-over-TCP to DNS-over-TLS mid-connection (see
 [RFC7858] section 7). A connection is either DNS-over-TCP from the
 start, or DNS-over-TLS from the start.

 DNS Stateful Operations are not applicable for transports that cannot
 support clean session semantics, or that do not guarantee in-order
 delivery. While in principle such a transport could be constructed
 over UDP, the current DNS specification over UDP transport [RFC1035]
 does not provide in-order delivery or session semantics, and hence
 cannot be used. Similarly, DNS-over-HTTP
 [I-D.ietf-doh-dns-over-https] cannot be used because HTTP has its own
 mechanism for managing sessions, and this is incompatible with the
 mechanism specified here.

 No other transports are currently defined for use with DNS Stateful
 Operations. Such transports can be added in the future, if they meet
 the requirements set out in the first paragraph of this section.

Bellis, et al. Expires June 9, 2019 [Page 10]

Internet-Draft DNS Stateful Operations December 2018

5. Protocol Details

 The overall flow of DNS Stateful Operations goes through a series of
 phases:

 Connection Establishment: A client establishes a connection to a
 server. (Section 4.2)

 Connected but sessionless: A connection exists, but a DSO session
 has not been established. DNS messages can be sent from the
 client to server, and DNS responses can be sent from servers to
 clients. In this state a client that wishes to use DSO can
 attempt to establish a DSO session (Section 5.1). Standard DNS-
 over-TCP inactivity timeout handling is in effect [RFC7766] (see
 Section 7.1.2).

 DSO Session Establishment in Progress: A client has sent a DSO
 request, but has not yet received a DSO response. In this phase,
 the client may send more DSO requests and more DNS requests, but
 MUST NOT send DSO unidirectional messages (Section 5.1).

 DSO Session Establishment Failed: The attempt to establish the DSO
 session did not succeed. At this point, the client is permitted
 to continue operating without a DSO session (Connected but
 Sessionless) but does not send further DSO messages (Section 5.1).

 DSO Session Established: Both client and server may send DSO
 messages and DNS messages; both may send replies in response to
 messages they receive (Section 5.2). The inactivity timer
 (Section 6.4) is active; the keepalive timer (Section 6.5) is
 active. Standard DNS-over-TCP inactivity timeout handling is no
 longer in effect [RFC7766] (see Section 7.1.2).

 Server Shutdown: The server has decided to gracefully terminate the
 session, and has sent the client a Retry Delay message
 (Section 6.6.1). There may still be unprocessed messages from the
 client; the server will ignore these. The server will not send
 any further messages to the client (Section 6.6.1.1).

 Client Shutdown: The client has decided to disconnect, either
 because it no longer needs service, the connection is inactive
 (Section 6.4.1), or because the server sent it a Retry Delay
 message (Section 6.6.1). The client closes the connection
 gracefully Section 5.3.

 Reconnect: The client disconnected as a result of a server shutdown.
 The client either waits for the server-specified Retry Delay to
 expire (Section 6.6.3), or else contacts a different server

Bellis, et al. Expires June 9, 2019 [Page 11]

Internet-Draft DNS Stateful Operations December 2018

 instance. If the client no longer needs service, it does not
 reconnect.

 Forcibly Abort: The client or server detected a protocol error, and
 further communication would have undefined behavior. The client
 or server forcibly aborts the connection (Section 5.3).

 Abort Reconnect Wait: The client has forcibly aborted the
 connection, but still needs service. Or, the server forcibly
 aborted the connection, but the client still needs service. The
 client either connects to a different service instance
 (Section 9.1) or waits to reconnect (Section 6.6.3.1).

5.1. DSO Session Establishment

 In order for a session to be established between a client and a
 server, the client must first establish a connection to the server,
 using an applicable transport (see Section 4).

 In some environments it may be known in advance by external means
 that both client and server support DSO, and in these cases either
 client or server may initiate DSO messages at any time. In this
 case, the session is established as soon as the connection is
 established; this is referred to as implicit session establishment.

 However, in the typical case a server will not know in advance
 whether a client supports DSO, so in general, unless it is known in
 advance by other means that a client does support DSO, a server MUST
 NOT initiate DSO request messages or DSO unidirectional messages
 until a DSO Session has been mutually established by at least one
 successful DSO request/response exchange initiated by the client, as
 described below. This is referred to as explicit session
 establishment.

 Until a DSO session has been implicitly or explicitly established, a
 client MUST NOT initiate DSO unidirectional messages.

 A DSO Session is established over a connection by the client sending
 a DSO request message, such as a DSO Keepalive request message
 (Section 7.1), and receiving a response, with matching MESSAGE ID,
 and RCODE set to NOERROR (0), indicating that the DSO request was
 successful.

 Some DSO messages are permitted as early data (Section 11.1). Others
 are not. Unidirectional messages are never permitted as early data
 unless an implicit session exists.

Bellis, et al. Expires June 9, 2019 [Page 12]

Internet-Draft DNS Stateful Operations December 2018

 If a server receives a DSO message in early data whose primary TLV is
 not permitted to appear in early data, the server MUST forcibly abort
 the connection. If a client receives a DSO message in early data,
 and there is no implicit DSO session, the client MUST forcibly abort
 the connection. This can only be enforced on TLS connections;
 therefore, servers MUST NOT enable TFO when listening for a
 connection that does not require TLS.

5.1.1. Session Establishment Failure

 If the response RCODE is set to NOTIMP (4), or in practise any value
 other than NOERROR (0) or DSOTYPENI (defined below), then the client
 MUST assume that the server does not implement DSO at all. In this
 case the client is permitted to continue sending DNS messages on that
 connection, but the client MUST NOT issue further DSO messages on
 that connection.

 If the RCODE in the response is set to DSOTYPENI ("DSO-TYPE Not
 Implemented", [TBA2] tentatively RCODE 11) this indicates that the
 server does support DSO, but does not implement the DSO-TYPE of the
 primary TLV in this DSO request message. A server implementing DSO
 MUST NOT return DSOTYPENI for a DSO Keepalive request message,
 because the Keepalive TLV is mandatory to implement. But in the
 future, if a client attempts to establish a DSO Session using a
 response-requiring DSO request message using some newly-defined DSO-
 TYPE that the server does not understand, that would result in a
 DSOTYPENI response. If the server returns DSOTYPENI then a DSO
 Session is not considered established, but the client is permitted to
 continue sending DNS messages on the connection, including other DSO
 messages such as the DSO Keepalive, which may result in a successful
 NOERROR response, yielding the establishment of a DSO Session.

 Two other possibilities exist: the server might drop the connection,
 or the server might send no response to the DSO message.

 In the first case, the client SHOULD mark that service instance as
 not supporting DSO, and not attempt a DSO connection for some period
 of time (at least an hour) after the failed attempt. The client MAY
 reconnect but not use DSO, if appropriate (Section 6.6.3.2).

 In the second case, the client SHOULD wait 30 seconds, after which
 time the server will be assumed not to support DSO. If the server
 doesn’t respond within 30 seconds, the client MUST forcibly abort the
 connection to the server, since the server’s behavior is out of spec,
 and hence its state is undefined. The client MAY reconnect, but not
 use DSO, if appropriate (Section 6.6.3.1).

Bellis, et al. Expires June 9, 2019 [Page 13]

Internet-Draft DNS Stateful Operations December 2018

5.1.2. Session Establishment Success

 When the server receives a DSO request message from a client, and
 transmits a successful NOERROR response to that request, the server
 considers the DSO Session established.

 When the client receives the server’s NOERROR response to its DSO
 request message, the client considers the DSO Session established.

 Once a DSO Session has been established, either end may unilaterally
 send appropriate DSO messages at any time, and therefore either
 client or server may be the initiator of a message.

5.2. Operations After Session Establishment

 Once a DSO Session has been established, clients and servers should
 behave as described in this specification with regard to inactivity
 timeouts and session termination, not as previously prescribed in the
 earlier specification for DNS over TCP [RFC7766].

 Because a server that supports DNS Stateful Operations MUST return an
 RCODE of NOERROR when it receives a Keepalive TLV DSO request
 message, the Keepalive TLV is an ideal candidate for use in
 establishing a DSO session. Any other option that can only succeed
 when sent to a server of the desired kind is also a good candidate
 for use in establishing a DSO session. For clients that implement
 only the DSO-TYPEs defined in this base specification, sending a
 Keepalive TLV is the only DSO request message they have available to
 initiate a DSO Session. Even for clients that do implement other
 future DSO-TYPEs, for simplicity they MAY elect to always send an
 initial DSO Keepalive request message as their way of initiating a
 DSO Session. A future definition of a new response-requiring DSO-
 TYPE gives implementers the option of using that new DSO-TYPE if they
 wish, but does not change the fact that sending a Keepalive TLV
 remains a valid way of initiating a DSO Session.

Bellis, et al. Expires June 9, 2019 [Page 14]

Internet-Draft DNS Stateful Operations December 2018

5.3. Session Termination

 A "DSO Session" is terminated when the underlying connection is
 closed. Sessions are "closed gracefully" as a result of the server
 closing a session because it is overloaded, the client closing the
 session because it is done, or the client closing the session because
 it is inactive. Sessions are "forcibly aborted" when either the
 client or server closes the connection because of a protocol error.

 o Where this specification says, "close gracefully," that means
 sending a TLS close_notify (if TLS is in use) followed by a TCP
 FIN, or the equivalents for other protocols. Where this
 specification requires a connection to be closed gracefully, the
 requirement to initiate that graceful close is placed on the
 client, to place the burden of TCP’s TIME-WAIT state on the client
 rather than the server.

 o Where this specification says, "forcibly abort," that means
 sending a TCP RST, or the equivalent for other protocols. In the
 BSD Sockets API this is achieved by setting the SO_LINGER option
 to zero before closing the socket.

5.3.1. Handling Protocol Errors

 In protocol implementation there are generally two kinds of errors
 that software writers have to deal with. The first is situations
 that arise due to factors in the environment, such as temporary loss
 of connectivity. While undesirable, these situations do not indicate
 a flaw in the software, and they are situations that software should
 generally be able to recover from.

 The second is situations that should never happen when communicating
 with a compliant DSO implementation. If they do happen, they
 indicate a serious flaw in the protocol implementation, beyond what
 it is reasonable to expect software to recover from. This document
 describes this latter form of error condition as a "fatal error" and
 specifies that an implementation encountering a fatal error condition
 "MUST forcibly abort the connection immediately".

Bellis, et al. Expires June 9, 2019 [Page 15]

Internet-Draft DNS Stateful Operations December 2018

5.4. Message Format

 A DSO message begins with the standard twelve-byte DNS message header
 [RFC1035] with the OPCODE field set to the DSO OPCODE. However,
 unlike standard DNS messages, the question section, answer section,
 authority records section and additional records sections are not
 present. The corresponding count fields (QDCOUNT, ANCOUNT, NSCOUNT,
 ARCOUNT) MUST be set to zero on transmission.

 If a DSO message is received where any of the count fields are not
 zero, then a FORMERR MUST be returned.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | MESSAGE ID |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 |QR | OPCODE | Z | RCODE |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | QDCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | ANCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | NSCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | ARCOUNT (MUST be zero) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | |
 / DSO Data /
 / /
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Bellis, et al. Expires June 9, 2019 [Page 16]

Internet-Draft DNS Stateful Operations December 2018

5.4.1. DNS Header Fields in DSO Messages

 In a DSO unidirectional message the MESSAGE ID field MUST be set to
 zero. In a DSO request message the MESSAGE ID field MUST be set to a
 unique nonzero value, that the initiator is not currently using for
 any other active operation on this connection. For the purposes
 here, a MESSAGE ID is in use in this DSO Session if the initiator has
 used it in a DSO request message for which it is still awaiting a
 response, or if the client has used it to set up a long-lived
 operation that has not yet been cancelled. For example, a long-lived
 operation could be a Push Notification subscription
 [I-D.ietf-dnssd-push] or a Discovery Relay interface subscription
 [I-D.ietf-dnssd-mdns-relay].

 Whether a message is a DSO request message or a DSO unidirectional
 message is determined only by the specification for the Primary TLV.
 An acknowledgment cannot be requested by including a nonzero message
 ID in a message that is required according to its primary TLV to be
 unidirectional. Nor can an acknowledgment be prevented by sending a
 message ID of zero in a message that is required to be a DSO request
 message according to its primary TLV. A responder that receives
 either such malformed message MUST treat it as a fatal error and
 forcibly abort the connection immediately.

 In a DSO request message or DSO unidirectional message the DNS Header
 QR bit MUST be zero (QR=0). If the QR bit is not zero the message is
 not a DSO request or DSO unidirectional message.

 In a DSO response message the DNS Header QR bit MUST be one (QR=1).
 If the QR bit is not one, the message is not a response message.

 In a DSO response message (QR=1) the MESSAGE ID field MUST contain a
 copy of the value of the MESSAGE ID field in the DSO request message
 being responded to. In a DSO response message (QR=1) the MESSAGE ID
 field MUST NOT be zero. If a DSO response message (QR=1) is received
 where the MESSAGE ID is zero this is a fatal error and the recipient
 MUST forcibly abort the connection immediately.

 The DNS Header OPCODE field holds the DSO OPCODE value.

 The Z bits are currently unused in DSO messages, and in both DSO
 request messages and DSO responses the Z bits MUST be set to zero (0)
 on transmission and MUST be ignored on reception.

 In a DSO request message (QR=0) the RCODE is set according to the
 definition of the request. For example, in a Retry Delay message
 (Section 6.6.1) the RCODE indicates the reason for termination.
 However, in most cases, except where clearly specified otherwise, in

Bellis, et al. Expires June 9, 2019 [Page 17]

Internet-Draft DNS Stateful Operations December 2018

 a DSO request message (QR=0) the RCODE is set to zero on
 transmission, and silently ignored on reception.

 The RCODE value in a response message (QR=1) may be one of the
 following values:

 +--------+-----------+--+
 | Code | Mnemonic | Description |
 +--------+-----------+--+
0	NOERROR	Operation processed successfully
1	FORMERR	Format error
2	SERVFAIL	Server failed to process DSO request message
		due to a problem with the server
4	NOTIMP	DSO not supported
5	REFUSED	Operation declined for policy reasons
[TBA2]	DSOTYPENI	Primary TLV’s DSO-Type is not implemented
11		
 +--------+-----------+--+

 Use of the above RCODEs is likely to be common in DSO but does not
 preclude the definition and use of other codes in future documents
 that make use of DSO.

 If a document defining a new DSO-TYPE makes use of response codes not
 defined here, then that document MUST specify the specific
 interpretation of those RCODE values in the context of that new DSO
 TLV.

Bellis, et al. Expires June 9, 2019 [Page 18]

Internet-Draft DNS Stateful Operations December 2018

5.4.2. DSO Data

 The standard twelve-byte DNS message header with its zero-valued
 count fields is followed by the DSO Data, expressed using TLV syntax,
 as described below in Section 5.4.3.

 A DSO request message or DSO unidirectional message MUST contain at
 least one TLV. The first TLV in a DSO request message or DSO
 unidirectional message is referred to as the "Primary TLV" and
 determines the nature of the operation being performed, including
 whether it is a DSO request or a DSO unidirectional operation. In
 some cases it may be appropriate to include other TLVs in a DSO
 request message or DSO unidirectional message, such as the Encryption
 Padding TLV (Section 7.3), and these extra TLVs are referred to as
 the "Additional TLVs" and are not limited to what is defined in this
 document. New "Additional TLVs" may be defined in the future and
 those definitions will describe when their use is appropriate.

 A DSO response message may contain no TLVs, or it may be specified to
 contain one or more TLVs appropriate to the information being
 communicated. This includes "Primary TLVs" and "Additional TLVs"
 defined in this document as well as in future TLV definitions. It
 may be permissible for an additional TLV to appear in a response to a
 primary TLV even though the specification of that primary TLV does
 not specify it explicitly. See Section 8.2 for more information.

 A DSO response message may contain one or more TLVs with the Primary
 TLV DSO-TYPE the same as the Primary TLV from the corresponding DSO
 request message or it may contain zero or more Additional TLVs only.
 The MESSAGE ID field in the DNS message header is sufficient to
 identify the DSO request message to which this response message
 relates.

 A DSO response message may contain one or more TLVs with DSO-TYPEs
 different from the Primary TLV from the corresponding DSO request
 message, in which case those TLV(s) are referred to as "Response
 Additional TLVs".

 Response Primary TLV(s), if present, MUST occur first in the response
 message, before any Response Additional TLVs.

 It is anticipated that most DSO operations will be specified to use
 DSO request messages, which generate corresponding DSO responses. In
 some specialized high-traffic use cases, it may be appropriate to
 specify DSO unidirectional messages. DSO unidirectional messages can
 be more efficient on the network, because they don’t generate a
 stream of corresponding reply messages. Using DSO unidirectional
 messages can also simplify software in some cases, by removing need

Bellis, et al. Expires June 9, 2019 [Page 19]

Internet-Draft DNS Stateful Operations December 2018

 for an initiator to maintain state while it waits to receive replies
 it doesn’t care about. When the specification for a particular TLV
 states that, when used as a Primary TLV (i.e., first) in an outgoing
 DSO request message (i.e., QR=0), that message is to be
 unidirectional, the MESSAGE ID field MUST be set to zero and the
 receiver MUST NOT generate any response message corresponding to this
 DSO unidirectional message.

 The previous point, that the receiver MUST NOT generate responses to
 DSO unidirectional messages, applies even in the case of errors.

 When a DSO message is received where both the QR bit and the MESSAGE
 ID field are zero, the receiver MUST NOT generate any response. For
 example, if the DSO-TYPE in the Primary TLV is unrecognized, then a
 DSOTYPENI error MUST NOT be returned; instead the receiver MUST
 forcibly abort the connection immediately.

 DSO unidirectional messages MUST NOT be used "speculatively" in cases
 where the sender doesn’t know if the receiver supports the Primary
 TLV in the message, because there is no way to receive any response
 to indicate success or failure. DSO unidirectional messages are only
 appropriate in cases where the sender already knows that the receiver
 supports, and wishes to receive, these messages.

 For example, after a client has subscribed for Push Notifications
 [I-D.ietf-dnssd-push], the subsequent event notifications are then
 sent as DSO unidirectional messages, and this is appropriate because
 the client initiated the message stream by virtue of its Push
 Notification subscription, thereby indicating its support of Push
 Notifications, and its desire to receive those notifications.

 Similarly, after a Discovery Relay client has subscribed to receive
 inbound mDNS (multicast DNS, [RFC6762]) traffic from a Discovery
 Relay, the subsequent stream of received packets is then sent using
 DSO unidirectional messages, and this is appropriate because the
 client initiated the message stream by virtue of its Discovery Relay
 link subscription, thereby indicating its support of Discovery Relay,
 and its desire to receive inbound mDNS packets over that DSO session
 [I-D.ietf-dnssd-mdns-relay].

Bellis, et al. Expires June 9, 2019 [Page 20]

Internet-Draft DNS Stateful Operations December 2018

5.4.3. TLV Syntax

 All TLVs, whether used as "Primary", "Additional", "Response
 Primary", or "Response Additional", use the same encoding syntax.

 Specifications that define new TLVs must specify whether the DSO-TYPE
 can be used as the Primary TLV, used as an Additional TLV, or used in
 either context, both in the case of requests and of responses. The
 specification for a TLV must also state whether, when used as the
 Primary (i.e., first) TLV in a DSO message (i.e., QR=0), that DSO
 message is unidirectional or is a request message which requires a
 response. If the DSO message requires a response, the specification
 must also state which TLVs, if any, are to be included in the
 response. The Primary TLV may or may not be contained in the
 response, depending on what is specified for that TLV.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | DSO-TYPE |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | DSO-LENGTH |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | |
 / DSO-DATA /
 / /
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 DSO-TYPE: A 16-bit unsigned integer, in network (big endian) byte
 order, giving the DSO-TYPE of the current DSO TLV per the IANA DSO
 Type Code Registry.

 DSO-LENGTH: A 16-bit unsigned integer, in network (big endian) byte
 order, giving the size in bytes of the DSO-DATA.

 DSO-DATA: Type-code specific format. The generic DSO machinery
 treats the DSO-DATA as an opaque "blob" without attempting to
 interpret it. Interpretation of the meaning of the DSO-DATA for a
 particular DSO-TYPE is the responsibility of the software that
 implements that DSO-TYPE.

Bellis, et al. Expires June 9, 2019 [Page 21]

Internet-Draft DNS Stateful Operations December 2018

5.4.3.1. Request TLVs

 The first TLV in a DSO request message or DSO unidirectional message
 is the "Primary TLV" and indicates the operation to be performed. A
 DSO request message or DSO unidirectional message MUST contain at at
 least one TLV-the Primary TLV.

 Immediately following the Primary TLV, a DSO request message or DSO
 unidirectional message MAY contain one or more "Additional TLVs",
 which specify additional parameters relating to the operation.

5.4.3.2. Response TLVs

 Depending on the operation, a DSO response message MAY contain no
 TLVs, because it is simply a response to a previous DSO request
 message, and the MESSAGE ID in the header is sufficient to identify
 the DSO request in question. Or it may contain a single response
 TLV, with the same DSO-TYPE as the Primary TLV in the request
 message. Alternatively it may contain one or more TLVs of other
 types, or a combination of the above, as appropriate for the
 information that needs to be communicated. The specification for
 each DSO TLV determines what TLVs are required in a response to a DSO
 request message using that TLV.

 If a DSO response is received for an operation where the
 specification requires that the response carry a particular TLV or
 TLVs, and the required TLV(s) are not present, then this is a fatal
 error and the recipient of the defective response message MUST
 forcibly abort the connection immediately.

Bellis, et al. Expires June 9, 2019 [Page 22]

Internet-Draft DNS Stateful Operations December 2018

5.4.3.3. Unrecognized TLVs

 If DSO request message is received containing an unrecognized Primary
 TLV, with a nonzero MESSAGE ID (indicating that a response is
 expected), then the receiver MUST send an error response with
 matching MESSAGE ID, and RCODE DSOTYPENI. The error response MUST
 NOT contain a copy of the unrecognized Primary TLV.

 If DSO unidirectional message is received containing an unrecognized
 Primary TLV, with a zero MESSAGE ID (indicating that no response is
 expected), then this is a fatal error and the recipient MUST forcibly
 abort the connection immediately.

 If a DSO request message or DSO unidirectional message is received
 where the Primary TLV is recognized, containing one or more
 unrecognized Additional TLVs, the unrecognized Additional TLVs MUST
 be silently ignored, and the remainder of the message is interpreted
 and handled as if the unrecognized parts were not present.

 Similarly, if a DSO response message is received containing one or
 more unrecognized TLVs, the unrecognized TLVs MUST be silently
 ignored, and the remainder of the message is interpreted and handled
 as if the unrecognized parts were not present.

Bellis, et al. Expires June 9, 2019 [Page 23]

Internet-Draft DNS Stateful Operations December 2018

5.4.4. EDNS(0) and TSIG

 Since the ARCOUNT field MUST be zero, a DSO message cannot contain a
 valid EDNS(0) option in the additional records section. If
 functionality provided by current or future EDNS(0) options is
 desired for DSO messages, one or more new DSO TLVs need to be defined
 to carry the necessary information.

 For example, the EDNS(0) Padding Option [RFC7830] used for security
 purposes is not permitted in a DSO message, so if message padding is
 desired for DSO messages then the Encryption Padding TLV described in
 Section 7.3 MUST be used.

 A DSO message can’t contain a TSIG record, because a TSIG record is
 included in the additional section of the message, which would mean
 that ARCOUNT would be greater than zero. DSO messages are required
 to have an ARCOUNT of zero. Therefore, if use of signatures with DSO
 messages becomes necessary in the future, a new DSO TLV would have to
 be defined to perform this function.

 Note however that, while DSO *messages* cannot include EDNS(0) or
 TSIG records, a DSO *session* is typically used to carry a whole
 series of DNS messages of different kinds, including DSO messages,
 and other DNS message types like Query [RFC1034] [RFC1035] and Update
 [RFC2136], and those messages can carry EDNS(0) and TSIG records.

 Although messages may contain other EDNS(0) options as appropriate,
 this specification explicitly prohibits use of the edns-tcp-keepalive
 EDNS0 Option [RFC7828] in *any* messages sent on a DSO Session
 (because it is obsoleted by the functionality provided by the DSO
 Keepalive operation). If any message sent on a DSO Session contains
 an edns-tcp-keepalive EDNS0 Option this is a fatal error and the
 recipient of the defective message MUST forcibly abort the connection
 immediately.

Bellis, et al. Expires June 9, 2019 [Page 24]

Internet-Draft DNS Stateful Operations December 2018

5.5. Message Handling

 As described above in Section 5.4.1, whether an outgoing DSO message
 with the QR bit in the DNS header set to zero is a DSO request or DSO
 unidirectional message is determined by the specification for the
 Primary TLV, which in turn determines whether the MESSAGE ID field in
 that outgoing message will be zero or nonzero.

 Every DSO message with the QR bit in the DNS header set to zero and a
 nonzero MESSAGE ID field is a DSO request message, and MUST elicit a
 corresponding response, with the QR bit in the DNS header set to one
 and the MESSAGE ID field set to the value given in the corresponding
 DSO request message.

 Valid DSO request messages sent by the client with a nonzero MESSAGE
 ID field elicit a response from the server, and valid DSO request
 messages sent by the server with a nonzero MESSAGE ID field elicit a
 response from the client.

 Every DSO message with both the QR bit in the DNS header and the
 MESSAGE ID field set to zero is a DSO unidirectional message, and
 MUST NOT elicit a response.

Bellis, et al. Expires June 9, 2019 [Page 25]

Internet-Draft DNS Stateful Operations December 2018

5.5.1. Delayed Acknowledgement Management

 Generally, most good TCP implementations employ a delayed
 acknowledgement timer to provide more efficient use of the network
 and better performance.

 With a bidirectional exchange over TCP, as for example with a DSO
 request message, the operating system TCP implementation waits for
 the application-layer client software to generate the corresponding
 DSO response message. It can then send a single combined packet
 containing the TCP acknowledgement, the TCP window update, and the
 application-generated DSO response message. This is more efficient
 than sending three separate packets, as would occur if the TCP packet
 containing the DSO request were acknowledged immediately.

 With a DSO unidirectional message or DSO response message, there is
 no corresponding application-generated DSO response message, and
 consequently, no hint to the transport protocol about when it should
 send its acknowledgement and window update.

 Some networking APIs provide a mechanism that allows the application-
 layer client software to signal to the transport protocol that no
 response will be forthcoming (in effect it can be thought of as a
 zero-length "empty" write). Where available in the networking API
 being used, the recipient of a DSO unidirectional message or DSO
 response message, having parsed and interpreted the message, SHOULD
 then use this mechanism provided by the networking API to signal that
 no response for this message will be forthcoming, so that the TCP
 implementation can go ahead and send its acknowledgement and window
 update without further delay. See Section 9.5 for further discussion
 of why this is important.

Bellis, et al. Expires June 9, 2019 [Page 26]

Internet-Draft DNS Stateful Operations December 2018

5.5.2. MESSAGE ID Namespaces

 The namespaces of 16-bit MESSAGE IDs are independent in each
 direction. This means it is *not* an error for both client and
 server to send DSO request messages at the same time as each other,
 using the same MESSAGE ID, in different directions. This
 simplification is necessary in order for the protocol to be
 implementable. It would be infeasible to require the client and
 server to coordinate with each other regarding allocation of new
 unique MESSAGE IDs. It is also not necessary to require the client
 and server to coordinate with each other regarding allocation of new
 unique MESSAGE IDs. The value of the 16-bit MESSAGE ID combined with
 the identity of the initiator (client or server) is sufficient to
 unambiguously identify the operation in question. This can be
 thought of as a 17-bit message identifier space, using message
 identifiers 0x00001-0x0FFFF for client-to-server DSO request
 messages, and message identifiers 0x10001-0x1FFFF for server-to-
 client DSO request messages. The least-significant 16 bits are
 stored explicitly in the MESSAGE ID field of the DSO message, and the
 most-significant bit is implicit from the direction of the message.

 As described above in Section 5.4.1, an initiator MUST NOT reuse a
 MESSAGE ID that it already has in use for an outstanding DSO request
 message (unless specified otherwise by the relevant specification for
 the DSO-TYPE in question). At the very least, this means that a
 MESSAGE ID can’t be reused in a particular direction on a particular
 DSO Session while the initiator is waiting for a response to a
 previous DSO request message using that MESSAGE ID on that DSO
 Session (unless specified otherwise by the relevant specification for
 the DSO-TYPE in question), and for a long-lived operation the MESSAGE
 ID for the operation can’t be reused while that operation remains
 active.

 If a client or server receives a response (QR=1) where the MESSAGE ID
 is zero, or is any other value that does not match the MESSAGE ID of
 any of its outstanding operations, this is a fatal error and the
 recipient MUST forcibly abort the connection immediately.

 If a responder receives a DSO request message (QR=0) where the
 MESSAGE ID is not zero, and the responder tracks request MESSAGE IDs,
 and the MESSAGE ID matches the MESSAGE ID of a DSO request message it
 received for which a response has not yet been sent, it MUST forcibly
 abort the connection immediately. This behavior is required to
 prevent a hypothetical attack that takes advantage of undefined
 behavior in this case. However, if the responder does not track
 MESSAGE IDs in this way, no such risk exists, so tracking MESSAGE IDs
 just to implement this sanity check is not required.

Bellis, et al. Expires June 9, 2019 [Page 27]

Internet-Draft DNS Stateful Operations December 2018

5.5.3. Error Responses

 When a DSO unidirectional message type is received (MESSAGE ID field
 is zero), the receiver should already be expecting this DSO message
 type. Section 5.4.3.3 describes the handling of unknown DSO message
 types. Parsing errors MUST also result in the receiver forcibly
 aborting the connection. When a DSO unidirectional message of an
 unexpected type is received, the receiver SHOULD forcibly abort the
 connection. Whether the connection should be forcibly aborted for
 other internal errors processing the DSO unidirectional message is
 implementation dependent, according to the severity of the error.

 When a DSO request message is unsuccessful for some reason, the
 responder returns an error code to the initiator.

 In the case of a server returning an error code to a client in
 response to an unsuccessful DSO request message, the server MAY
 choose to end the DSO Session, or MAY choose to allow the DSO Session
 to remain open. For error conditions that only affect the single
 operation in question, the server SHOULD return an error response to
 the client and leave the DSO Session open for further operations.

 For error conditions that are likely to make all operations
 unsuccessful in the immediate future, the server SHOULD return an
 error response to the client and then end the DSO Session by sending
 a Retry Delay message, as described in Section 6.6.1.

 Upon receiving an error response from the server, a client SHOULD NOT
 automatically close the DSO Session. An error relating to one
 particular operation on a DSO Session does not necessarily imply that
 all other operations on that DSO Session have also failed, or that
 future operations will fail. The client should assume that the
 server will make its own decision about whether or not to end the DSO
 Session, based on the server’s determination of whether the error
 condition pertains to this particular operation, or would also apply
 to any subsequent operations. If the server does not end the DSO
 Session by sending the client a Retry Delay message (Section 6.6.1)
 then the client SHOULD continue to use that DSO Session for
 subsequent operations.

Bellis, et al. Expires June 9, 2019 [Page 28]

Internet-Draft DNS Stateful Operations December 2018

5.6. Responder-Initiated Operation Cancellation

 This document, the base specification for DNS Stateful Operations,
 does not itself define any long-lived operations, but it defines a
 framework for supporting long-lived operations, such as Push
 Notification subscriptions [I-D.ietf-dnssd-push] and Discovery Relay
 interface subscriptions [I-D.ietf-dnssd-mdns-relay].

 Long-lived operations, if successful, will remain active until the
 initiator terminates the operation.

 However, it is possible that a long-lived operation may be valid at
 the time it was initiated, but then a later change of circumstances
 may render that operation invalid. For example, a long-lived client
 operation may pertain to a name that the server is authoritative for,
 but then the server configuration is changed such that it is no
 longer authoritative for that name.

 In such cases, instead of terminating the entire session it may be
 desirable for the responder to be able to cancel selectively only
 those operations that have become invalid.

 The responder performs this selective cancellation by sending a new
 response message, with the MESSAGE ID field containing the MESSAGE ID
 of the long-lived operation that is to be terminated (that it had
 previously acknowledged with a NOERROR RCODE), and the RCODE field of
 the new response message giving the reason for cancellation.

 After a response message with nonzero RCODE has been sent, that
 operation has been terminated from the responder’s point of view, and
 the responder sends no more messages relating to that operation.

 After a response message with nonzero RCODE has been received by the
 initiator, that operation has been terminated from the initiator’s
 point of view, and the cancelled operation’s MESSAGE ID is now free
 for reuse.

Bellis, et al. Expires June 9, 2019 [Page 29]

Internet-Draft DNS Stateful Operations December 2018

6. DSO Session Lifecycle and Timers

6.1. DSO Session Initiation

 A DSO Session begins as described in Section 5.1.

 The client may perform as many DNS operations as it wishes using the
 newly created DSO Session. When the client has multiple messages to
 send, it SHOULD NOT wait for each response before sending the next
 message.

 The server MUST act on messages in the order they are received, but
 SHOULD NOT delay sending responses to those messages as they become
 available in order to return them in the order the requests were
 received.

 Section 6.2.1.1 of the DNS-over-TCP specification [RFC7766] specifies
 this in more detail.

Bellis, et al. Expires June 9, 2019 [Page 30]

Internet-Draft DNS Stateful Operations December 2018

6.2. DSO Session Timeouts

 Two timeout values are associated with a DSO Session: the inactivity
 timeout, and the keepalive interval. Both values are communicated in
 the same TLV, the Keepalive TLV (Section 7.1).

 The first timeout value, the inactivity timeout, is the maximum time
 for which a client may speculatively keep an inactive DSO Session
 open in the expectation that it may have future requests to send to
 that server.

 The second timeout value, the keepalive interval, is the maximum
 permitted interval between messages if the client wishes to keep the
 DSO Session alive.

 The two timeout values are independent. The inactivity timeout may
 be lower, the same, or higher than the keepalive interval, though in
 most cases the inactivity timeout is expected to be shorter than the
 keepalive interval.

 A shorter inactivity timeout with a longer keepalive interval signals
 to the client that it should not speculatively keep an inactive DSO
 Session open for very long without reason, but when it does have an
 active reason to keep a DSO Session open, it doesn’t need to be
 sending an aggressive level of DSO keepalive traffic to maintain that
 session. An example of this would be a client that has subscribed to
 DNS Push notifications: in this case, the client is not sending any
 traffic to the server, but the session is not inactive, because there
 is a active request to the server to receive push notifications.

 A longer inactivity timeout with a shorter keepalive interval signals
 to the client that it may speculatively keep an inactive DSO Session
 open for a long time, but to maintain that inactive DSO Session it
 should be sending a lot of DSO keepalive traffic. This configuration
 is expected to be less common.

 In the usual case where the inactivity timeout is shorter than the
 keepalive interval, it is only when a client has a long-lived, low-
 traffic, operation that the keepalive interval comes into play, to
 ensure that a sufficient residual amount of traffic is generated to
 maintain NAT and firewall state and to assure client and server that
 they still have connectivity to each other.

 On a new DSO Session, if no explicit DSO Keepalive message exchange
 has taken place, the default value for both timeouts is 15 seconds.

 For both timeouts, lower values of the timeout result in higher
 network traffic, and higher CPU load on the server.

Bellis, et al. Expires June 9, 2019 [Page 31]

Internet-Draft DNS Stateful Operations December 2018

6.3. Inactive DSO Sessions

 At both servers and clients, the generation or reception of any
 complete DNS message (including DNS requests, responses, updates, DSO
 messages, etc.) resets both timers for that DSO Session, with the one
 exception that a DSO Keepalive message resets only the keepalive
 timer, not the inactivity timeout timer.

 In addition, for as long as the client has an outstanding operation
 in progress, the inactivity timer remains cleared, and an inactivity
 timeout cannot occur.

 For short-lived DNS operations like traditional queries and updates,
 an operation is considered in progress for the time between request
 and response, typically a period of a few hundred milliseconds at
 most. At the client, the inactivity timer is cleared upon
 transmission of a request and remains cleared until reception of the
 corresponding response. At the server, the inactivity timer is
 cleared upon reception of a request and remains cleared until
 transmission of the corresponding response.

 For long-lived DNS Stateful operations (such as a Push Notification
 subscription [I-D.ietf-dnssd-push] or a Discovery Relay interface
 subscription [I-D.ietf-dnssd-mdns-relay]), an operation is considered
 in progress for as long as the operation is active, i.e. until it is
 cancelled. This means that a DSO Session can exist, with active
 operations, with no messages flowing in either direction, for far
 longer than the inactivity timeout, and this is not an error. This
 is why there are two separate timers: the inactivity timeout, and the
 keepalive interval. Just because a DSO Session has no traffic for an
 extended period of time does not automatically make that DSO Session
 "inactive", if it has an active operation that is awaiting events.

Bellis, et al. Expires June 9, 2019 [Page 32]

Internet-Draft DNS Stateful Operations December 2018

6.4. The Inactivity Timeout

 The purpose of the inactivity timeout is for the server to balance
 the trade off between the costs of setting up new DSO Sessions and
 the costs of maintaining inactive DSO Sessions. A server with
 abundant DSO Session capacity can offer a high inactivity timeout, to
 permit clients to keep a speculative DSO Session open for a long
 time, to save the cost of establishing a new DSO Session for future
 communications with that server. A server with scarce memory
 resources can offer a low inactivity timeout, to cause clients to
 promptly close DSO Sessions whenever they have no outstanding
 operations with that server, and then create a new DSO Session later
 when needed.

6.4.1. Closing Inactive DSO Sessions

 When a connection’s inactivity timeout is reached the client MUST
 begin closing the idle connection, but a client is not required to
 keep an idle connection open until the inactivity timeout is reached.
 A client MAY close a DSO Session at any time, at the client’s
 discretion. If a client determines that it has no current or
 reasonably anticipated future need for a currently inactive DSO
 Session, then the client SHOULD gracefully close that connection.

 If, at any time during the life of the DSO Session, the inactivity
 timeout value (i.e., 15 seconds by default) elapses without there
 being any operation active on the DSO Session, the client MUST close
 the connection gracefully.

 If, at any time during the life of the DSO Session, twice the
 inactivity timeout value (i.e., 30 seconds by default), or five
 seconds, if twice the inactivity timeout value is less than five
 seconds, elapses without there being any operation active on the DSO
 Session, the server MUST consider the client delinquent, and MUST
 forcibly abort the DSO Session.

 In this context, an operation being active on a DSO Session includes
 a query waiting for a response, an update waiting for a response, or
 an active long-lived operation, but not a DSO Keepalive message
 exchange itself. A DSO Keepalive message exchange resets only the
 keepalive interval timer, not the inactivity timeout timer.

 If the client wishes to keep an inactive DSO Session open for longer
 than the default duration then it uses the DSO Keepalive message to
 request longer timeout values, as described in Section 7.1.

Bellis, et al. Expires June 9, 2019 [Page 33]

Internet-Draft DNS Stateful Operations December 2018

6.4.2. Values for the Inactivity Timeout

 For the inactivity timeout value, lower values result in more
 frequent DSO Session teardown and re-establishment. Higher values
 result in lower traffic and lower CPU load on the server, but higher
 memory burden to maintain state for inactive DSO Sessions.

 A server may dictate any value it chooses for the inactivity timeout
 (either in a response to a client-initiated request, or in a server-
 initiated message) including values under one second, or even zero.

 An inactivity timeout of zero informs the client that it should not
 speculatively maintain idle connections at all, and as soon as the
 client has completed the operation or operations relating to this
 server, the client should immediately begin closing this session.

 A server will forcibly abort an idle client session after twice the
 inactivity timeout value, or five seconds, whichever is greater. In
 the case of a zero inactivity timeout value, this means that if a
 client fails to close an idle client session then the server will
 forcibly abort the idle session after five seconds.

 An inactivity timeout of 0xFFFFFFFF represents "infinity" and informs
 the client that it may keep an idle connection open as long as it
 wishes. Note that after granting an unlimited inactivity timeout in
 this way, at any point the server may revise that inactivity timeout
 by sending a new DSO Keepalive message dictating new Session Timeout
 values to the client.

 The largest *finite* inactivity timeout supported by the current
 Keepalive TLV is 0xFFFFFFFE (2^32-2 milliseconds, approximately 49.7
 days).

Bellis, et al. Expires June 9, 2019 [Page 34]

Internet-Draft DNS Stateful Operations December 2018

6.5. The Keepalive Interval

 The purpose of the keepalive interval is to manage the generation of
 sufficient messages to maintain state in middleboxes (such at NAT
 gateways or firewalls) and for the client and server to periodically
 verify that they still have connectivity to each other. This allows
 them to clean up state when connectivity is lost, and to establish a
 new session if appropriate.

6.5.1. Keepalive Interval Expiry

 If, at any time during the life of the DSO Session, the keepalive
 interval value (i.e., 15 seconds by default) elapses without any DNS
 messages being sent or received on a DSO Session, the client MUST
 take action to keep the DSO Session alive, by sending a DSO Keepalive
 message (Section 7.1). A DSO Keepalive message exchange resets only
 the keepalive timer, not the inactivity timer.

 If a client disconnects from the network abruptly, without cleanly
 closing its DSO Session, perhaps leaving a long-lived operation
 uncancelled, the server learns of this after failing to receive the
 required DSO keepalive traffic from that client. If, at any time
 during the life of the DSO Session, twice the keepalive interval
 value (i.e., 30 seconds by default) elapses without any DNS messages
 being sent or received on a DSO Session, the server SHOULD consider
 the client delinquent, and SHOULD forcibly abort the DSO Session.

6.5.2. Values for the Keepalive Interval

 For the keepalive interval value, lower values result in a higher
 volume of DSO keepalive traffic. Higher values of the keepalive
 interval reduce traffic and CPU load, but have minimal effect on the
 memory burden at the server, because clients keep a DSO Session open
 for the same length of time (determined by the inactivity timeout)
 regardless of the level of DSO keepalive traffic required.

 It may be appropriate for clients and servers to select different
 keepalive interval values depending on the nature of the network they
 are on.

 A corporate DNS server that knows it is serving only clients on the
 internal network, with no intervening NAT gateways or firewalls, can
 impose a higher keepalive interval, because frequent DSO keepalive
 traffic is not required.

 A public DNS server that is serving primarily residential consumer
 clients, where it is likely there will be a NAT gateway on the path,

Bellis, et al. Expires June 9, 2019 [Page 35]

Internet-Draft DNS Stateful Operations December 2018

 may impose a lower keepalive interval, to generate more frequent DSO
 keepalive traffic.

 A smart client may be adaptive to its environment. A client using a
 private IPv4 address [RFC1918] to communicate with a DNS server at an
 address outside that IPv4 private address block, may conclude that
 there is likely to be a NAT gateway on the path, and accordingly
 request a lower keepalive interval.

 By default it is RECOMMENDED that clients request, and servers grant,
 a keepalive interval of 60 minutes. This keepalive interval provides
 for reasonably timely detection if a client abruptly disconnects
 without cleanly closing the session, and is sufficient to maintain
 state in firewalls and NAT gateways that follow the IETF recommended
 Best Current Practice that the "established connection idle-timeout"
 used by middleboxes be at least 2 hours 4 minutes [RFC5382]
 [RFC7857].

 Note that the lower the keepalive interval value, the higher the load
 on client and server. Moreover for a keep-alive value that is
 smaller than the time needed for the transport to retransmit, a
 single packet loss would cause a server to overzealously abort the
 connect. For example, a (hypothetical and unrealistic) keepalive
 interval value of 100 ms would result in a continuous stream of ten
 messages per second or more (if allowed by the current congestion
 control window), in both directions, to keep the DSO Session alive.
 And, in this extreme example, a single retransmission over a path
 with, e.g., 100ms RTT would introduce a momentary pause in the stream
 of messages, long enough to cause the server to abort the connection.

 Because of this concern, the server MUST NOT send a DSO Keepalive
 message (either a response to a client-initiated request, or a
 server-initiated message) with a keepalive interval value less than
 ten seconds. If a client receives a DSO Keepalive message specifying
 a keepalive interval value less than ten seconds this is a fatal
 error and the client MUST forcibly abort the connection immediately.

 A keepalive interval value of 0xFFFFFFFF represents "infinity" and
 informs the client that it should generate no DSO keepalive traffic.
 Note that after signaling that the client should generate no DSO
 keepalive traffic in this way, at any point the server may revise
 that DSO keepalive traffic requirement by sending a new DSO Keepalive
 message dictating new Session Timeout values to the client.

 The largest *finite* keepalive interval supported by the current
 Keepalive TLV is 0xFFFFFFFE (2^32-2 milliseconds, approximately 49.7
 days).

Bellis, et al. Expires June 9, 2019 [Page 36]

Internet-Draft DNS Stateful Operations December 2018

6.6. Server-Initiated Session Termination

 In addition to cancelling individual long-lived operations
 selectively (Section 5.6) there are also occasions where a server may
 need to terminate one or more entire sessions. An entire session may
 need to be terminated if the client is defective in some way, or
 departs from the network without closing its session. Sessions may
 also need to be terminated if the server becomes overloaded, or if
 the server is reconfigured and lacks the ability to be selective
 about which operations need to be cancelled.

 This section discusses various reasons a session may be terminated,
 and the mechanisms for doing so.

 In normal operation, closing a DSO Session is the client’s
 responsibility. The client makes the determination of when to close
 a DSO Session based on an evaluation of both its own needs, and the
 inactivity timeout value dictated by the server. A server only
 causes a DSO Session to be ended in the exceptional circumstances
 outlined below. Some of the exceptional situations in which a server
 may terminate a DSO Session include:

 o The server application software or underlying operating system is
 shutting down or restarting.

 o The server application software terminates unexpectedly (perhaps
 due to a bug that makes it crash, causing the underlying operating
 system to send a TCP RST).

 o The server is undergoing a reconfiguration or maintenance
 procedure, that, due to the way the server software is
 implemented, requires clients to be disconnected. For example,
 some software is implemented such that it reads a configuration
 file at startup, and changing the server’s configuration entails
 modifying the configuration file and then killing and restarting
 the server software, which generally entails a loss of network
 connections.

 o The client fails to meets its obligation to generate the required
 DSO keepalive traffic, or to close an inactive session by the
 prescribed time (twice the time interval dictated by the server,
 or five seconds, whichever is greater, as described in
 Section 6.2).

 o The client sends a grossly invalid or malformed request that is
 indicative of a seriously defective client implementation.

 o The server is over capacity and needs to shed some load.

Bellis, et al. Expires June 9, 2019 [Page 37]

Internet-Draft DNS Stateful Operations December 2018

6.6.1. Server-Initiated Retry Delay Message

 In the cases described above where a server elects to terminate a DSO
 Session, it could do so simply by forcibly aborting the connection.
 However, if it did this the likely behavior of the client might be
 simply to to treat this as a network failure and reconnect
 immediately, putting more burden on the server.

 Therefore, to avoid this reconnection implosion, a server SHOULD
 instead choose to shed client load by sending a Retry Delay message,
 with an appropriate RCODE value informing the client of the reason
 the DSO Session needs to be terminated. The format of the Retry
 Delay TLV, and the interpretations of the various RCODE values, are
 described in Section 7.2. After sending a Retry Delay message, the
 server MUST NOT send any further messages on that DSO Session.

 The server MAY randomize retry delays in situations where many retry
 delays are sent in quick succession, so as to avoid all the clients
 attempting to reconnect at once. In general, implementations should
 avoid using the Retry Delay message in a way that would result in
 many clients reconnecting at the same time, if every client attempts
 to reconnect at the exact time specified.

 Upon receipt of a Retry Delay message from the server, the client
 MUST make note of the reconnect delay for this server, and then
 immediately close the connection gracefully.

 After sending a Retry Delay message the server SHOULD allow the
 client five seconds to close the connection, and if the client has
 not closed the connection after five seconds then the server SHOULD
 forcibly abort the connection.

 A Retry Delay message MUST NOT be initiated by a client. If a server
 receives a Retry Delay message this is a fatal error and the server
 MUST forcibly abort the connection immediately.

6.6.1.1. Outstanding Operations

 At the instant a server chooses to initiate a Retry Delay message
 there may be DNS requests already in flight from client to server on
 this DSO Session, which will arrive at the server after its Retry
 Delay message has been sent. The server MUST silently ignore such
 incoming requests, and MUST NOT generate any response messages for
 them. When the Retry Delay message from the server arrives at the
 client, the client will determine that any DNS requests it previously
 sent on this DSO Session, that have not yet received a response, now
 will certainly not be receiving any response. Such requests should

Bellis, et al. Expires June 9, 2019 [Page 38]

Internet-Draft DNS Stateful Operations December 2018

 be considered failed, and should be retried at a later time, as
 appropriate.

 In the case where some, but not all, of the existing operations on a
 DSO Session have become invalid (perhaps because the server has been
 reconfigured and is no longer authoritative for some of the names),
 but the server is terminating all affected DSO Sessions en masse by
 sending them all a Retry Delay message, the reconnect delay MAY be
 zero, indicating that the clients SHOULD immediately attempt to re-
 establish operations.

 It is likely that some of the attempts will be successful and some
 will not, depending on the nature of the reconfiguration.

 In the case where a server is terminating a large number of DSO
 Sessions at once (e.g., if the system is restarting) and the server
 doesn’t want to be inundated with a flood of simultaneous retries, it
 SHOULD send different reconnect delay values to each client. These
 adjustments MAY be selected randomly, pseudorandomly, or
 deterministically (e.g., incrementing the time value by one tenth of
 a second for each successive client, yielding a post-restart
 reconnection rate of ten clients per second).

6.6.2. Misbehaving Clients

 A server may determine that a client is not following the protocol
 correctly. There may be no way for the server to recover the
 session, in which case the server forcibly terminates the connection.
 Since the client doesn’t know why the connection dropped, it may
 reconnect immediately. If the server has determined that a client is
 not following the protocol correctly, it may terminate the DSO
 session as soon as it is established, specifying a long retry-delay
 to prevent the client from immediately reconnecting.

6.6.3. Client Reconnection

 After a DSO Session is ended by the server (either by sending the
 client a Retry Delay message, or by forcibly aborting the underlying
 transport connection) the client SHOULD try to reconnect, to that
 service instance, or to another suitable service instance, if more
 than one is available. If reconnecting to the same service instance,
 the client MUST respect the indicated delay, if available, before
 attempting to reconnect. Clients should not attempt to randomize the
 delay; the server will randomly jitter the retry delay values it
 sends to each client if this behavior is desired.

 If the service instance will only be out of service for a short
 maintenance period, it should use a value a little longer that the

Bellis, et al. Expires June 9, 2019 [Page 39]

Internet-Draft DNS Stateful Operations December 2018

 expected maintenance window. It should not default to a very large
 delay value, or clients may not attempt to reconnect after it resumes
 service.

 If a particular service instance does not want a client to reconnect
 ever (perhaps the service instance is being de-commissioned), it
 SHOULD set the retry delay to the maximum value 0xFFFFFFFF (2^32-1
 milliseconds, approximately 49.7 days). It is not possible to
 instruct a client to stay away for longer than 49.7 days. If, after
 49.7 days, the DNS or other configuration information still indicates
 that this is the valid service instance for a particular service,
 then clients MAY attempt to reconnect. In reality, if a client is
 rebooted or otherwise lose state, it may well attempt to reconnect
 before 49.7 days elapses, for as long as the DNS or other
 configuration information continues to indicate that this is the
 service instance the client should use.

6.6.3.1. Reconnecting After a Forcible Abort

 If a connection was forcibly aborted by the client, the client SHOULD
 mark that service instance as not supporting DSO. The client MAY
 reconnect but not attempt to use DSO, or may connect to a different
 service instance, if applicable.

6.6.3.2. Reconnecting After an Unexplained Connection Drop

 It is also possible for a server to forcibly terminate the
 connection; in this case the client doesn’t know whether the
 termination was the result of a protocol error or a network outage.
 When the client notices that the connection has been dropped, it can
 attempt to reconnect immediately. However, if the connection is
 dropped again without the client being able to successfully do
 whatever it is trying to do, it should mark the server as not
 supporting DSO.

6.6.3.3. Probing for Working DSO Support

 Once a server has been marked by the client as not supporting DSO,
 the client SHOULD NOT attempt DSO operations on that server until
 some time has elapsed. A reasonable minimum would be an hour. Since
 forcibly aborted connections are the result of a software failure,
 it’s not likely that the problem will be solved in the first hour
 after it’s first encountered. However, by restricting the retry
 interval to an hour, the client will be able to notice when the
 problem has been fixed without placing an undue burden on the server.

Bellis, et al. Expires June 9, 2019 [Page 40]

Internet-Draft DNS Stateful Operations December 2018

7. Base TLVs for DNS Stateful Operations

 This section describes the three base TLVs for DNS Stateful
 Operations: Keepalive, Retry Delay, and Encryption Padding.

7.1. Keepalive TLV

 The Keepalive TLV (DSO-TYPE=1) performs two functions. Primarily it
 establishes the values for the Session Timeouts. Incidentally, it
 also resets the keepalive timer for the DSO Session, meaning that it
 can be used as a kind of "no-op" message for the purpose of keeping a
 session alive. The client will request the desired session timeout
 values and the server will acknowledge with the response values that
 it requires the client to use.

 DSO messages with the Keepalive TLV as the primary TLV may appear in
 early data.

 The DSO-DATA for the Keepalive TLV is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | INACTIVITY TIMEOUT (32 bits) |
 +-+
 | KEEPALIVE INTERVAL (32 bits) |
 +-+

 INACTIVITY TIMEOUT: The inactivity timeout for the current DSO
 Session, specified as a 32-bit unsigned integer, in network (big
 endian) byte order, in units of milliseconds. This is the timeout
 at which the client MUST begin closing an inactive DSO Session.
 The inactivity timeout can be any value of the server’s choosing.
 If the client does not gracefully close an inactive DSO Session,
 then after twice this interval, or five seconds, whichever is
 greater, the server will forcibly abort the connection.

 KEEPALIVE INTERVAL: The keepalive interval for the current DSO
 Session, specified as a 32-bit unsigned integer, in network (big
 endian) byte order, in units of milliseconds. This is the
 interval at which a client MUST generate DSO keepalive traffic to
 maintain connection state. The keepalive interval MUST NOT be
 less than ten seconds. If the client does not generate the
 mandated DSO keepalive traffic, then after twice this interval the
 server will forcibly abort the connection. Since the minimum
 allowed keepalive interval is ten seconds, the minimum time at
 which a server will forcibly disconnect a client for failing to
 generate the mandated DSO keepalive traffic is twenty seconds.

Bellis, et al. Expires June 9, 2019 [Page 41]

Internet-Draft DNS Stateful Operations December 2018

 The transmission or reception of DSO Keepalive messages (i.e.,
 messages where the Keepalive TLV is the first TLV) reset only the
 keepalive timer, not the inactivity timer. The reason for this is
 that periodic DSO Keepalive messages are sent for the sole purpose of
 keeping a DSO Session alive, when that DSO Session has current or
 recent non-maintenance activity that warrants keeping that DSO
 Session alive. Sending DSO keepalive traffic itself is not
 considered a client activity; it is considered a maintenance activity
 that is performed in service of other client activities. If DSO
 keepalive traffic itself were to reset the inactivity timer, then
 that would create a circular livelock where keepalive traffic would
 be sent indefinitely to keep a DSO Session alive, where the only
 activity on that DSO Session would be the keepalive traffic keeping
 the DSO Session alive so that further keepalive traffic can be sent.
 For a DSO Session to be considered active, it must be carrying
 something more than just keepalive traffic. This is why merely
 sending or receiving a DSO Keepalive message does not reset the
 inactivity timer.

 When sent by a client, the DSO Keepalive request message MUST be sent
 as an DSO request message, with a nonzero MESSAGE ID. If a server
 receives a DSO Keepalive message with a zero MESSAGE ID then this is
 a fatal error and the server MUST forcibly abort the connection
 immediately. The DSO Keepalive request message resets a DSO
 Session’s keepalive timer, and at the same time communicates to the
 server the client’s requested Session Timeout values. In a server
 response to a client-initiated DSO Keepalive request message, the
 Session Timeouts contain the server’s chosen values from this point
 forward in the DSO Session, which the client MUST respect. This is
 modeled after the DHCP protocol, where the client requests a certain
 lease lifetime using DHCP option 51 [RFC2132], but the server is the
 ultimate authority for deciding what lease lifetime is actually
 granted.

 When a client is sending its second and subsequent DSO Keepalive
 request messages to the server, the client SHOULD continue to request
 its preferred values each time. This allows flexibility, so that if
 conditions change during the lifetime of a DSO Session, the server
 can adapt its responses to better fit the client’s needs.

 Once a DSO Session is in progress (Section 5.1) a DSO Keepalive
 message MAY be initiated by a server. When sent by a server, the DSO
 Keepalive message MUST be sent as a DSO unidirectional message, with
 the MESSAGE ID set to zero. The client MUST NOT generate a response
 to a server-initiated DSO Keepalive message. If a client receives a
 DSO Keepalive request message with a nonzero MESSAGE ID then this is
 a fatal error and the client MUST forcibly abort the connection
 immediately. The DSO Keepalive unidirectional message from the

Bellis, et al. Expires June 9, 2019 [Page 42]

Internet-Draft DNS Stateful Operations December 2018

 server resets a DSO Session’s keepalive timer, and at the same time
 unilaterally informs the client of the new Session Timeout values to
 use from this point forward in this DSO Session. No client DSO
 response to this unilateral declaration is required or allowed.

 In DSO Keepalive response messages, the Keepalive TLV is REQUIRED and
 is used only as a Response Primary TLV sent as a reply to a DSO
 Keepalive request message from the client. A Keepalive TLV MUST NOT
 be added to other responses as a Response Additional TLV. If the
 server wishes to update a client’s Session Timeout values other than
 in response to a DSO Keepalive request message from the client, then
 it does so by sending an DSO Keepalive unidirectional message of its
 own, as described above.

 It is not required that the Keepalive TLV be used in every DSO
 Session. While many DNS Stateful operations will be used in
 conjunction with a long-lived session state, not all DNS Stateful
 operations require long-lived session state, and in some cases the
 default 15-second value for both the inactivity timeout and keepalive
 interval may be perfectly appropriate. However, note that for
 clients that implement only the DSO-TYPEs defined in this document, a
 DSO Keepalive request message is the only way for a client to
 initiate a DSO Session.

7.1.1. Client handling of received Session Timeout values

 When a client receives a response to its client-initiated DSO
 Keepalive message, or receives a server-initiated DSO Keepalive
 message, the client has then received Session Timeout values dictated
 by the server. The two timeout values contained in the Keepalive TLV
 from the server may each be higher, lower, or the same as the
 respective Session Timeout values the client previously had for this
 DSO Session.

 In the case of the keepalive timer, the handling of the received
 value is straightforward. The act of receiving the message
 containing the DSO Keepalive TLV itself resets the keepalive timer,
 and updates the keepalive interval for the DSO Session. The new
 keepalive interval indicates the maximum time that may elapse before
 another message must be sent or received on this DSO Session, if the
 DSO Session is to remain alive.

 In the case of the inactivity timeout, the handling of the received
 value is a little more subtle, though the meaning of the inactivity
 timeout remains as specified -- it still indicates the maximum
 permissible time allowed without useful activity on a DSO Session.
 The act of receiving the message containing the Keepalive TLV does
 not itself reset the inactivity timer. The time elapsed since the

Bellis, et al. Expires June 9, 2019 [Page 43]

Internet-Draft DNS Stateful Operations December 2018

 last useful activity on this DSO Session is unaffected by exchange of
 DSO Keepalive messages. The new inactivity timeout value in the
 Keepalive TLV in the received message does update the timeout
 associated with the running inactivity timer; that becomes the new
 maximum permissible time without activity on a DSO Session.

 o If the current inactivity timer value is less than the new
 inactivity timeout, then the DSO Session may remain open for now.
 When the inactivity timer value reaches the new inactivity
 timeout, the client MUST then begin closing the DSO Session, as
 described above.

 o If the current inactivity timer value is equal to the new
 inactivity timeout, then this DSO Session has been inactive for
 exactly as long as the server will permit, and now the client MUST
 immediately begin closing this DSO Session.

 o If the current inactivity timer value is already greater than the
 new inactivity timeout, then this DSO Session has already been
 inactive for longer than the server permits, and the client MUST
 immediately begin closing this DSO Session.

 o If the current inactivity timer value is already more than twice
 the new inactivity timeout, then the client is immediately
 considered delinquent (this DSO Session is immediately eligible to
 be forcibly terminated by the server) and the client MUST
 immediately begin closing this DSO Session. However if a server
 abruptly reduces the inactivity timeout in this way, then, to give
 the client time to close the connection gracefully before the
 server resorts to forcibly aborting it, the server SHOULD give the
 client an additional grace period of one quarter of the new
 inactivity timeout, or five seconds, whichever is greater.

7.1.2. Relationship to edns-tcp-keepalive EDNS0 Option

 The inactivity timeout value in the Keepalive TLV (DSO-TYPE=1) has
 similar intent to the edns-tcp-keepalive EDNS0 Option [RFC7828]. A
 client/server pair that supports DSO MUST NOT use the edns-tcp-
 keepalive EDNS0 Option within any message after a DSO Session has
 been established. A client that has sent a DSO message to establish
 a session MUST NOT send an edns-tcp-keepalive EDNS0 Option from this
 point on. Once a DSO Session has been established, if either client
 or server receives a DNS message over the DSO Session that contains
 an edns-tcp-keepalive EDNS0 Option, this is a fatal error and the
 receiver of the edns-tcp-keepalive EDNS0 Option MUST forcibly abort
 the connection immediately.

Bellis, et al. Expires June 9, 2019 [Page 44]

Internet-Draft DNS Stateful Operations December 2018

7.2. Retry Delay TLV

 The Retry Delay TLV (DSO-TYPE=2) can be used as a Primary TLV
 (unidirectional) in a server-to-client message, or as a Response
 Additional TLV in either direction. DSO messages with a Relay Delay
 TLV as their primary TLV are not permitted in early data.

 The DSO-DATA for the Retry Delay TLV is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | RETRY DELAY (32 bits) |
 +-+

 RETRY DELAY: A time value, specified as a 32-bit unsigned integer,
 in network (big endian) byte order, in units of milliseconds,
 within which the initiator MUST NOT retry this operation, or retry
 connecting to this server. Recommendations for the RETRY DELAY
 value are given in Section 6.6.1.

7.2.1. Retry Delay TLV used as a Primary TLV

 When sent from server to client, the Retry Delay TLV is used as the
 Primary TLV in a DSO unidirectional message. It is used by a server
 to instruct a client to close the DSO Session and underlying
 connection, and not to reconnect for the indicated time interval.

 In this case it applies to the DSO Session as a whole, and the client
 MUST begin closing the DSO Session, as described in Section 6.6.1.
 The RCODE in the message header SHOULD indicate the principal reason
 for the termination:

 o NOERROR indicates a routine shutdown or restart.

 o FORMERR indicates that a client request was too badly malformed
 for the session to continue.

 o SERVFAIL indicates that the server is overloaded due to resource
 exhaustion and needs to shed load.

 o REFUSED indicates that the server has been reconfigured, and at
 this time it is now unable to perform one or more of the long-
 lived client operations that were previously being performed on
 this DSO Session.

 o NOTAUTH indicates that the server has been reconfigured and at
 this time it is now unable to perform one or more of the long-

Bellis, et al. Expires June 9, 2019 [Page 45]

Internet-Draft DNS Stateful Operations December 2018

 lived client operations that were previously being performed on
 this DSO Session because it does not have authority over the names
 in question (for example, a DNS Push Notification server could be
 reconfigured such that is is no longer accepting DNS Push
 Notification requests for one or more of the currently subscribed
 names).

 This document specifies only these RCODE values for the Retry Delay
 message. Servers sending Retry Delay messages SHOULD use one of
 these values. However, future circumstances may create situations
 where other RCODE values are appropriate in Retry Delay messages, so
 clients MUST be prepared to accept Retry Delay messages with any
 RCODE value.

 In some cases, when a server sends a Retry Delay message to a client,
 there may be more than one reason for the server wanting to end the
 session. Possibly the configuration could have been changed such
 that some long-lived client operations can no longer be continued due
 to policy (REFUSED), and other long-lived client operations can no
 longer be performed due to the server no longer being authoritative
 for those names (NOTAUTH). In such cases the server MAY use any of
 the applicable RCODE values, or RCODE=NOERROR (routine shutdown or
 restart).

 Note that the selection of RCODE value in a Retry Delay message is
 not critical, since the RCODE value is generally used only for
 information purposes, such as writing to a log file for future human
 analysis regarding the nature of the disconnection. Generally
 clients do not modify their behavior depending on the RCODE value.
 The RETRY DELAY in the message tells the client how long it should
 wait before attempting a new connection to this service instance.

 For clients that do in some way modify their behavior depending on
 the RCODE value, they should treat unknown RCODE values the same as
 RCODE=NOERROR (routine shutdown or restart).

 A Retry Delay message from server to client is a DSO unidirectional
 message; the MESSAGE ID MUST be set to zero in the outgoing message
 and the client MUST NOT send a response.

 A client MUST NOT send a Retry Delay DSO message to a server. If a
 server receives a DSO message where the Primary TLV is the Retry
 Delay TLV, this is a fatal error and the server MUST forcibly abort
 the connection immediately.

Bellis, et al. Expires June 9, 2019 [Page 46]

Internet-Draft DNS Stateful Operations December 2018

7.2.2. Retry Delay TLV used as a Response Additional TLV

 In the case of a DSO request message that results in a nonzero RCODE
 value, the responder MAY append a Retry Delay TLV to the response,
 indicating the time interval during which the initiator SHOULD NOT
 attempt this operation again.

 The indicated time interval during which the initiator SHOULD NOT
 retry applies only to the failed operation, not to the DSO Session as
 a whole.

Bellis, et al. Expires June 9, 2019 [Page 47]

Internet-Draft DNS Stateful Operations December 2018

7.3. Encryption Padding TLV

 The Encryption Padding TLV (DSO-TYPE=3) can only be used as an
 Additional or Response Additional TLV. It is only applicable when
 the DSO Transport layer uses encryption such as TLS.

 The DSO-DATA for the Padding TLV is optional and is a variable length
 field containing non-specified values. A DSO-LENGTH of 0 essentially
 provides for 4 bytes of padding (the minimum amount).

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 / /
 / PADDING -- VARIABLE NUMBER OF BYTES /
 / /
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 As specified for the EDNS(0) Padding Option [RFC7830] the PADDING
 bytes SHOULD be set to 0x00. Other values MAY be used, for example,
 in cases where there is a concern that the padded message could be
 subject to compression before encryption. PADDING bytes of any value
 MUST be accepted in the messages received.

 The Encryption Padding TLV may be included in either a DSO request
 message, response, or both. As specified for the EDNS(0) Padding
 Option [RFC7830] if a DSO request message is received with an
 Encryption Padding TLV, then the DSO response MUST also include an
 Encryption Padding TLV.

 The length of padding is intentionally not specified in this document
 and is a function of current best practices with respect to the type
 and length of data in the preceding TLVs
 [I-D.ietf-dprive-padding-policy].

Bellis, et al. Expires June 9, 2019 [Page 48]

Internet-Draft DNS Stateful Operations December 2018

8. Summary Highlights

 This section summarizes some noteworthy highlights about various
 aspects of the DSO protocol.

8.1. QR bit and MESSAGE ID

 In DSO Request Messages the QR bit is 0 and the MESSAGE ID is
 nonzero.

 In DSO Response Messages the QR bit is 1 and the MESSAGE ID is
 nonzero.

 In DSO Unidirectional Messages the QR bit is 0 and the MESSAGE ID is
 zero.

 The table below illustrates which combinations are legal and how they
 are interpreted:

 +------------------------------+------------------------+
 | MESSAGE ID zero | MESSAGE ID nonzero |
 +--------+------------------------------+------------------------+
 | QR=0 | DSO unidirectional Message | DSO Request Message |
 +--------+------------------------------+------------------------+
 | QR=1 | Invalid - Fatal Error | DSO Response Message |
 +--------+------------------------------+------------------------+

Bellis, et al. Expires June 9, 2019 [Page 49]

Internet-Draft DNS Stateful Operations December 2018

8.2. TLV Usage

 The table below indicates, for each of the three TLVs defined in this
 document, whether they are valid in each of ten different contexts.

 The first five contexts are DSO requests or DSO unidirectional
 messages from client to server, and the corresponding responses from
 server back to client:

 o C-P - Primary TLV, sent in DSO Request message, from client to
 server, with nonzero MESSAGE ID indicating that this request MUST
 generate response message.

 o C-U - Primary TLV, sent in DSO Unidirectional message, from client
 to server, with zero MESSAGE ID indicating that this request MUST
 NOT generate response message.

 o C-A - Additional TLV, optionally added to a DSO request message or
 DSO unidirectional message from client to server.

 o CRP - Response Primary TLV, included in response message sent back
 to the client (in response to a client "C-P" request with nonzero
 MESSAGE ID indicating that a response is required) where the DSO-
 TYPE of the Response TLV matches the DSO-TYPE of the Primary TLV
 in the request.

 o CRA - Response Additional TLV, included in response message sent
 back to the client (in response to a client "C-P" request with
 nonzero MESSAGE ID indicating that a response is required) where
 the DSO-TYPE of the Response TLV does not match the DSO-TYPE of
 the Primary TLV in the request.

 The second five contexts are their counterparts in the opposite
 direction: DSO requests or DSO unidirectional messages from server to
 client, and the corresponding responses from client back to server.

 o S-P - Primary TLV, sent in DSO Request message, from server to
 client, with nonzero MESSAGE ID indicating that this request MUST
 generate response message.

 o S-U - Primary TLV, sent in DSO Unidirectional message, from server
 to client, with zero MESSAGE ID indicating that this request MUST
 NOT generate response message.

 o S-A - Additional TLV, optionally added to a DSO request message or
 DSO unidirectional message from server to client.

Bellis, et al. Expires June 9, 2019 [Page 50]

Internet-Draft DNS Stateful Operations December 2018

 o SRP - Response Primary TLV, included in response message sent back
 to the server (in response to a server "S-P" request with nonzero
 MESSAGE ID indicating that a response is required) where the DSO-
 TYPE of the Response TLV matches the DSO-TYPE of the Primary TLV
 in the request.

 o SRA - Response Additional TLV, included in response message sent
 back to the server (in response to a server "S-P" request with
 nonzero MESSAGE ID indicating that a response is required) where
 the DSO-TYPE of the Response TLV does not match the DSO-TYPE of
 the Primary TLV in the request.

 +-------------------------+-------------------------+
 | C-P C-U C-A CRP CRA | S-P S-U S-A SRP SRA |
 +------------+-------------------------+-------------------------+
 | KeepAlive | X X | X |
 +------------+-------------------------+-------------------------+
 | RetryDelay | X | X X |
 +------------+-------------------------+-------------------------+
 | Padding | X X | X X |
 +------------+-------------------------+-------------------------+

 Note that some of the columns in this table are currently empty. The
 table provides a template for future TLV definitions to follow. It
 is recommended that definitions of future TLVs include a similar
 table summarizing the contexts where the new TLV is valid.

Bellis, et al. Expires June 9, 2019 [Page 51]

Internet-Draft DNS Stateful Operations December 2018

9. Additional Considerations

9.1. Service Instances

 We use the term service instance to refer to software running on a
 host which can receive connections on some set of IP address and port
 tuples. What makes the software an instance is that regardless of
 which of these tuples the client uses to connect to it, the client is
 connected to the same software, running on the same node (but see
 Section 9.2), and will receive the same answers and the same keying
 information.

 Service instances are identified from the perspective of the client.
 If the client is configured with IP addresses and port number tuples,
 it has no way to tell if the service offered at one tuple is the same
 server that is listening on a different tuple. So in this case, the
 client treats each such tuple as if it references a separate service
 instance.

 In some cases a client is configured with a hostname and a port
 number (either implicitly, where the port number is omitted and
 assumed, or explicitly, as in the case of DNS SRV records). In these
 cases, the (hostname, port) tuple uniquely identifies the service
 instance (hostname comparisons are case-insensitive [RFC1034].

 It is possible that two hostnames might point to some common IP
 addresses; this is a configuration error which the client is not
 obliged to detect. The effect of this could be that after being told
 to disconnect, the client might reconnect to the same server because
 it is represented as a different service instance.

 Implementations SHOULD NOT resolve hostnames and then perform
 matching of IP address(es) in order to evaluate whether two entities
 should be determined to be the "same service instance".

Bellis, et al. Expires June 9, 2019 [Page 52]

Internet-Draft DNS Stateful Operations December 2018

9.2. Anycast Considerations

 When an anycast service is configured on a particular IP address and
 port, it must be the case that although there is more than one
 physical server responding on that IP address, each such server can
 be treated as equivalent. What we mean by "equivalent" here is that
 both servers can provide the same service and, where appropriate, the
 same authentication information, such as PKI certificates, when
 establishing connections.

 If a change in network topology causes packets in a particular TCP
 connection to be sent to an anycast server instance that does not
 know about the connection, the new server will automatically
 terminate the connection with a TCP reset, since it will have no
 record of the connection, and then the client can reconnect or stop
 using the connection, as appropriate.

 If after the connection is re-established, the client’s assumption
 that it is connected to the same service is violated in some way,
 that would be considered to be incorrect behavior in this context.
 It is however out of the possible scope for this specification to
 make specific recommendations in this regard; that would be up to
 follow-on documents that describe specific uses of DNS stateful
 operations.

Bellis, et al. Expires June 9, 2019 [Page 53]

Internet-Draft DNS Stateful Operations December 2018

9.3. Connection Sharing

 As previously specified for DNS over TCP [RFC7766]:

 To mitigate the risk of unintentional server overload, DNS
 clients MUST take care to minimize the number of concurrent
 TCP connections made to any individual server. It is RECOMMENDED
 that for any given client/server interaction there SHOULD be
 no more than one connection for regular queries, one for zone
 transfers, and one for each protocol that is being used on top
 of TCP (for example, if the resolver was using TLS). However,
 it is noted that certain primary/secondary configurations
 with many busy zones might need to use more than one TCP
 connection for zone transfers for operational reasons (for
 example, to support concurrent transfers of multiple zones).

 A single server may support multiple services, including DNS Updates
 [RFC2136], DNS Push Notifications [I-D.ietf-dnssd-push], and other
 services, for one or more DNS zones. When a client discovers that
 the target server for several different operations is the same
 service instance (see Section 9.1), the client SHOULD use a single
 shared DSO Session for all those operations.

 This requirement has two benefits. First, it reduces unnecessary
 connection load on the DNS server. Second, it avoids paying the TCP
 slow start penalty when making subsequent connections to the same
 server.

 However, server implementers and operators should be aware that
 connection sharing may not be possible in all cases. A single host
 device may be home to multiple independent client software instances
 that don’t coordinate with each other. Similarly, multiple
 independent client devices behind the same NAT gateway will also
 typically appear to the DNS server as different source ports on the
 same client IP address. Because of these constraints, a DNS server
 MUST be prepared to accept multiple connections from different source
 ports on the same client IP address.

Bellis, et al. Expires June 9, 2019 [Page 54]

Internet-Draft DNS Stateful Operations December 2018

9.4. Operational Considerations for Middlebox

 Where an application-layer middlebox (e.g., a DNS proxy, forwarder,
 or session multiplexer) is in the path, care must be taken to avoid a
 configuration in which DSO traffic is mis-handled. The simplest way
 to avoid such problems is to avoid using middleboxes. When this is
 not possible, middleboxes should be evaluated to make sure that they
 behave correctly.

 Correct behavior for middleboxes consists of one of:

 o The middlebox does not forward DSO messages, and responds to DSO
 messages with a response code other than NOERROR or DSOTYPENI.

 o The middlebox acts as a DSO server and follows this specification
 in establishing connections.

 o There is a 1:1 correspondence between incoming and outgoing
 connections, such that when a connection is established to the
 middlebox, it is guaranteed that exactly one corresponding
 connection will be established from the middlebox to some DNS
 resolver, and all incoming messages will be forwarded without
 modification or reordering. An example of this would be a NAT
 forwarder or TCP connection optimizer (e.g. for a high-latency
 connection such as a geosynchronous satellite link).

 Middleboxes that do not meet one of the above criteria are very
 likely to fail in unexpected and difficult-to-diagnose ways. For
 example, a DNS load balancer might unbundle DNS messages from the
 incoming TCP stream and forward each message from the stream to a
 different DNS server. If such a load balancer is in use, and the DNS
 servers it points implement DSO and are configured to enable DSO, DSO
 session establishment will succeed, but no coherent session will
 exist between the client and the server. If such a load balancer is
 pointed at a DNS server that does not implement DSO or is configured
 not to allow DSO, no such problem will exist, but such a
 configuration risks unexpected failure if new server software is
 installed which does implement DSO.

 It is of course possible to implement a middlebox that properly
 supports DSO. It is even possible to implement one that implements
 DSO with long-lived operations. This can be done either by
 maintaining a 1:1 correspondence between incoming and outgoing
 connections, as mentioned above, or by terminating incoming sessions
 at the middlebox, but maintaining state in the middlebox about any
 long-lived that are requested. Specifying this in detail is beyond
 the scope of this document.

Bellis, et al. Expires June 9, 2019 [Page 55]

Internet-Draft DNS Stateful Operations December 2018

9.5. TCP Delayed Acknowledgement Considerations

 Most modern implementations of the Transmission Control Protocol
 (TCP) include a feature called "Delayed Acknowledgement" [RFC1122].

 Without this feature, TCP can be very wasteful on the network. For
 illustration, consider a simple example like remote login, using a
 very simple TCP implementation that lacks delayed acks. When the
 user types a keystroke, a data packet is sent. When the data packet
 arrives at the server, the simple TCP implementation sends an
 immediate acknowledgement. Mere milliseconds later, the server
 process reads the one byte of keystroke data, and consequently the
 simple TCP implementation sends an immediate window update. Mere
 milliseconds later, the server process generates the character echo,
 and sends this data back in reply. The simple TCP implementation
 then sends this data packet immediately too. In this case, this
 simple TCP implementation sends a burst of three packets almost
 instantaneously (ack, window update, data).

 Clearly it would be more efficient if the TCP implementation were to
 combine the three separate packets into one, and this is what the
 delayed ack feature enables.

 With delayed ack, the TCP implementation waits after receiving a data
 packet, typically for 200 ms, and then send its ack if (a) more data
 packet(s) arrive (b) the receiving process generates some reply data,
 or (c) 200 ms elapses without either of the above occurring.

 With delayed ack, remote login becomes much more efficient,
 generating just one packet instead of three for each character echo.

 The logic of delayed ack is that the 200 ms delay cannot do any
 significant harm. If something at the other end were waiting for
 something, then the receiving process should generate the reply that
 the thing at the end is waiting for, and TCP will then immediately
 send that reply (and the ack and window update). And if the
 receiving process does not in fact generate any reply for this
 particular message, then by definition the thing at the other end
 cannot be waiting for anything, so the 200 ms delay is harmless.

 This assumption may be true, unless the sender is using Nagle’s
 algorithm, a similar efficiency feature, created to protect the
 network from poorly written client software that performs many rapid
 small writes in succession. Nagle’s algorithm allows these small
 writes to be combined into larger, less wasteful packets.

Bellis, et al. Expires June 9, 2019 [Page 56]

Internet-Draft DNS Stateful Operations December 2018

 Unfortunately, Nagle’s algorithm and delayed ack, two valuable
 efficiency features, can interact badly with each other when used
 together [NagleDA].

 DSO request messages elicit responses; DSO unidirectional messages
 and DSO response messages do not.

 For DSO request messages, which do elicit responses, Nagle’s
 algorithm and delayed ack work as intended.

 For DSO messages that do not elicit responses, the delayed ack
 mechanism causes the ack to be delayed by 200 ms. The 200 ms delay
 on the ack can in turn cause Nagle’s algorithm to prevent the sender
 from sending any more data for 200 ms until the awaited ack arrives.
 On an enterprise GigE backbone with sub-millisecond round-trip times,
 a 200 ms delay is enormous in comparison.

 When this issues is raised, there are two solutions that are often
 offered, neither of them ideal:

 1. Disable delayed ack. For DSO messages that elicit no response,
 removing delayed ack avoids the needless 200 ms delay, and sends
 back an immediate ack, which tells Nagle’s algorithm that it
 should immediately grant the sender permission to send its next
 packet. Unfortunately, for DSO messages that *do* elicit a
 response, removing delayed ack removes the efficiency gains of
 combining acks with data, and the responder will now send two or
 three packets instead of one.

 2. Disable Nagle’s algorithm. When acks are delayed by the delayed
 ack algorithm, removing Nagle’s algorithm prevents the sender
 from being blocked from sending its next small packet
 immediately. Unfortunately, on a network with a higher round-
 trip time, removing Nagle’s algorithm removes the efficiency
 gains of combining multiple small packets into fewer larger ones,
 with the goal of limiting the number of small packets in flight
 at any one time.

 For DSO messages that elicit a response, delayed ack and Nagle’s
 algorithm do the right thing.

 The problem here is that with DSO messages that elicit no response,
 the TCP implementation is stuck waiting, unsure if a response is
 about to be generated, or whether the TCP implementation should go
 ahead and send an ack and window update.

 The solution is networking APIs that allow the receiver to inform the
 TCP implementation that a received message has been read, processed,

Bellis, et al. Expires June 9, 2019 [Page 57]

Internet-Draft DNS Stateful Operations December 2018

 and no response for this message will be generated. TCP can then
 stop waiting for a response that will never come, and immediately go
 ahead and send an ack and window update.

 For implementations of DSO, disabling delayed ack is NOT RECOMMENDED,
 because of the harm this can do to the network.

 For implementations of DSO, disabling Nagle’s algorithm is NOT
 RECOMMENDED, because of the harm this can do to the network.

 At the time that this document is being prepared for publication, it
 is known that at least one TCP implementation provides the ability
 for the recipient of a TCP message to signal that it is not going to
 send a response, and hence the delayed ack mechanism can stop
 waiting. Implementations on operating systems where this feature is
 available SHOULD make use of it.

Bellis, et al. Expires June 9, 2019 [Page 58]

Internet-Draft DNS Stateful Operations December 2018

10. IANA Considerations

10.1. DSO OPCODE Registration

 The IANA is requested to record the value [TBA1] (tentatively 6) for
 the DSO OPCODE in the DNS OPCODE Registry. DSO stands for DNS
 Stateful Operations.

10.2. DSO RCODE Registration

 The IANA is requested to record the value [TBA2] (tentatively 11) for
 the DSOTYPENI error code in the DNS RCODE Registry. The DSOTYPENI
 error code ("DSO-TYPE Not Implemented") indicates that the receiver
 does implement DNS Stateful Operations, but does not implement the
 specific DSO-TYPE of the primary TLV in the DSO request message.

10.3. DSO Type Code Registry

 The IANA is requested to create the 16-bit DSO Type Code Registry,
 with initial (hexadecimal) values as shown below:

 +-----------+------------------------+-------+----------+-----------+
 | Type | Name | Early | Status | Reference |
 | | | Data | | |
 +-----------+------------------------+-------+----------+-----------+
0000	Reserved	NO	Standard	RFC-TBD
0001	KeepAlive	OK	Standard	RFC-TBD
0002	RetryDelay	NO	Standard	RFC-TBD
0003	EncryptionPadding	NA	Standard	RFC-TBD
0004-003F	Unassigned, reserved	NO		
	for DSO session-			
	management TLVs			
0040-F7FF	Unassigned	NO		
F800-FBFF	Experimental/local use	NO		
FC00-FFFF	Reserved for future	NO		
	expansion			
 +-----------+------------------------+-------+----------+-----------+

 The meanings of the fields are as follows:

 Type: the 16-bit DSO type code

Bellis, et al. Expires June 9, 2019 [Page 59]

Internet-Draft DNS Stateful Operations December 2018

 Name: the human-readable name of the TLV

 Early Data: If OK, this TLV may be sent as early data in a TLS 0-RTT
 ([RFC8446] Section 2.3) initial handshake. If NA, the TLV may
 appear as a secondary TLV in a DSO message that is send as early
 data.

 Status: IETF Document status (or "External" if not documented in an
 IETF document.

 Reference: A stable reference to the document in which this TLV is
 defined.

 DSO Type Code zero is reserved and is not currently intended for
 allocation.

 Registrations of new DSO Type Codes in the "Reserved for DSO session-
 management" range 0004-003F and the "Reserved for future expansion"
 range FC00-FFFF require publication of an IETF Standards Action
 document [RFC8126].

 Any document defining a new TLV which lists a value of "OK" in the
 0-RTT column must include a threat analysis for the use of the TLV in
 the case of TLS 0-RTT. See Section 11.1 for details.

 Requests to register additional new DSO Type Codes in the
 "Unassigned" range 0040-F7FF are to be recorded by IANA after Expert
 Review [RFC8126]. The expert review should validate that the
 requested type code is specified in a way that conforms to this
 specification, and that the intended use for the code would not be
 addressed with an experimental/local assignment.

 DSO Type Codes in the "experimental/local" range F800-FBFF may be
 used as Experimental Use or Private Use values [RFC8126] and may be
 used freely for development purposes, or for other purposes within a
 single site. No attempt is made to prevent multiple sites from using
 the same value in different (and incompatible) ways. There is no
 need for IANA to review such assignments (since IANA does not record
 them) and assignments are not generally useful for broad
 interoperability. It is the responsibility of the sites making use
 of "experimental/local" values to ensure that no conflicts occur
 within the intended scope of use.

11. Security Considerations

 If this mechanism is to be used with DNS over TLS, then these
 messages are subject to the same constraints as any other DNS-over-

Bellis, et al. Expires June 9, 2019 [Page 60]

Internet-Draft DNS Stateful Operations December 2018

 TLS messages and MUST NOT be sent in the clear before the TLS session
 is established.

 The data field of the "Encryption Padding" TLV could be used as a
 covert channel.

 When designing new DSO TLVs, the potential for data in the TLV to be
 used as a tracking identifier should be taken into consideration, and
 should be avoided when not required.

 When used without TLS or similar cryptographic protection, a
 malicious entity maybe able to inject a malicious unidirectional DSO
 Retry Delay Message into the data stream, specifying an unreasonably
 large RETRY DELAY, causing a denial-of-service attack against the
 client.

 The establishment of DSO sessions has an impact on the number of open
 TCP connections on a DNS server. Additional resources may be used on
 the server as a result. However, because the server can limit the
 number of DSO sessions established and can also close existing DSO
 sessions as needed, denial of service or resource exhaustion should
 not be a concern.

11.1. TLS 0-RTT Considerations

 DSO permits zero round-trip operation using TCP Fast Open [RFC7413]
 with TLS 1.3 [RFC8446] 0-RTT to reduce or eliminate round trips in
 session establishment. TCP Fast Open is only permitted in
 combination with TLS 0-RTT. In the rest of this section we refer to
 TLS 1.3 early data in a TLS 0-RTT initial handshake message, whether
 or not it is included in a TCP SYN packet with early data using the
 TCP Fast Open option, as "early data."

 A DSO message may or may not be permitted to be sent as early data.
 The definition for each TLV that can be used as a primary TLV is
 required to state whether or not that TLV is permitted as early data.
 Only response-requiring messages are ever permitted as early data,
 and only clients are permitted to send any DSO message as early data,
 unless there is an implicit session (see Section 5.1).

 For DSO messages that are permitted as early data, a client MAY
 include one or more such messages as early data without having to
 wait for a DSO response to the first DSO request message to confirm
 successful establishment of a DSO session.

 However, unless there is an implicit session, a client MUST NOT send
 DSO unidirectional messages until after a DSO Session has been
 mutually established.

Bellis, et al. Expires June 9, 2019 [Page 61]

Internet-Draft DNS Stateful Operations December 2018

 Similarly, unless there is an implicit session, a server MUST NOT
 send DSO request messages until it has received a response-requiring
 DSO request message from a client and transmitted a successful
 NOERROR response for that request.

 Caution must be taken to ensure that DSO messages sent as early data
 are idempotent, or are otherwise immune to any problems that could be
 result from the inadvertent replay that can occur with zero round-
 trip operation.

 It would be possible to add a TLV that requires the server to do some
 significant work, and send that to the server as initial data in a
 TCP SYN packet. A flood of such packets could be used as a DoS
 attack on the server. None of the TLVs defined here have this
 property.

 If a new TLV is specified that does have this property, that TLV must
 be specified as not permitted in 0-RTT messages. This prevents work
 from being done until a round-trip has occurred from the server to
 the client to verify that the source address of the packet is
 reachable.

 Documents that define new TLVs must state whether each new TLV may be
 sent as early data. Such documents must include a threat analysis in
 the security considerations section for each TLV defined in the
 document that may be sent as early data. This threat analysis should
 be done based on the advice given in [RFC8446] Section 2.3, 8 and
 Appendix E.5.

12. Acknowledgements

 Thanks to Stephane Bortzmeyer, Tim Chown, Ralph Droms, Paul Hoffman,
 Jan Komissar, Edward Lewis, Allison Mankin, Rui Paulo, David
 Schinazi, Manju Shankar Rao, Bernie Volz and Bob Harold for their
 helpful contributions to this document.

13. References

13.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Bellis, et al. Expires June 9, 2019 [Page 62]

Internet-Draft DNS Stateful Operations December 2018

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC7766] Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
 D. Wessels, "DNS Transport over TCP - Implementation
 Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,
 <https://www.rfc-editor.org/info/rfc7766>.

 [RFC7830] Mayrhofer, A., "The EDNS(0) Padding Option", RFC 7830,
 DOI 10.17487/RFC7830, May 2016,
 <https://www.rfc-editor.org/info/rfc7830>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2. Informative References

 [I-D.ietf-dnsop-no-response-issue]
 Andrews, M. and R. Bellis, "A Common Operational Problem
 in DNS Servers - Failure To Respond.", draft-ietf-dnsop-
 no-response-issue-12 (work in progress), November 2018.

Bellis, et al. Expires June 9, 2019 [Page 63]

Internet-Draft DNS Stateful Operations December 2018

 [I-D.ietf-dnssd-mdns-relay]
 Lemon, T. and S. Cheshire, "Multicast DNS Discovery
 Relay", draft-ietf-dnssd-mdns-relay-01 (work in progress),
 July 2018.

 [I-D.ietf-dnssd-push]
 Pusateri, T. and S. Cheshire, "DNS Push Notifications",
 draft-ietf-dnssd-push-16 (work in progress), November
 2018.

 [I-D.ietf-doh-dns-over-https]
 Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", draft-ietf-doh-dns-over-https-14 (work in
 progress), August 2018.

 [I-D.ietf-dprive-padding-policy]
 Mayrhofer, A., "Padding Policy for EDNS(0)", draft-ietf-
 dprive-padding-policy-06 (work in progress), July 2018.

 [NagleDA] Cheshire, S., "TCP Performance problems caused by
 interaction between Nagle’s Algorithm and Delayed ACK",
 May 2005,
 <http://www.stuartcheshire.org/papers/nagledelayedack/>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
 <https://www.rfc-editor.org/info/rfc2132>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
 RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <https://www.rfc-editor.org/info/rfc5382>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

Bellis, et al. Expires June 9, 2019 [Page 64]

Internet-Draft DNS Stateful Operations December 2018

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7828] Wouters, P., Abley, J., Dickinson, S., and R. Bellis, "The
 edns-tcp-keepalive EDNS0 Option", RFC 7828,
 DOI 10.17487/RFC7828, April 2016,
 <https://www.rfc-editor.org/info/rfc7828>.

 [RFC7857] Penno, R., Perreault, S., Boucadair, M., Ed., Sivakumar,
 S., and K. Naito, "Updates to Network Address Translation
 (NAT) Behavioral Requirements", BCP 127, RFC 7857,
 DOI 10.17487/RFC7857, April 2016,
 <https://www.rfc-editor.org/info/rfc7857>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Authors’ Addresses

 Ray Bellis
 Internet Systems Consortium, Inc.
 950 Charter Street
 Redwood City CA 94063
 USA

 Phone: +1 (650) 423-1200
 Email: ray@isc.org

 Stuart Cheshire
 Apple Inc.
 One Apple Park Way
 Cupertino CA 95014
 USA

 Phone: +1 (408) 996-1010
 Email: cheshire@apple.com

Bellis, et al. Expires June 9, 2019 [Page 65]

Internet-Draft DNS Stateful Operations December 2018

 John Dickinson
 Sinodun Internet Technologies
 Magadalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: jad@sinodun.com

 Sara Dickinson
 Sinodun Internet Technologies
 Magadalen Centre
 Oxford Science Park
 Oxford OX4 4GA
 United Kingdom

 Email: sara@sinodun.com

 Ted Lemon
 Nibbhaya Consulting
 P.O. Box 958
 Brattleboro VT 05302-0958
 USA

 Email: mellon@fugue.com

 Tom Pusateri
 Unaffiliated
 Raleigh NC 27608
 USA

 Phone: +1 (919) 867-1330
 Email: pusateri@bangj.com

Bellis, et al. Expires June 9, 2019 [Page 66]

Internet Engineering Task Force S. Cheshire
Internet-Draft Apple Inc.
Intended status: Standards Track March 24, 2019
Expires: September 25, 2019

 Discovery Proxy for Multicast DNS-Based Service Discovery
 draft-ietf-dnssd-hybrid-10

Abstract

 This document specifies a network proxy that uses Multicast DNS to
 automatically populate the wide-area unicast Domain Name System
 namespace with records describing devices and services found on the
 local link.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 25, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Cheshire Expires September 25, 2019 [Page 1]

Internet-Draft Multicast Service Discovery Proxy March 2019

Table of Contents

 1. Introduction . 3
 2. Operational Analogy . 6
 3. Conventions and Terminology Used in this Document 7
 4. Compatibility Considerations 7
 5. Discovery Proxy Operation 8
 5.1. Delegated Subdomain for Service Discovery Records 9
 5.2. Domain Enumeration 11
 5.2.1. Domain Enumeration via Unicast Queries 11
 5.2.2. Domain Enumeration via Multicast Queries 13
 5.3. Delegated Subdomain for LDH Host Names 14
 5.4. Delegated Subdomain for Reverse Mapping 16
 5.5. Data Translation . 18
 5.5.1. DNS TTL limiting 18
 5.5.2. Suppressing Unusable Records 19
 5.5.3. NSEC and NSEC3 queries 20
 5.5.4. No Text Encoding Translation 20
 5.5.5. Application-Specific Data Translation 21
 5.6. Answer Aggregation 23
 6. Administrative DNS Records 27
 6.1. DNS SOA (Start of Authority) Record 27
 6.2. DNS NS Records . 28
 6.3. DNS Delegation Records 28
 6.4. DNS SRV Records . 29
 7. DNSSEC Considerations . 30
 7.1. On-line signing only 30
 7.2. NSEC and NSEC3 Records 30
 8. IPv6 Considerations . 31
 9. Security Considerations 32
 9.1. Authenticity . 32
 9.2. Privacy . 32
 9.3. Denial of Service . 32
 10. IANA Considerations . 33
 11. Acknowledgments . 33
 12. References . 34
 12.1. Normative References 34
 12.2. Informative References 35
 Appendix A. Implementation Status 38
 A.1. Already Implemented and Deployed 38
 A.2. Already Implemented 38
 A.3. Partially Implemented 39
 Author’s Address . 39

Cheshire Expires September 25, 2019 [Page 2]

Internet-Draft Multicast Service Discovery Proxy March 2019

1. Introduction

 Multicast DNS [RFC6762] and its companion technology DNS-based
 Service Discovery [RFC6763] were created to provide IP networking
 with the ease-of-use and autoconfiguration for which AppleTalk was
 well known [RFC6760] [ZC] [Roadmap].

 For a small home network consisting of just a single link (or a few
 physical links bridged together to appear as a single logical link
 from the point of view of IP) Multicast DNS [RFC6762] is sufficient
 for client devices to look up the ".local" host names of peers on the
 same home network, and to use Multicast DNS-Based Service Discovery
 (DNS-SD) [RFC6763] to discover services offered on that home network.

 For a larger network consisting of multiple links that are
 interconnected using IP-layer routing instead of link-layer bridging,
 link-local Multicast DNS alone is insufficient because link-local
 Multicast DNS packets, by design, are not propagated onto other
 links.

 Using link-local multicast packets for Multicast DNS was a conscious
 design choice [RFC6762]. Even when limited to a single link,
 multicast traffic is still generally considered to be more expensive
 than unicast, because multicast traffic impacts many devices, instead
 of just a single recipient. In addition, with some technologies like
 Wi-Fi [IEEE-11], multicast traffic is inherently less efficient and
 less reliable than unicast, because Wi-Fi multicast traffic is sent
 at lower data rates, and is not acknowledged [Mcast]. Increasing the
 amount of expensive multicast traffic by flooding it across multiple
 links would make the traffic load even worse.

 Partitioning the network into many small links curtails the spread of
 expensive multicast traffic, but limits the discoverability of
 services. At the opposite end of the spectrum, using a very large
 local link with thousands of hosts enables better service discovery,
 but at the cost of larger amounts of multicast traffic.

 Performing DNS-Based Service Discovery using purely Unicast DNS is
 more efficient and doesn’t require large multicast domains, but does
 require that the relevant data be available in the Unicast DNS
 namespace. The Unicast DNS namespace in question could fall within a
 traditionally assigned globally unique domain name, or could use a
 private local unicast domain name such as ".home.arpa" [RFC8375].

 In the DNS-SD specification [RFC6763], Section 10 ("Populating the
 DNS with Information") discusses various possible ways that a
 service’s PTR, SRV, TXT and address records can make their way into
 the Unicast DNS namespace, including manual zone file configuration

Cheshire Expires September 25, 2019 [Page 3]

Internet-Draft Multicast Service Discovery Proxy March 2019

 [RFC1034] [RFC1035], DNS Update [RFC2136] [RFC3007] and proxies of
 various kinds.

 Making the relevant data available in the Unicast DNS namespace by
 manual DNS configuration is one option. This option has been used
 for many years at IETF meetings to advertise the IETF Terminal Room
 printer. Details of this example are given in Appendix A of the
 Roadmap document [Roadmap]. However, this manual DNS configuration
 is labor intensive, error prone, and requires a reasonable degree of
 DNS expertise.

 Populating the Unicast DNS namespace via DNS Update by the devices
 offering the services themselves is another option [RegProt]
 [DNS-UL]. However, this requires configuration of DNS Update keys on
 those devices, which has proven onerous and impractical for simple
 devices like printers and network cameras.

 Hence, to facilitate efficient and reliable DNS-Based Service
 Discovery, a compromise is needed that combines the ease-of-use of
 Multicast DNS with the efficiency and scalability of Unicast DNS.

 This document specifies a type of proxy called a "Discovery Proxy"
 that uses Multicast DNS [RFC6762] to discover Multicast DNS records
 on its local link, and makes corresponding DNS records visible in the
 Unicast DNS namespace.

 In principle, similar mechanisms could be defined using other local
 service discovery protocols, to discover local information and then
 make corresponding DNS records visible in the Unicast DNS namespace.
 Such mechanisms for other local service discovery protocols could be
 addressed in future documents.

 The design of the Discovery Proxy is guided by the previously
 published requirements document [RFC7558].

 In simple terms, a descriptive DNS name is chosen for each link in an
 organization. Using a DNS NS record, responsibility for that DNS
 name is delegated to a Discovery Proxy physically attached to that
 link. Now, when a remote client issues a unicast query for a name
 falling within the delegated subdomain, the normal DNS delegation
 mechanism results in the unicast query arriving at the Discovery
 Proxy, since it has been declared authoritative for those names.
 Now, instead of consulting a textual zone file on disk to discover
 the answer to the query, as a traditional DNS server would, a
 Discovery Proxy consults its local link, using Multicast DNS, to find
 the answer to the question.

Cheshire Expires September 25, 2019 [Page 4]

Internet-Draft Multicast Service Discovery Proxy March 2019

 For fault tolerance reasons there may be more than one Discovery
 Proxy serving a given link.

 Note that the Discovery Proxy uses a "pull" model. The local link is
 not queried using Multicast DNS until some remote client has
 requested that data. In the idle state, in the absence of client
 requests, the Discovery Proxy sends no packets and imposes no burden
 on the network. It operates purely "on demand".

 An alternative proposal that has been discussed is a proxy that
 performs DNS updates to a remote DNS server on behalf of the
 Multicast DNS devices on the local network. The difficulty with this
 is is that Multicast DNS devices do not routinely announce their
 records on the network. Generally they remain silent until queried.
 This means that the complete set of Multicast DNS records in use on a
 link can only be discovered by active querying, not by passive
 listening. Because of this, a proxy can only know what names exist
 on a link by issuing queries for them, and since it would be
 impractical to issue queries for every possible name just to find out
 which names exist and which do not, there is no reasonable way for a
 proxy to programmatically learn all the answers it would need to push
 up to the remote DNS server using DNS Update. Even if such a
 mechanism were possible, it would risk generating high load on the
 network continuously, even when there are no clients with any
 interest in that data.

 Hence, having a model where the query comes to the Discovery Proxy is
 much more efficient than a model where the Discovery Proxy pushes the
 answers out to some other remote DNS server.

 A client seeking to discover services and other information achieves
 this by sending traditional DNS queries to the Discovery Proxy, or by
 sending DNS Push Notification subscription requests [Push].

 How a client discovers what domain name(s) to use for its service
 discovery queries, (and consequently what Discovery Proxy or Proxies
 to use) is described in Section 5.2.

 The diagram below illustrates a network topology using a Discovery
 Proxy to provide discovery service to a remote client.

 +--------+ Unicast +-----------+ +---------+ +---------+
 | Remote | Communcation | Discovery | | Network | | Network |
 | Client |---- . . . -----| Proxy | | Printer | | Camera |
 +--------+ +-----------+ +---------+ +---------+
 | | |
 --
 Multicast-capable LAN segment (e.g., Ethernet)

Cheshire Expires September 25, 2019 [Page 5]

Internet-Draft Multicast Service Discovery Proxy March 2019

2. Operational Analogy

 A Discovery Proxy does not operate as a multicast relay, or multicast
 forwarder. There is no danger of multicast forwarding loops that
 result in traffic storms, because no multicast packets are forwarded.
 A Discovery Proxy operates as a *proxy* for a remote client,
 performing queries on its behalf and reporting the results back.

 A reasonable analogy is making a telephone call to a colleague at
 your workplace and saying, "I’m out of the office right now. Would
 you mind bringing up a printer browser window and telling me the
 names of the printers you see?" That entails no risk of a forwarding
 loop causing a traffic storm, because no multicast packets are sent
 over the telephone call.

 A similar analogy, instead of enlisting another human being to
 initiate the service discovery operation on your behalf, is to log
 into your own desktop work computer using screen sharing, and then
 run the printer browser yourself to see the list of printers. Or log
 in using ssh and type "dns-sd -B _ipp._tcp" and observe the list of
 discovered printer names. In neither case is there any risk of a
 forwarding loop causing a traffic storm, because no multicast packets
 are being sent over the screen sharing or ssh connection.

 The Discovery Proxy provides another way of performing remote
 queries, except using a different protocol instead of screen sharing
 or ssh.

 When the Discovery Proxy software performs Multicast DNS operations,
 the exact same Multicast DNS caching mechanisms are applied as when
 any other client software on that Discovery Proxy device performs
 Multicast DNS operations, whether that be running a printer browser
 client locally, or a remote user running the printer browser client
 via a screen sharing connection, or a remote user logged in via ssh
 running a command-line tool like "dns-sd", or a remote user sending
 DNS requests that cause a Discovery Proxy to perform discovery
 operations on its behalf.

Cheshire Expires September 25, 2019 [Page 6]

Internet-Draft Multicast Service Discovery Proxy March 2019

3. Conventions and Terminology Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described
 in "Key words for use in RFCs to Indicate Requirement Levels",
 when, and only when, they appear in all capitals, as shown here
 [RFC2119] [RFC8174].

 The Discovery Proxy builds on Multicast DNS, which works between
 hosts on the same link. For the purposes of this document a set of
 hosts is considered to be "on the same link" if:

 o when any host from that set sends a packet to any other host in
 that set, using unicast, multicast, or broadcast, the entire link-
 layer packet payload arrives unmodified, and

 o a broadcast sent over that link, by any host from that set of
 hosts, can be received by every other host in that set.

 The link-layer *header* may be modified, such as in Token Ring Source
 Routing [IEEE-5], but not the link-layer *payload*. In particular,
 if any device forwarding a packet modifies any part of the IP header
 or IP payload then the packet is no longer considered to be on the
 same link. This means that the packet may pass through devices such
 as repeaters, bridges, hubs or switches and still be considered to be
 on the same link for the purpose of this document, but not through a
 device such as an IP router that decrements the IP TTL or otherwise
 modifies the IP header.

4. Compatibility Considerations

 No changes to existing devices are required to work with a Discovery
 Proxy.

 Existing devices that advertise services using Multicast DNS work
 with Discovery Proxy.

 Existing clients that support DNS-Based Service Discovery over
 Unicast DNS work with Discovery Proxy. Service Discovery over
 Unicast DNS was introduced in Mac OS X 10.4 in April 2005, as is
 included in Apple products introduced since then, including iPhone
 and iPad, as well as products from other vendors, such as Microsoft
 Windows 10.

 An overview of the larger collection of related Service Discovery
 technologies, and how Discovery Proxy relates to those, is given in
 the Service Discovery Road Map document [Roadmap].

Cheshire Expires September 25, 2019 [Page 7]

Internet-Draft Multicast Service Discovery Proxy March 2019

5. Discovery Proxy Operation

 In a typical configuration, a Discovery Proxy is configured to be
 authoritative [RFC1034] [RFC1035] for four or more DNS subdomains,
 and authority for these subdomains is delegated to it via NS records:

 A DNS subdomain for service discovery records.
 This subdomain name may contain rich text, including spaces and
 other punctuation. This is because this subdomain name is used
 only in graphical user interfaces, where rich text is appropriate.

 A DNS subdomain for host name records.
 This subdomain name SHOULD be limited to letters, digits and
 hyphens, to facilitate convenient use of host names in command-
 line interfaces.

 One or more DNS subdomains for IPv4 Reverse Mapping records.
 These subdomains will have names that ends in "in-addr.arpa."

 One or more DNS subdomains for IPv6 Reverse Mapping records.
 These subdomains will have names that ends in "ip6.arpa."

 In an enterprise network the naming and delegation of these
 subdomains is typically performed by conscious action of the network
 administrator. In a home network naming and delegation would
 typically be performed using some automatic configuration mechanism
 such as HNCP [RFC7788].

 These three varieties of delegated subdomains (service discovery,
 host names, and reverse mapping) are described below in Section 5.1,
 Section 5.3 and Section 5.4.

 How a client discovers where to issue its service discovery queries
 is described below in Section 5.2.

Cheshire Expires September 25, 2019 [Page 8]

Internet-Draft Multicast Service Discovery Proxy March 2019

5.1. Delegated Subdomain for Service Discovery Records

 In its simplest form, each link in an organization is assigned a
 unique Unicast DNS domain name, such as "Building 1.example.com" or
 "2nd Floor.Building 3.example.com". Grouping multiple links under a
 single Unicast DNS domain name is to be specified in a future
 companion document, but for the purposes of this document, assume
 that each link has its own unique Unicast DNS domain name. In a
 graphical user interface these names are not displayed as strings
 with dots as shown above, but something more akin to a typical file
 browser graphical user interface (which is harder to illustrate in a
 text-only document) showing folders, subfolders and files in a file
 system.

 +---------------+--------------+-------------+-------------------+
 | *example.com* | Building 1 | 1st Floor | Alice’s printer |
 | | Building 2 | *2nd Floor* | Bob’s printer |
 | | *Building 3* | 3rd Floor | Charlie’s printer |
 | | Building 4 | 4th Floor | |
 | | Building 5 | | |
 | | Building 6 | | |
 +---------------+--------------+-------------+-------------------+

 Figure 1: Illustrative GUI

 Each named link in an organization has one or more Discovery Proxies
 which serve it. This Discovery Proxy function for each link could be
 performed by a device like a router or switch that is physically
 attached to that link. In the parent domain, NS records are used to
 delegate ownership of each defined link name
 (e.g., "Building 1.example.com") to the one or more Discovery Proxies
 that serve the named link. In other words, the Discovery Proxies are
 the authoritative name servers for that subdomain. As in the rest of
 DNS-Based Service Discovery, all names are represented as-is using
 plain UTF-8 encoding, and, as described in Section 5.5.4, no text
 encoding translations are performed.

 With appropriate VLAN configuration [IEEE-1Q] a single Discovery
 Proxy device could have a logical presence on many links, and serve
 as the Discovery Proxy for all those links. In such a configuration
 the Discovery Proxy device would have a single physical Ethernet
 [IEEE-3] port, configured as a VLAN trunk port, which would appear to
 software on that device as multiple virtual Ethernet interfaces, one
 connected to each of the VLAN links.

 As an alternative to using VLAN technology, using a Multicast DNS
 Discovery Relay [Relay] is another way that a Discovery Proxy can
 have a ’virtual’ presence on a remote link.

Cheshire Expires September 25, 2019 [Page 9]

Internet-Draft Multicast Service Discovery Proxy March 2019

 When a DNS-SD client issues a Unicast DNS query to discover services
 in a particular Unicast DNS subdomain
 (e.g., "_printer._tcp.Building 1.example.com. PTR ?") the normal DNS
 delegation mechanism results in that query being forwarded until it
 reaches the delegated authoritative name server for that subdomain,
 namely the Discovery Proxy on the link in question. Like a
 conventional Unicast DNS server, a Discovery Proxy implements the
 usual Unicast DNS protocol [RFC1034] [RFC1035] over UDP and TCP.
 However, unlike a conventional Unicast DNS server that generates
 answers from the data in its manually-configured zone file, a
 Discovery Proxy generates answers using Multicast DNS. A Discovery
 Proxy does this by consulting its Multicast DNS cache and/or issuing
 Multicast DNS queries, as appropriate, according to the usual
 protocol rules of Multicast DNS [RFC6762], for the corresponding
 Multicast DNS name, type and class, with the delegated zone part of
 the name replaced with ".local" (e.g., in this case,
 "_printer._tcp.local. PTR ?"). Then, from the received Multicast DNS
 data, the Discovery Proxy synthesizes the appropriate Unicast DNS
 response, with the ".local" top-level label replaced with with the
 name of the delegated zone. How long the Discovery Proxy should wait
 to accumulate Multicast DNS responses before sending its unicast
 reply is described below in Section 5.6.

 The existing Multicast DNS caching mechanism is used to minimize
 unnecessary Multicast DNS queries on the wire. The Discovery Proxy
 is acting as a client of the underlying Multicast DNS subsystem, and
 benefits from the same caching and efficiency measures as any other
 client using that subsystem.

 Note that the contents of the delegated zone, generated as it is by
 performing ".local" Multicast DNS queries, mirrors the records
 available on the local link via Multicast DNS very closely, but not
 precisely. There is not a full bidirectional equivalence between the
 two. Certain records that are available via Multicast DNS may not
 have equivalents in the delegated zone, possibly because they are
 invalid or not relevant in the delegated zone, or because they are
 being supressed because they are unusable outside the local link (see
 Section 5.5.2). Conversely, certain records that appear in the
 delegated zone may not have corresponding records available on the
 local link via Multicast DNS. In particular there are certain
 administrative SRV records (see Section 6) that logically fall within
 the delegated zone, but semantically represent metadata *about* the
 zone rather than records *within* the zone, and consequently these
 administrative records in the delegated zone do not have any
 corresponding counterparts in the Multicast DNS namespace of the
 local link.

Cheshire Expires September 25, 2019 [Page 10]

Internet-Draft Multicast Service Discovery Proxy March 2019

5.2. Domain Enumeration

 A DNS-SD client performs Domain Enumeration [RFC6763] via certain PTR
 queries, using both unicast and multicast. If it receives a Domain
 Name configuration via DHCP option 15 [RFC2132], then it issues
 unicast queries using this domain. It issues unicast queries using
 names derived from its IPv4 subnet address(es) and IPv6 prefix(es).
 These are described below in Section 5.2.1. It also issues multicast
 Domain Enumeration queries in the "local" domain [RFC6762]. These
 are described below in Section 5.2.2. The results of all the Domain
 Enumeration queries are combined for Service Discovery purposes.

5.2.1. Domain Enumeration via Unicast Queries

 The administrator creates Domain Enumeration PTR records [RFC6763] to
 inform clients of available service discovery domains. Two varieties
 of such Domain Enumeration PTR records exist; those with names
 derived from the domain name communicated to the clients via DHCP,
 and those with names derived from IPv4 subnet address(es) and IPv6
 prefix(es) in use by the clients. Below is an example showing the
 name-based variety:

 b._dns-sd._udp.example.com. PTR Building 1.example.com.
 PTR Building 2.example.com.
 PTR Building 3.example.com.
 PTR Building 4.example.com.

 db._dns-sd._udp.example.com. PTR Building 1.example.com.

 lb._dns-sd._udp.example.com. PTR Building 1.example.com.

 The meaning of these records is defined in the DNS Service Discovery
 specification [RFC6763] but for convenience is repeated here. The
 "b" ("browse") records tell the client device the list of browsing
 domains to display for the user to select from. The "db" ("default
 browse") record tells the client device which domain in that list
 should be selected by default. The "db" domain MUST be one of the
 domains in the "b" list; if not then no domain is selected by
 default. The "lb" ("legacy browse") record tells the client device
 which domain to automatically browse on behalf of applications that
 don’t implement UI for multi-domain browsing (which is most of them,
 at the time of writing). The "lb" domain is often the same as the
 "db" domain, or sometimes the "db" domain plus one or more others
 that should be included in the list of automatic browsing domains for
 legacy clients.

 Note that in the example above, for clarity, space characters in
 names are shown as actual spaces. If this data is manually entered

Cheshire Expires September 25, 2019 [Page 11]

Internet-Draft Multicast Service Discovery Proxy March 2019

 into a textual zone file for authoritative server software such as
 BIND, care must be taken because the space character is used as a
 field separator, and other characters like dot (’.’), semicolon
 (’;’), dollar (’$’), backslash (’\’), etc., also have special
 meaning. These characters have to be escaped when entered into a
 textual zone file, following the rules in Section 5.1 of the DNS
 specification [RFC1035]. For example, a literal space in a name is
 represented in the textual zone file using ’\032’, so "Building
 1.example.com." is entered as "Building\0321.example.com."

 DNS responses are limited to a maximum size of 65535 bytes. This
 limits the maximum number of domains that can be returned for a
 Domain Enumeration query, as follows:

 A DNS response header is 12 bytes. That’s typically followed by a
 single qname (up to 256 bytes) plus qtype (2 bytes) and qclass
 (2 bytes), leaving 65275 for the Answer Section.

 An Answer Section Resource Record consists of:

 o Owner name, encoded as a two-byte compression pointer
 o Two-byte rrtype (type PTR)
 o Two-byte rrclass (class IN)
 o Four-byte ttl
 o Two-byte rdlength
 o rdata (domain name, up to 256 bytes)

 This means that each Resource Record in the Answer Section can take
 up to 268 bytes total, which means that the Answer Section can
 contain, in the worst case, no more than 243 domains.

 In a more typical scenario, where the domain names are not all
 maximum-sized names, and there is some similarity between names so
 that reasonable name compression is possible, each Answer
 Section Resource Record may average 140 bytes, which means that the
 Answer Section can contain up to 466 domains.

 It is anticipated that this should be sufficient for even a large
 corporate network or university campus.

Cheshire Expires September 25, 2019 [Page 12]

Internet-Draft Multicast Service Discovery Proxy March 2019

5.2.2. Domain Enumeration via Multicast Queries

 In the case where Discovery Proxy functionality is widely deployed
 within an enterprise (either by having a Discovery Proxy on each
 link, or by having a Discovery Proxy with a remote ’virtual’ presence
 on each link using VLANs or Multicast DNS Discovery Relays [Relay])
 this offers an additional way to provide Domain Enumeration data for
 clients.

 A Discovery Proxy can be configured to generate Multicast DNS
 responses for the following Multicast DNS Domain Enumeration queries
 issued by clients:

 b._dns-sd._udp.local. PTR ?
 db._dns-sd._udp.local. PTR ?
 lb._dns-sd._udp.local. PTR ?

 This provides the ability for Discovery Proxies to indicate
 recommended browsing domains to DNS-SD clients on a per-link
 granularity. In some enterprises it may be preferable to provide
 this per-link configuration data in the form of Discovery Proxy
 configuration, rather than populating the Unicast DNS servers with
 the same data (in the "ip6.arpa" or "in-addr.arpa" domains).

 Regardless of how the network operator chooses to provide this
 configuration data, clients will perform Domain Enumeration via both
 unicast and multicast queries, and then combine the results of these
 queries.

Cheshire Expires September 25, 2019 [Page 13]

Internet-Draft Multicast Service Discovery Proxy March 2019

5.3. Delegated Subdomain for LDH Host Names

 DNS-SD service instance names and domains are allowed to contain
 arbitrary Net-Unicode text [RFC5198], encoded as precomposed UTF-8
 [RFC3629].

 Users typically interact with service discovery software by viewing a
 list of discovered service instance names on a display, and selecting
 one of them by pointing, touching, or clicking. Similarly, in
 software that provides a multi-domain DNS-SD user interface, users
 view a list of offered domains on the display and select one of them
 by pointing, touching, or clicking. To use a service, users don’t
 have to remember domain or instance names, or type them; users just
 have to be able to recognize what they see on the display and touch
 or click on the thing they want.

 In contrast, host names are often remembered and typed. Also, host
 names have historically been used in command-line interfaces where
 spaces can be inconvenient. For this reason, host names have
 traditionally been restricted to letters, digits and hyphens (LDH),
 with no spaces or other punctuation.

 While we do want to allow rich text for DNS-SD service instance names
 and domains, it is advisable, for maximum compatibility with existing
 usage, to restrict host names to the traditional letter-digit-hyphen
 rules. This means that while a service name
 "My Printer._ipp._tcp.Building 1.example.com" is acceptable and
 desirable (it is displayed in a graphical user interface as an
 instance called "My Printer" in the domain "Building 1" at
 "example.com"), a host name "My-Printer.Building 1.example.com" is
 less desirable (because of the space in "Building 1").

 To accomodate this difference in allowable characters, a Discovery
 Proxy SHOULD support having two separate subdomains delegated to it
 for each link it serves, one whose name is allowed to contain
 arbitrary Net-Unicode text [RFC5198], and a second more constrained
 subdomain whose name is restricted to contain only letters, digits,
 and hyphens, to be used for host name records (names of ’A’ and
 ’AAAA’ address records). The restricted names may be any valid name
 consisting of only letters, digits, and hyphens, including Punycode-
 encoded names [RFC3492].

Cheshire Expires September 25, 2019 [Page 14]

Internet-Draft Multicast Service Discovery Proxy March 2019

 For example, a Discovery Proxy could have the two subdomains
 "Building 1.example.com" and "bldg1.example.com" delegated to it.
 The Discovery Proxy would then translate these two Multicast DNS
 records:

 My Printer._ipp._tcp.local. SRV 0 0 631 prnt.local.
 prnt.local. A 203.0.113.2

 into Unicast DNS records as follows:

 My Printer._ipp._tcp.Building 1.example.com.
 SRV 0 0 631 prnt.bldg1.example.com.
 prnt.bldg1.example.com. A 203.0.113.2

 Note that the SRV record name is translated using the rich-text
 domain name ("Building 1.example.com") and the address record name is
 translated using the LDH domain ("bldg1.example.com").

 A Discovery Proxy MAY support only a single rich text Net-Unicode
 domain, and use that domain for all records, including ’A’ and ’AAAA’
 address records, but implementers choosing this option should be
 aware that this choice may produce host names that are awkward to use
 in command-line environments. Whether this is an issue depends on
 whether users in the target environment are expected to be using
 command-line interfaces.

 A Discovery Proxy MUST NOT be restricted to support only a letter-
 digit-hyphen subdomain, because that results in an unnecessarily poor
 user experience.

 As described above in Section 5.2.1, for clarity, space characters in
 names are shown as actual spaces. If this data were to be manually
 entered into a textual zone file (which it isn’t) then spaces would
 need to be represented using ’\032’, so
 "My Printer._ipp._tcp.Building 1.example.com." would become
 "My\032Printer._ipp._tcp.Building\0321.example.com."
 Note that the ’\032’ representation does not appear in the network
 packets sent over the air. In the wire format of DNS messages,
 spaces are sent as spaces, not as ’\032’, and likewise, in a
 graphical user interface at the client device, spaces are shown as
 spaces, not as ’\032’.

Cheshire Expires September 25, 2019 [Page 15]

Internet-Draft Multicast Service Discovery Proxy March 2019

5.4. Delegated Subdomain for Reverse Mapping

 A Discovery Proxy can facilitate easier management of reverse mapping
 domains, particularly for IPv6 addresses where manual management may
 be more onerous than it is for IPv4 addresses.

 To achieve this, in the parent domain, NS records are used to
 delegate ownership of the appropriate reverse mapping domain to the
 Discovery Proxy. In other words, the Discovery Proxy becomes the
 authoritative name server for the reverse mapping domain. For fault
 tolerance reasons there may be more than one Discovery Proxy serving
 a given link.

 If a given link is using the IPv4 subnet 203.0.113/24,
 then the domain "113.0.203.in-addr.arpa"
 is delegated to the Discovery Proxy for that link.

 For example, if a given link is using the
 IPv6 prefix 2001:0DB8:1234:5678/64,
 then the domain "8.7.6.5.4.3.2.1.8.b.d.0.1.0.0.2.ip6.arpa"
 is delegated to the Discovery Proxy for that link.

 When a reverse mapping query arrives at the Discovery Proxy, it
 issues the identical query on its local link as a Multicast DNS
 query. The mechanism to force an apparently unicast name to be
 resolved using link-local Multicast DNS varies depending on the API
 set being used. For example, in the "dns_sd.h" APIs
 (available on macOS, iOS, Bonjour for Windows, Linux and Android),
 using kDNSServiceFlagsForceMulticast indicates that the
 DNSServiceQueryRecord() call should perform the query using Multicast
 DNS. Other APIs sets have different ways of forcing multicast
 queries. When the host owning that IPv4 or IPv6 address responds
 with a name of the form "something.local", the Discovery Proxy
 rewrites that to use its configured LDH host name domain instead of
 "local", and returns the response to the caller.

Cheshire Expires September 25, 2019 [Page 16]

Internet-Draft Multicast Service Discovery Proxy March 2019

 For example, a Discovery Proxy with the two subdomains
 "113.0.203.in-addr.arpa" and "bldg1.example.com" delegated to it
 would translate this Multicast DNS record:

 2.113.0.203.in-addr.arpa. PTR prnt.local.

 into this Unicast DNS response:

 2.113.0.203.in-addr.arpa. PTR prnt.bldg1.example.com.

 Subsequent queries for the prnt.bldg1.example.com address record,
 falling as it does within the bldg1.example.com domain, which is
 delegated to the Discovery Proxy, will arrive at the Discovery Proxy,
 where they are answered by issuing Multicast DNS queries and using
 the received Multicast DNS answers to synthesize Unicast DNS
 responses, as described above.

 Note that this design assumes that all addresses on a given IPv4
 subnet or IPv6 prefix are mapped to hostnames using the Discovery
 Proxy mechanism. It would be possible to implement a Discovery Proxy
 that can be configured so that some address-to-name mappings are
 performed using Multicast DNS on the local link, while other address-
 to-name mappings within the same IPv4 subnet or IPv6 prefix are
 configured manually.

Cheshire Expires September 25, 2019 [Page 17]

Internet-Draft Multicast Service Discovery Proxy March 2019

5.5. Data Translation

 Generating the appropriate Multicast DNS queries involves,
 at the very least, translating from the configured DNS domain
 (e.g., "Building 1.example.com") on the Unicast DNS side to "local"
 on the Multicast DNS side.

 Generating the appropriate Unicast DNS responses involves translating
 back from "local" to the appropriate configured DNS Unicast domain.

 Other beneficial translation and filtering operations are described
 below.

5.5.1. DNS TTL limiting

 For efficiency, Multicast DNS typically uses moderately high DNS TTL
 values. For example, the typical TTL on DNS-SD PTR records is 75
 minutes. What makes these moderately high TTLs acceptable is the
 cache coherency mechanisms built in to the Multicast DNS protocol
 which protect against stale data persisting for too long. When a
 service shuts down gracefully, it sends goodbye packets to remove its
 PTR records immediately from neighboring caches. If a service shuts
 down abruptly without sending goodbye packets, the Passive
 Observation Of Failures (POOF) mechanism described in Section 10.5 of
 the Multicast DNS specification [RFC6762] comes into play to purge
 the cache of stale data.

 A traditional Unicast DNS client on a distant remote link does not
 get to participate in these Multicast DNS cache coherency mechanisms
 on the local link. For traditional Unicast DNS queries (those
 received without using Long-Lived Query [LLQ] or DNS Push
 Notification subscriptions [Push]) the DNS TTLs reported in the
 resulting Unicast DNS response MUST be capped to be no more than ten
 seconds.

 Similarly, for negative responses, the negative caching TTL indicated
 in the SOA record [RFC2308] should also be ten seconds (Section 6.1).

 This value of ten seconds is chosen based on user-experience
 considerations.

 For negative caching, suppose a user is attempting to access a remote
 device (e.g., a printer), and they are unsuccessful because that
 device is powered off. Suppose they then place a telephone call and
 ask for the device to be powered on. We want the device to become
 available to the user within a reasonable time period. It is
 reasonable to expect it to take on the order of ten seconds for a
 simple device with a simple embedded operating system to power on.

Cheshire Expires September 25, 2019 [Page 18]

Internet-Draft Multicast Service Discovery Proxy March 2019

 Once the device is powered on and has announced its presence on the
 network via Multicast DNS, we would like it to take no more than a
 further ten seconds for stale negative cache entries to expire from
 Unicast DNS caches, making the device available to the user desiring
 to access it.

 Similar reasoning applies to capping positive TTLs at ten seconds.
 In the event of a device moving location, getting a new DHCP address,
 or other renumbering events, we would like the updated information to
 be available to remote clients in a relatively timely fashion.

 However, network administrators should be aware that many recursive
 (caching) DNS servers by default are configured to impose a minimum
 TTL of 30 seconds. If stale data appears to be persisting in the
 network to the extent that it adversely impacts user experience,
 network administrators are advised to check the configuration of
 their recursive DNS servers.

 For received Unicast DNS queries that use LLQ [LLQ] or DNS Push
 Notifications [Push], the Multicast DNS record’s TTL SHOULD be
 returned unmodified, because the Push Notification channel exists to
 inform the remote client as records come and go. For further details
 about Long-Lived Queries, and its newer replacement, DNS Push
 Notifications, see Section 5.6.

5.5.2. Suppressing Unusable Records

 A Discovery Proxy SHOULD offer a configurable option, enabled by
 default, to suppress Unicast DNS answers for records that are not
 useful outside the local link. When the option to suppress unusable
 records is enabled:

 o DNS A and AAAA records for IPv4 link-local addresses [RFC3927] and
 IPv6 link-local addresses [RFC4862] SHOULD be suppressed.

 o Similarly, for sites that have multiple private address realms
 [RFC1918], in cases where the Discovery Proxy can determine that
 the querying client is in a different address realm, private
 addresses SHOULD NOT be communicated to that client.

 o IPv6 Unique Local Addresses [RFC4193] SHOULD be suppressed in
 cases where the Discovery Proxy can determine that the querying
 client is in a different IPv6 address realm.

 o By the same logic, DNS SRV records that reference target host
 names that have no addresses usable by the requester should be
 suppressed, and likewise, DNS PTR records that point to unusable
 SRV records should be similarly be suppressed.

Cheshire Expires September 25, 2019 [Page 19]

Internet-Draft Multicast Service Discovery Proxy March 2019

5.5.3. NSEC and NSEC3 queries

 Multicast DNS devices do not routinely announce their records on the
 network. Generally they remain silent until queried. This means
 that the complete set of Multicast DNS records in use on a link can
 only be discovered by active querying, not by passive listening.
 Because of this, a Discovery Proxy can only know what names exist on
 a link by issuing queries for them, and since it would be impractical
 to issue queries for every possible name just to find out which names
 exist and which do not, a Discovery Proxy cannot programmatically
 generate the traditional NSEC [RFC4034] and NSEC3 [RFC5155] records
 which assert the nonexistence of a large range of names.

 When queried for an NSEC or NSEC3 record type, the Discovery Proxy
 issues a qtype "ANY" query using Multicast DNS on the local link, and
 then generates an NSEC or NSEC3 response with a Type Bit Map
 signifying which record types do and do not exist for just the
 specific name queried, and no other names.

 Multicast DNS NSEC records received on the local link MUST NOT be
 forwarded unmodified to a unicast querier, because there are slight
 differences in the NSEC record data. In particular, Multicast DNS
 NSEC records do not have the NSEC bit set in the Type Bit Map,
 whereas conventional Unicast DNS NSEC records do have the NSEC bit
 set.

5.5.4. No Text Encoding Translation

 A Discovery Proxy does no translation between text encodings.
 Specifically, a Discovery Proxy does no translation between Punycode
 encoding [RFC3492] and UTF-8 encoding [RFC3629], either in the owner
 name of DNS records, or anywhere in the RDATA of DNS records (such as
 the RDATA of PTR records, SRV records, NS records, or other record
 types like TXT, where it is ambiguous whether the RDATA may contain
 DNS names). All bytes are treated as-is, with no attempt at text
 encoding translation. A client implementing DNS-based Service
 Discovery [RFC6763] will use UTF-8 encoding for its service discovery
 queries, which the Discovery Proxy passes through without any text
 encoding translation to the Multicast DNS subsystem. Responses from
 the Multicast DNS subsystem are similarly returned, without any text
 encoding translation, back to the requesting client.

Cheshire Expires September 25, 2019 [Page 20]

Internet-Draft Multicast Service Discovery Proxy March 2019

5.5.5. Application-Specific Data Translation

 There may be cases where Application-Specific Data Translation is
 appropriate.

 For example, AirPrint printers tend to advertise fairly verbose
 information about their capabilities in their DNS-SD TXT record. TXT
 record sizes in the range 500-1000 bytes are not uncommon. This
 information is a legacy from LPR printing, because LPR does not have
 in-band capability negotiation, so all of this information is
 conveyed using the DNS-SD TXT record instead. IPP printing does have
 in-band capability negotiation, but for convenience printers tend to
 include the same capability information in their IPP DNS-SD TXT
 records as well. For local mDNS use this extra TXT record
 information is inefficient, but not fatal. However, when a Discovery
 Proxy aggregates data from multiple printers on a link, and sends it
 via unicast (via UDP or TCP) this amount of unnecessary TXT record
 information can result in large responses. A DNS reply over TCP
 carrying information about 70 printers with an average of 700 bytes
 per printer adds up to about 50 kilobytes of data. Therefore, a
 Discovery Proxy that is aware of the specifics of an application-
 layer protocol such as AirPrint (which uses IPP) can elide
 unnecessary key/value pairs from the DNS-SD TXT record for better
 network efficiency.

 Also, the DNS-SD TXT record for many printers contains an "adminurl"
 key something like "adminurl=http://printername.local/status.html".
 For this URL to be useful outside the local link, the embedded
 ".local" hostname needs to be translated to an appropriate name with
 larger scope. It is easy to translate ".local" names when they
 appear in well-defined places, either as a record’s name, or in the
 rdata of record types like PTR and SRV. In the printing case, some
 application-specific knowledge about the semantics of the "adminurl"
 key is needed for the Discovery Proxy to know that it contains a name
 that needs to be translated. This is somewhat analogous to the need
 for NAT gateways to contain ALGs (Application-Specific Gateways) to
 facilitate the correct translation of protocols that embed addresses
 in unexpected places.

 To avoid the need for application-specific knowledge about the
 semantics of particular TXT record keys, protocol designers are
 advised to avoid placing link-local names or link-local IP addresses
 in TXT record keys, if translation of those names or addresses would
 be required for off-link operation. In the printing case, the
 operational failure of failing to translate the "adminurl" key
 correctly is that, when accessed from a different link, printing will
 still work, but clicking the "Admin" UI button will fail to open the
 printer’s administration page. Rather than duplicating the host name

Cheshire Expires September 25, 2019 [Page 21]

Internet-Draft Multicast Service Discovery Proxy March 2019

 from the service’s SRV record in its "adminurl" key, thereby having
 the same host name appear in two places, a better design might have
 been to omit the host name from the "adminurl" key, and instead have
 the client implicitly substitute the target host name from the
 service’s SRV record in place of a missing host name in the
 "adminurl" key. That way the desired host name only appears once,
 and it is in a well-defined place where software like the Discovery
 Proxy is expecting to find it.

 Note that this kind of Application-Specific Data Translation is
 expected to be very rare. It is the exception, rather than the rule.
 This is an example of a common theme in computing. It is frequently
 the case that it is wise to start with a clean, layered design, with
 clear boundaries. Then, in certain special cases, those layer
 boundaries may be violated, where the performance and efficiency
 benefits outweigh the inelegance of the layer violation.

 These layer violations are optional. They are done primarily for
 efficiency reasons, and generally should not be required for correct
 operation. A Discovery Proxy MAY operate solely at the mDNS layer,
 without any knowledge of semantics at the DNS-SD layer or above.

Cheshire Expires September 25, 2019 [Page 22]

Internet-Draft Multicast Service Discovery Proxy March 2019

5.6. Answer Aggregation

 In a simple analysis, simply gathering multicast answers and
 forwarding them in a unicast response seems adequate, but it raises
 the question of how long the Discovery Proxy should wait to be sure
 that it has received all the Multicast DNS answers it needs to form a
 complete Unicast DNS response. If it waits too little time, then it
 risks its Unicast DNS response being incomplete. If it waits too
 long, then it creates a poor user experience at the client end. In
 fact, there may be no time which is both short enough to produce a
 good user experience and at the same time long enough to reliably
 produce complete results.

 Similarly, the Discovery Proxy -- the authoritative name server for
 the subdomain in question -- needs to decide what DNS TTL to report
 for these records. If the TTL is too long then the recursive
 (caching) name servers issuing queries on behalf of their clients
 risk caching stale data for too long. If the TTL is too short then
 the amount of network traffic will be more than necessary. In fact,
 there may be no TTL which is both short enough to avoid undesirable
 stale data and at the same time long enough to be efficient on the
 network.

 Both these dilemmas are solved by use of DNS Long-Lived Queries
 (DNS LLQ) [LLQ] or its newer replacement, DNS Push Notifications
 [Push].

 Clients supporting unicast DNS Service Discovery SHOULD implement DNS
 Push Notifications [Push] for improved user experience.

 Clients and Discovery Proxies MAY support both DNS LLQ and DNS Push,
 and when talking to a Discovery Proxy that supports both, the client
 may use either protocol, as it chooses, though it is expected that
 only DNS Push will continue to be supported in the long run.

 When a Discovery Proxy receives a query using DNS LLQ or DNS Push
 Notifications, it responds immediately using the Multicast DNS
 records it already has in its cache (if any). This provides a good
 client user experience by providing a near-instantaneous response.
 Simultaneously, the Discovery Proxy issues a Multicast DNS query on
 the local link to discover if there are any additional Multicast DNS
 records it did not already know about. Should additional Multicast
 DNS responses be received, these are then delivered to the client
 using additional DNS LLQ or DNS Push Notification update messages.
 The timeliness of such update messages is limited only by the
 timeliness of the device responding to the Multicast DNS query. If
 the Multicast DNS device responds quickly, then the update message is
 delivered quickly. If the Multicast DNS device responds slowly, then

Cheshire Expires September 25, 2019 [Page 23]

Internet-Draft Multicast Service Discovery Proxy March 2019

 the update message is delivered slowly. The benefit of using update
 messages is that the Discovery Proxy can respond promptly because it
 doesn’t have to delay its unicast response to allow for the expected
 worst-case delay for receiving all the Multicast DNS responses. Even
 if a proxy were to try to provide reliability by assuming an
 excessively pessimistic worst-case time (thereby giving a very poor
 user experience) there would still be the risk of a slow Multicast
 DNS device taking even longer than that (e.g., a device that is not
 even powered on until ten seconds after the initial query is
 received) resulting in incomplete responses. Using update message
 solves this dilemma: even very late responses are not lost; they are
 delivered in subsequent update messages.

 There are two factors that determine specifically how responses are
 generated:

 The first factor is whether the query from the client used LLQ or DNS
 Push Notifications (used for long-lived service browsing PTR queries)
 or not (used for one-shot operations like SRV or address record
 queries). Note that queries using LLQ or DNS Push Notifications are
 received directly from the client. Queries not using LLQ or DNS Push
 Notifications are generally received via the client’s configured
 recursive (caching) name server.

 The second factor is whether the Discovery Proxy already has at least
 one record in its cache that positively answers the question.

 o Not using LLQ or Push Notifications; no answer in cache:
 Issue an mDNS query, exactly as a local client would issue an mDNS
 query on the local link for the desired record name, type and
 class, including retransmissions, as appropriate, according to the
 established mDNS retransmission schedule [RFC6762]. As soon as
 any Multicast DNS response packet is received that contains one or
 more positive answers to that question (with or without the Cache
 Flush bit [RFC6762] set), or a negative answer (signified via a
 Multicast DNS NSEC record [RFC6762]), the Discovery Proxy
 generates a Unicast DNS response packet containing the
 corresponding (filtered and translated) answers and sends it to
 the remote client. If after six seconds no Multicast DNS answers
 have been received, cancel the mDNS query and return a negative
 response to the remote client. Six seconds is enough time to
 transmit three mDNS queries, and allow some time for responses to
 arrive.
 DNS TTLs in responses MUST be capped to at most ten seconds.
 (Reasoning: Queries not using LLQ or Push Notifications are
 generally queries that that expect an answer from only one device,
 so the first response is also the only response.)

Cheshire Expires September 25, 2019 [Page 24]

Internet-Draft Multicast Service Discovery Proxy March 2019

 o Not using LLQ or Push Notifications; at least one answer in cache:
 Send response right away to minimise delay.
 DNS TTLs in responses MUST be capped to at most ten seconds.
 No local mDNS queries are performed.
 (Reasoning: Queries not using LLQ or Push Notifications are
 generally queries that that expect an answer from only one device.
 Given RRSet TTL harmonisation, if the proxy has one Multicast DNS
 answer in its cache, it can reasonably assume that it has all of
 them.)

 o Using LLQ or Push Notifications; no answer in cache:
 As in the case above with no answer in the cache, perform mDNS
 querying for six seconds, and send a response to the remote client
 as soon as any relevant mDNS response is received.
 If after six seconds no relevant mDNS response has been received,
 return negative response to the remote client (for LLQ; not
 applicable for Push Notifications).
 (Reasoning: We don’t need to rush to send an empty answer.)
 Whether or not a relevant mDNS response is received within six
 seconds, the query remains active for as long as the client
 maintains the LLQ or Push Notification state, and if mDNS answers
 are received later, LLQ or Push Notification messages are sent.
 DNS TTLs in responses are returned unmodified.

 o Using LLQ or Push Notifications; at least one answer in cache:
 As in the case above with at least one answer in cache, send
 response right away to minimise delay.
 The query remains active for as long as the client maintains the
 LLQ or Push Notification state, and results in transmission of
 mDNS queries, with appropriate Known Answer lists, to determine if
 further answers are available. If additional mDNS answers are
 received later, LLQ or Push Notification messages are sent.
 (Reasoning: We want UI that is displayed very rapidly, yet
 continues to remain accurate even as the network environment
 changes.)
 DNS TTLs in responses are returned unmodified.

 The "negative responses" referred to above are "no error no answer"
 negative responses, not NXDOMAIN. This is because the Discovery
 Proxy cannot know all the Multicast DNS domain names that may exist
 on a link at any given time, so any name with no answers may have
 child names that do exist, making it an "empty nonterminal" name.

Cheshire Expires September 25, 2019 [Page 25]

Internet-Draft Multicast Service Discovery Proxy March 2019

 Note that certain aspects of the behavior described here do not have
 to be implemented overtly by the Discovery Proxy; they occur
 naturally as a result of using existing Multicast DNS APIs.

 For example, in the first case above (no LLQ or Push Notifications,
 and no answers in the cache) if a new Multicast DNS query is
 requested (either by a local client, or by the Discovery Proxy on
 behalf of a remote client), and there is not already an identical
 Multicast DNS query active, and there are no matching answers already
 in the Multicast DNS cache on the Discovery Proxy device, then this
 will cause a series of Multicast DNS query packets to be issued with
 exponential backoff. The exponential backoff sequence in some
 implementations starts at one second and then doubles for each
 retransmission (0, 1, 3, 7 seconds, etc.) and in others starts at one
 second and then triples for each retransmission (0, 1, 4, 13 seconds,
 etc.). In either case, if no response has been received after six
 seconds, that is long enough that the underlying Multicast DNS
 implementation will have sent three query packets without receiving
 any response. At that point the Discovery Proxy cancels its
 Multicast DNS query (so no further Multicast DNS query packets will
 be sent for this query) and returns a negative response to the remote
 client via unicast.

 The six-second delay is chosen to be long enough to give enough time
 for devices to respond, yet short enough not to be too onerous for a
 human user waiting for a response. For example, using the "dig" DNS
 debugging tool, the current default settings result in it waiting a
 total of 15 seconds for a reply (three transmissions of the query
 packet, with a wait of 5 seconds after each packet) which is ample
 time for it to have received a negative reply from a Discovery Proxy
 after six seconds.

 The statement that for a one-shot query (i.e., no LLQ or Push
 Notifications requested), if at least one answer is already available
 in the cache then a Discovery Proxy should not issue additional mDNS
 query packets, also occurs naturally as a result of using existing
 Multicast DNS APIs. If a new Multicast DNS query is requested
 (either locally, or by the Discovery Proxy on behalf of a remote
 client), for which there are relevant answers already in the
 Multicast DNS cache on the Discovery Proxy device, and after the
 answers are delivered the Multicast DNS query is then cancelled
 immediately, then no Multicast DNS query packets will be generated
 for this query.

Cheshire Expires September 25, 2019 [Page 26]

Internet-Draft Multicast Service Discovery Proxy March 2019

6. Administrative DNS Records

6.1. DNS SOA (Start of Authority) Record

 The MNAME field SHOULD contain the host name of the Discovery Proxy
 device (i.e., the same domain name as the rdata of the NS record
 delegating the relevant zone(s) to this Discovery Proxy device).

 The RNAME field SHOULD contain the mailbox of the person responsible
 for administering this Discovery Proxy device.

 The SERIAL field MUST be zero.

 Zone transfers are undefined for Discovery Proxy zones, and
 consequently the REFRESH, RETRY and EXPIRE fields have no useful
 meaning for Discovery Proxy zones. These fields SHOULD contain
 reasonable default values. The RECOMMENDED values are: REFRESH 7200,
 RETRY 3600, EXPIRE 86400.

 The MINIMUM field (used to control the lifetime of negative cache
 entries) SHOULD contain the value 10. The value of ten seconds is
 chosen based on user-experience considerations (see Section 5.5.1).

 In the event that there are multiple Discovery Proxy devices on a
 link for fault tolerance reasons, this will result in clients
 receiving inconsistent SOA records (different MNAME, and possibly
 RNAME) depending on which Discovery Proxy answers their SOA query.
 However, since clients generally have no reason to use the MNAME or
 RNAME data, this is unlikely to cause any problems.

Cheshire Expires September 25, 2019 [Page 27]

Internet-Draft Multicast Service Discovery Proxy March 2019

6.2. DNS NS Records

 In the event that there are multiple Discovery Proxy devices on a
 link for fault tolerance reasons, the parent zone MUST be configured
 with NS records giving the names of all the Discovery Proxy devices
 on the link.

 Each Discovery Proxy device MUST be configured to answer NS queries
 for the zone apex name by giving its own NS record, and the NS
 records of its fellow Discovery Proxy devices on the same link, so
 that it can return the correct answers for NS queries.

 The target host name in the RDATA of an NS record MUST NOT reference
 a name that falls within any zone delegated to a Discovery Proxy.
 Apart from the zone apex name, all other host names that fall within
 a zone delegated to a Discovery Proxy correspond to local Multicast
 DNS host names, which logically belong to the respective Multicast
 DNS hosts defending those names, not the Discovery Proxy. Generally
 speaking, the Discovery Proxy does not own or control the delegated
 zone; it is merely a conduit to the corresponding ".local" namespace,
 which is controlled by the Multicast DNS hosts on that link. If an
 NS record were to reference a manually-determined host name that
 falls within a delegated zone, that manually-determined host name may
 inadvertently conflict with a corresponding ".local" host name that
 is owned and controlled by some device on that link.

6.3. DNS Delegation Records

 Since the Multicast DNS specification [RFC6762] states that there can
 be no delegation (subdomains) within a ".local" namespace, this
 implies that any name within a zone delegated to a Discovery Proxy
 (except for the zone apex name itself) cannot have any answers for
 any DNS queries for RRTYPEs SOA, NS, or DS. Consequently:

 o for any query for the zone apex name of a zone delegated to a
 Discovery Proxy, the Discovery Proxy MUST generate the appropriate
 immediate answers as described above, and

 o for any query for RRTYPEs SOA, NS, or DS, for any name within a
 zone delegated to a Discovery Proxy, other than the zone apex
 name, instead of translating the query to its corresponding
 Multicast DNS ".local" equivalent, a Discovery Proxy MUST generate
 an immediate negative answer.

Cheshire Expires September 25, 2019 [Page 28]

Internet-Draft Multicast Service Discovery Proxy March 2019

6.4. DNS SRV Records

 There are certain special DNS records that logically fall within the
 delegated unicast DNS subdomain, but rather than mapping to their
 corresponding ".local" namesakes, they actually contain metadata
 pertaining to the operation of the delegated unicast DNS subdomain
 itself. They do not exist in the corresponding ".local" namespace of
 the local link. For these queries a Discovery Proxy MUST generate
 immediate answers, whether positive or negative, to avoid delays
 while clients wait for their query to be answered. For example, if a
 Discovery Proxy does not implement Long-Lived Queries [LLQ] then it
 MUST return an immediate negative answer to tell the client this
 without delay, instead of passing the query through to the local
 network as a query for "_dns-llq._udp.local.", and then waiting
 unsuccessfully for answers that will not be forthcoming.

 If a Discovery Proxy implements Long-Lived Queries [LLQ] then it MUST
 positively respond to "_dns-llq._udp.<zone> SRV" queries,
 "_dns-llq._tcp.<zone> SRV" queries, and
 "_dns-llq-tls._tcp.<zone> SRV" queries as appropriate, else it MUST
 return an immediate negative answer for those queries.

 If a Discovery Proxy implements DNS Push Notifications [Push] then it
 MUST positively respond to "_dns-push-tls._tcp.<zone>" queries, else
 it MUST return an immediate negative answer for those queries.

 A Discovery Proxy MUST return an immediate negative answer for
 "_dns-update._udp.<zone> SRV" queries, "_dns-update._tcp.<zone> SRV"
 queries, and "_dns-update-tls._tcp.<zone> SRV" queries, since using
 DNS Update [RFC2136] to change zones generated dynamically from local
 Multicast DNS data is not possible.

Cheshire Expires September 25, 2019 [Page 29]

Internet-Draft Multicast Service Discovery Proxy March 2019

7. DNSSEC Considerations

7.1. On-line signing only

 The Discovery Proxy acts as the authoritative name server for
 designated subdomains, and if DNSSEC is to be used, the Discovery
 Proxy needs to possess a copy of the signing keys, in order to
 generate authoritative signed data from the local Multicast DNS
 responses it receives. Off-line signing is not applicable to
 Discovery Proxy.

7.2. NSEC and NSEC3 Records

 In DNSSEC NSEC [RFC4034] and NSEC3 [RFC5155] records are used to
 assert the nonexistence of certain names, also described as
 "authenticated denial of existence".

 Since a Discovery Proxy only knows what names exist on the local link
 by issuing queries for them, and since it would be impractical to
 issue queries for every possible name just to find out which names
 exist and which do not, a Discovery Proxy cannot programmatically
 synthesize the traditional NSEC and NSEC3 records which assert the
 nonexistence of a large range of names. Instead, when generating a
 negative response, a Discovery Proxy programmatically synthesizes a
 single NSEC record assert the nonexistence of just the specific name
 queried, and no others. Since the Discovery Proxy has the zone
 signing key, it can do this on demand. Since the NSEC record asserts
 the nonexistence of only a single name, zone walking is not a
 concern, so NSEC3 is not necessary.

 Note that this applies only to traditional immediate DNS queries,
 which may return immediate negative answers when no immediate
 positive answer is available. When used with a DNS Push Notification
 subscription [Push] there are no negative answers, merely the absence
 of answers so far, which may change in the future if answers become
 available.

Cheshire Expires September 25, 2019 [Page 30]

Internet-Draft Multicast Service Discovery Proxy March 2019

8. IPv6 Considerations

 An IPv4-only host and an IPv6-only host behave as "ships that pass in
 the night". Even if they are on the same Ethernet [IEEE-3], neither
 is aware of the other’s traffic. For this reason, each link may have
 two unrelated ".local." zones, one for IPv4 and one for IPv6.
 Since for practical purposes, a group of IPv4-only hosts and a group
 of IPv6-only hosts on the same Ethernet act as if they were on two
 entirely separate Ethernet segments, it is unsurprising that their
 use of the ".local." zone should occur exactly as it would if they
 really were on two entirely separate Ethernet segments.

 It will be desirable to have a mechanism to ’stitch’ together these
 two unrelated ".local." zones so that they appear as one. Such
 mechanism will need to be able to differentiate between a dual-stack
 (v4/v6) host participating in both ".local." zones, and two different
 hosts, one IPv4-only and the other IPv6-only, which are both trying
 to use the same name(s). Such a mechanism will be specified in a
 future companion document.

 At present, it is RECOMMENDED that a Discovery Proxy be configured
 with a single domain name for both the IPv4 and IPv6 ".local." zones
 on the local link, and when a unicast query is received, it should
 issue Multicast DNS queries using both IPv4 and IPv6 on the local
 link, and then combine the results.

Cheshire Expires September 25, 2019 [Page 31]

Internet-Draft Multicast Service Discovery Proxy March 2019

9. Security Considerations

9.1. Authenticity

 A service proves its presence on a link by its ability to answer
 link-local multicast queries on that link. If greater security is
 desired, then the Discovery Proxy mechanism should not be used, and
 something with stronger security should be used instead, such as
 authenticated secure DNS Update [RFC2136] [RFC3007].

9.2. Privacy

 The Domain Name System is, generally speaking, a global public
 database. Records that exist in the Domain Name System name
 hierarchy can be queried by name from, in principle, anywhere in the
 world. If services on a mobile device (like a laptop computer) are
 made visible via the Discovery Proxy mechanism, then when those
 services become visible in a domain such as "My House.example.com"
 that might indicate to (potentially hostile) observers that the
 mobile device is in my house. When those services disappear from
 "My House.example.com" that change could be used by observers to
 infer when the mobile device (and possibly its owner) may have left
 the house. The privacy of this information may be protected using
 techniques like firewalls, split-view DNS, and Virtual Private
 Networks (VPNs), as are customarily used today to protect the privacy
 of corporate DNS information.

 The privacy issue is particularly serious for the IPv4 and IPv6
 reverse zones. If the public delegation of the reverse zones points
 to the Discovery Proxy, and the Discovery Proxy is reachable
 globally, then it could leak a significant amount of information.
 Attackers could discover hosts that otherwise might not be easy to
 identify, and learn their hostnames. Attackers could also discover
 the existence of links where hosts frequently come and go.

 The Discovery Proxy could also provide sensitive records only to
 authenticated users. This is a general DNS problem, not specific to
 the Discovery Proxy. Work is underway in the IETF to tackle this
 problem [RFC7626].

9.3. Denial of Service

 A remote attacker could use a rapid series of unique Unicast DNS
 queries to induce a Discovery Proxy to generate a rapid series of
 corresponding Multicast DNS queries on one or more of its local
 links. Multicast traffic is generally more expensive than unicast
 traffic -- especially on Wi-Fi links -- which makes this attack
 particularly serious. To limit the damage that can be caused by such

Cheshire Expires September 25, 2019 [Page 32]

Internet-Draft Multicast Service Discovery Proxy March 2019

 attacks, a Discovery Proxy (or the underlying Multicast DNS subsystem
 which it utilizes) MUST implement Multicast DNS query rate limiting
 appropriate to the link technology in question. For today’s
 802.11b/g/n/ac Wi-Fi links (for which approximately 200 multicast
 packets per second is sufficient to consume approximately 100% of the
 wireless spectrum) a limit of 20 Multicast DNS query packets per
 second is RECOMMENDED. On other link technologies like Gigabit
 Ethernet higher limits may be appropriate. A consequence of this
 rate limiting is that a rogue remote client could issue an excessive
 number of queries, resulting in denial of service to other legitimate
 remote clients attempting to use that Discovery Proxy. However, this
 is preferable to a rogue remote client being able to inflict even
 greater harm on the local network, which could impact the correct
 operation of all local clients on that network.

10. IANA Considerations

 This document has no IANA Considerations.

11. Acknowledgments

 Thanks to Markus Stenberg for helping develop the policy regarding
 the four styles of unicast response according to what data is
 immediately available in the cache. Thanks to Anders Brandt, Ben
 Campbell, Tim Chown, Alissa Cooper, Spencer Dawkins, Ralph Droms,
 Joel Halpern, Ray Hunter, Joel Jaeggli, Warren Kumari, Ted Lemon,
 Alexey Melnikov, Kathleen Moriarty, Tom Pusateri, Eric Rescorla, Adam
 Roach, David Schinazi, Markus Stenberg, Dave Thaler, and Andrew
 Yourtchenko for their comments.

Cheshire Expires September 25, 2019 [Page 33]

Internet-Draft Multicast Service Discovery Proxy March 2019

12. References

12.1. Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 DOI 10.17487/RFC3927, May 2005, <https://www.rfc-
 editor.org/info/rfc3927>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007, <https://www.rfc-
 editor.org/info/rfc4862>.

Cheshire Expires September 25, 2019 [Page 34]

Internet-Draft Multicast Service Discovery Proxy March 2019

 [RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
 Security (DNSSEC) Hashed Authenticated Denial of
 Existence", RFC 5155, DOI 10.17487/RFC5155, March 2008,
 <https://www.rfc-editor.org/info/rfc5155>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013, <https://www.rfc-
 editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8490] Bellis, R., Cheshire, S., Dickinson, J., Dickinson, S.,
 Lemon, T., and T. Pusateri, "DNS Stateful Operations",
 RFC 8490, DOI 10.17487/RFC8490, March 2019,
 <https://www.rfc-editor.org/info/rfc8490>.

 [Push] Pusateri, T. and S. Cheshire, "DNS Push Notifications",
 draft-ietf-dnssd-push-19 (work in progress), March 2019.

12.2. Informative References

 [Roadmap] Cheshire, S., "Service Discovery Road Map", draft-
 cheshire-dnssd-roadmap-03 (work in progress), October
 2018.

 [DNS-UL] Sekar, K., "Dynamic DNS Update Leases", draft-sekar-dns-
 ul-01 (work in progress), August 2006.

 [LLQ] Cheshire, S. and M. Krochmal, "DNS Long-Lived Queries",
 draft-sekar-dns-llq-03 (work in progress), March 2019.

 [RegProt] Cheshire, S. and T. Lemon, "Service Registration Protocol
 for DNS-Based Service Discovery", draft-sctl-service-
 registration-00 (work in progress), July 2017.

 [Relay] Cheshire, S. and T. Lemon, "Multicast DNS Discovery
 Relay", draft-sctl-dnssd-mdns-relay-04 (work in progress),
 March 2018.

Cheshire Expires September 25, 2019 [Page 35]

Internet-Draft Multicast Service Discovery Proxy March 2019

 [Mcast] Perkins, C., McBride, M., Stanley, D., Kumari, W., and J.
 Zuniga, "Multicast Considerations over IEEE 802 Wireless
 Media", draft-ietf-mboned-ieee802-mcast-problems-04 (work
 in progress), November 2018.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
 <https://www.rfc-editor.org/info/rfc2132>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic
 Update", RFC 3007, DOI 10.17487/RFC3007, November 2000,
 <https://www.rfc-editor.org/info/rfc3007>.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
 <https://www.rfc-editor.org/info/rfc3492>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <https://www.rfc-editor.org/info/rfc4193>.

 [RFC6760] Cheshire, S. and M. Krochmal, "Requirements for a Protocol
 to Replace the AppleTalk Name Binding Protocol (NBP)",
 RFC 6760, DOI 10.17487/RFC6760, February 2013,
 <https://www.rfc-editor.org/info/rfc6760>.

 [RFC7558] Lynn, K., Cheshire, S., Blanchet, M., and D. Migault,
 "Requirements for Scalable DNS-Based Service Discovery
 (DNS-SD) / Multicast DNS (mDNS) Extensions", RFC 7558,
 DOI 10.17487/RFC7558, July 2015, <https://www.rfc-
 editor.org/info/rfc7558>.

 [RFC7626] Bortzmeyer, S., "DNS Privacy Considerations", RFC 7626,
 DOI 10.17487/RFC7626, August 2015, <https://www.rfc-
 editor.org/info/rfc7626>.

 [RFC7788] Stenberg, M., Barth, S., and P. Pfister, "Home Networking
 Control Protocol", RFC 7788, DOI 10.17487/RFC7788, April
 2016, <https://www.rfc-editor.org/info/rfc7788>.

Cheshire Expires September 25, 2019 [Page 36]

Internet-Draft Multicast Service Discovery Proxy March 2019

 [RFC8375] Pfister, P. and T. Lemon, "Special-Use Domain
 ’home.arpa.’", RFC 8375, DOI 10.17487/RFC8375, May 2018,
 <https://www.rfc-editor.org/info/rfc8375>.

 [ohp] "Discovery Proxy (Hybrid Proxy) implementation for
 OpenWrt", <https://github.com/sbyx/ohybridproxy/>.

 [ZC] Cheshire, S. and D. Steinberg, "Zero Configuration
 Networking: The Definitive Guide", O’Reilly Media, Inc. ,
 ISBN 0-596-10100-7, December 2005.

 [IEEE-1Q] "IEEE Standard for Local and metropolitan area networks --
 Bridges and Bridged Networks", IEEE Std 802.1Q-2014,
 November 2014, <http://standards.ieee.org/getieee802/
 download/802-1Q-2014.pdf>.

 [IEEE-3] "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 3: Carrier Sense Multiple Access with Collision Detection
 (CMSA/CD) Access Method and Physical Layer
 Specifications", IEEE Std 802.3-2008, December 2008,
 <http://standards.ieee.org/getieee802/802.3.html>.

 [IEEE-5] Institute of Electrical and Electronics Engineers,
 "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 5: Token ring access method and physical layer
 specification", IEEE Std 802.5-1998, 1995.

 [IEEE-11] "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 11: Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications", IEEE Std 802.11-2007, June
 2007, <http://standards.ieee.org/getieee802/802.11.html>.

Cheshire Expires September 25, 2019 [Page 37]

Internet-Draft Multicast Service Discovery Proxy March 2019

Appendix A. Implementation Status

 Some aspects of the mechanism specified in this document already
 exist in deployed software. Some aspects are new. This section
 outlines which aspects already exist and which are new.

A.1. Already Implemented and Deployed

 Domain enumeration by the client (the "b._dns-sd._udp" queries) is
 already implemented and deployed.

 Unicast queries to the indicated discovery domain is already
 implemented and deployed.

 These are implemented and deployed in Mac OS X 10.4 and later
 (including all versions of Apple iOS, on all iPhone and iPads), in
 Bonjour for Windows, and in Android 4.1 "Jelly Bean" (API Level 16)
 and later.

 Domain enumeration and unicast querying have been used for several
 years at IETF meetings to make Terminal Room printers discoverable
 from outside the Terminal room. When an IETF attendee presses Cmd-P
 on a Mac, or selects AirPrint on an iPad or iPhone, and the Terminal
 room printers appear, that is because the client is sending unicast
 DNS queries to the IETF DNS servers. A walk-through giving the
 details of this particular specific example is given in Appendix A of
 the Roadmap document [Roadmap].

A.2. Already Implemented

 A minimal portable Discovery Proxy implementation has been produced
 by Markus Stenberg and Steven Barth, which runs on OS X and several
 Linux variants including OpenWrt [ohp]. It was demonstrated at the
 Berlin IETF in July 2013.

 Tom Pusateri has an implementation that runs on any Unix/Linux. It
 has a RESTful interface for management and an experimental demo CLI
 and web interface.

 Ted Lemon also has produced a portable implementation of Discovery
 Proxy, which is available in the mDNSResponder open source code.

 The Long-Lived Query mechanism [LLQ] referred to in this
 specification exists and is deployed, but was not standardized by the
 IETF. The IETF has developed a superior Long-Lived Query mechanism
 called DNS Push Notifications [Push], which is built on DNS Stateful
 Operations [RFC8490]. The pragmatic short-term deployment approach
 is for vendors to produce Discovery Proxies that implement both the

Cheshire Expires September 25, 2019 [Page 38]

Internet-Draft Multicast Service Discovery Proxy March 2019

 deployed Long-Lived Query mechanism [LLQ] (for today’s clients) and
 the new DNS Push Notifications mechanism [Push] as the preferred
 long-term direction.

A.3. Partially Implemented

 The current APIs make multiple domains visible to client software,
 but most client UI today lumps all discovered services into a single
 flat list. This is largely a chicken-and-egg problem. Application
 writers were naturally reluctant to spend time writing domain-aware
 UI code when few customers today would benefit from it. If Discovery
 Proxy deployment becomes common, then application writers will have a
 reason to provide better UI. Existing applications will work with
 the Discovery Proxy, but will show all services in a single flat
 list. Applications with improved UI will group services by domain.

Author’s Address

 Stuart Cheshire
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 USA

 Phone: +1 (408) 996-1010
 Email: cheshire@apple.com

Cheshire Expires September 25, 2019 [Page 39]

Network Working Group T. Lemon
Internet-Draft S. Cheshire
Intended status: Standards Track Apple Inc.
Expires: August 26, 2021 February 22, 2021

 Multicast DNS Discovery Relay
 draft-ietf-dnssd-mdns-relay-04

Abstract

 This document complements the specification of the Discovery Proxy
 for Multicast DNS-Based Service Discovery. It describes a
 lightweight relay mechanism, a Discovery Relay, which, when present
 on a link, allows remote clients, not attached to that link, to
 perform mDNS discovery operations on that link.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 26, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lemon & Cheshire Expires August 26, 2021 [Page 1]

Internet-Draft mDNS Discovery Relay February 2021

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Protocol Overview . 6
 3.1. Connections between Clients and Relays (overview) 6
 3.2. mDNS Messages On Multicast Links 7
 4. Connections between Clients and Relays (details) 8
 5. Traffic from Relays to Clients 10
 6. Traffic from Clients to Relays 12
 7. Discovery Proxy Behavior 13
 8. DSO TLVs . 14
 8.1. mDNS Link Data Request 14
 8.2. mDNS Link Data Discontinue 14
 8.3. Link Identifier . 15
 8.4. Encapsulated mDNS Message 15
 8.5. IP Source . 15
 8.6. Link State Request 16
 8.7. Link State Discontinue 16
 8.8. Link Available . 16
 8.9. Link Unavailable . 16
 8.10. Link Prefix . 17
 9. Provisioning . 18
 9.1. Provisioned Objects 19
 9.1.1. Multicast Link 20
 9.1.2. Discovery Proxy 21
 9.1.3. Discovery Relay 22
 9.2. Configuration Files 23
 9.3. Discovery Proxy Private Configuration 25
 9.4. Discovery Relay Private Configuration 25
 10. Security Considerations 26
 11. IANA Considerations . 27
 12. Acknowledgments . 27
 13. References . 28
 13.1. Normative References 28
 13.2. Informative References 29
 Authors’ Addresses . 30

Lemon & Cheshire Expires August 26, 2021 [Page 2]

Internet-Draft mDNS Discovery Relay February 2021

1. Introduction

 This document defines a Discovery Relay. A Discovery Relay is a
 companion technology that works in conjunction with Discovery
 Proxies, and other clients.

 The Discovery Proxy for Multicast DNS-Based Service Discovery
 [RFC8766] is a mechanism for discovering services on a subnetted
 network through the use of Discovery Proxies. Discovery Proxies
 issue Multicast DNS (mDNS) requests [RFC6762] on various multicast
 links in the network on behalf of a remote host performing DNS-Based
 Service Discovery [RFC6763].

 In the original Discovery Proxy specification, it was imagined that
 for every multicast link on which services will be discovered, a host
 will be present running a full Discovery Proxy. This document
 introduces a lightweight Discovery Relay that can be used in
 conjunction with a central Discovery Proxy to provide discovery
 services on a multicast link without requiring a full Discovery Proxy
 on every multicast link.

 The primary purpose of a Discovery Relay is providing remote virtual
 interface functionality to Discovery Proxies, and this document is
 written with that usage in mind. However, in principle, a Discovery
 Relay could be used by any properly authorized client. In the
 context of this specification, a Discovery Proxy is a client to the
 Discovery Relay. This document uses the terms "Discovery Proxy" and
 "Client" somewhat interchangably; the term "Client" is used when we
 are talking about the communication between the Client and the Relay,
 and the term "Discovery Proxy" when we are referring specifically to
 a Discovery Relay Client that also happens to be a Discovery Proxy.
 One example of another kind of device that can be a client of a
 Discovery Relay is an Advertising Proxy [AdProx].

 The Discovery Relay operates by listening for TCP connections from
 Clients. When a Client connects, the connection is authenticated and
 secured using TLS. The Client can then specify one or more multicast
 links from which it wishes to receive mDNS traffic. The Client can
 also send messages to be transmitted on its behalf on one or more of
 those multicast links. DNS Stateful Operations (DSO) [RFC8490] is
 used as a framework for conveying interface and IP header information
 associated with each message. DSO formats its messages using type-
 length-value (TLV) data structures. This document defines additional
 DSO TLV types, used to implement the Discovery Relay functionality.

 The Discovery Relay functions essentially as a set of one or more
 remote virtual interfaces for the Client, one on each multicast link
 to which the Discovery Relay is connected. In a complex network, it

Lemon & Cheshire Expires August 26, 2021 [Page 3]

Internet-Draft mDNS Discovery Relay February 2021

 is possible that more than one Discovery Relay will be connected to
 the same multicast link; in this case, the Client ideally should only
 be using one such Relay Proxy per multicast link, since using more
 than one will generate duplicate traffic.

 How such duplication is detected and avoided is out of scope for this
 document; in principle it could be detected using HNCP [RFC7788] or
 configured using some sort of orchestration software in conjunction
 with NETCONF [RFC6241] or CPE WAN Management Protocol [TR-069].

 Use of a Discovery Relay can be considered similar to using Virtual
 LAN (VLAN) trunk ports to give a Discovery Proxy device a virtual
 presence on multiple links or broadcast domains. The difference is
 that while a VLAN trunk port operates at the link layer and delivers
 all link-layer traffic to the Discovery Proxy device, a Discovery
 Relay operates further up the network stack and selectively delivers
 only relevant Multicast DNS traffic. Also, VLAN trunk ports are
 generally only available within a single administrative domain and
 require link-layer configuration and connectivity, whereas the
 Discovery Relay protocol, which runs over TCP, can be used between
 any two devices with IP connectivity to each other.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here. These words may also appear in this
 document in lower case as plain English words, absent their normative
 meanings.

 The following definitions may be of use:

 Client A network service that uses a Discovery Relay to send and
 receive mDNS multicast traffic on a remote link, to enable it to
 communicate with mDNS Agents on that remote link.

 mDNS Agent A host which sends and/or responds to mDNS queries
 directly on its local link(s). Examples include network cameras,
 networked printers, networked home electronics, etc.

 Discovery Proxy A network service which receives well-formed
 questions using the DNS protocol, performs multicast DNS queries
 to find answers to those questions, and responds with those
 answers using the DNS protocol. A Discovery Proxy that can
 communicate with remote mDNS Agents, using the services of a
 Discovery Relay, is a Client of the Discovery Relay.

Lemon & Cheshire Expires August 26, 2021 [Page 4]

Internet-Draft mDNS Discovery Relay February 2021

 Discovery Relay A network service which relays mDNS messages
 received on a local link to a Client, and on behalf of that Client
 can transmit mDNS messages on a local link.

 multicast link A maximal set of network connection points, such that
 any host connected to any connection point in the set may send a
 packet with a link-local multicast destination address
 (specifically the mDNS link-local multicast destination address
 [RFC6762]) that will be received by all hosts connected to all
 other connection points in the set. Note that it is becoming
 increasingly common for a multicast link to be smaller than its
 corresponding unicast link. For example it is becoming common to
 have multiple Wi-Fi access points on a shared Ethernet backbone,
 where the multiple Wi-Fi access points and their shared Ethernet
 backbone form a single unicast link (a single IPv4 subnet, or
 single IPv6 prefix) but not a single multicast link. Unicast
 packets sent directly between two hosts on that IPv4 subnet or
 IPv6 prefix, without passing through an intervening IP-layer
 router, are correctly delivered, but multicast packets are not
 forwarded between the various Wi-Fi access points. Given the
 slowness of Wi-Fi multicast
 [I-D.ietf-mboned-ieee802-mcast-problems], having a packet that may
 be of interest to only one or two end systems transmitted to
 hundreds of devices, across multiple Wi-Fi access points, is
 especially wasteful. Hence the common configuration decision to
 not forward multicast packets between Wi-Fi access points is very
 reasonable. This further motivates the need for technologies like
 Discovery Proxy and Discovery Relay to facilitate discovery on
 these networks.

 allow-list A list of one or more IP addresses from which a Discovery
 Relay may accept connections.

 silently discard When a message that is not supported or not
 permitted is received, and the required response to that message
 is to "silently discard" it, that means that no response is sent
 by the service that is discarding the message to the service that
 sent it. The service receiving the message may log the event, and
 may also count such events: "silently" does not preclude such
 behavior.

 Take care when reading this document not to confuse the terms
 "Discovery Proxy" and "Discovery Relay". A Discovery Proxy [RFC8766]
 provides Multicast DNS discovery service to remote clients. A
 Discovery Relay is a simple software entity that provides virtual
 link connectivity to one or more Discovery Proxies or other Discovery
 Relay clients.

Lemon & Cheshire Expires August 26, 2021 [Page 5]

Internet-Draft mDNS Discovery Relay February 2021

3. Protocol Overview

 This document describes a way for a Client to communicate with mDNS
 agents on remote multicast links to which the client is not directly
 connected, using a Discovery Relay. As such, there are two parts to
 the protocol: connections between Clients and Discovery Relays, and
 communications between Discovery Relays and mDNS agents.

3.1. Connections between Clients and Relays (overview)

 Discovery Relays listen for incoming connection requests.
 Connections between Clients and Discovery Relays are established by
 Clients. Connections are authenticated and encrypted using TLS, with
 both client and server certificates. Connections are long-lived: a
 Client is expected to send many queries over a single connection, and
 Discovery Relays will forward all mDNS traffic from subscribed
 interfaces over the connection.

 The stream encapsulated in TLS will carry DNS frames as in the DNS
 TCP protocol [RFC1035] Section 4.2.2. However, all messages will be
 DSO messages [RFC8490]. There will be four types of such messages
 between Discovery Relays and Clients:

 o Control messages from Client to Relay

 o Link status messages from Relay to Client

 o Encapsulated mDNS messages from Client to Relay

 o Encapsulated mDNS messages from Relay to Client

 Clients can send four different control messages to Relays: Link
 State Request, Link State Discontinue, Link Data Request and Link
 Data Discontinue. The first two are used by the Client to request
 that the Relay report on the set of links that can be requested, and
 to request that it discontinue such reporting. The second two are
 used by the Client to indicate to the Discovery Relay that mDNS
 messages from one or more specified multicast links are to be relayed
 to the Client, and to subsequently stop such relaying.

 Link Status messages from a Discovery Relay to the Client inform the
 Client that a link has become available, or that a formerly-available
 link is no longer available.

 Encapsulated mDNS messages from a Discovery Relay to a Client are
 sent whenever an mDNS message is received on a multicast link to
 which the Discovery Relay has subscribed.

Lemon & Cheshire Expires August 26, 2021 [Page 6]

Internet-Draft mDNS Discovery Relay February 2021

 Encapsulated mDNS messages from a Client to a Discovery Relay cause
 the Discovery Relay to transmit the mDNS message on the specified
 multicast link to which the Discovery Relay host is directly
 attached.

 During periods with no traffic flowing, Clients are responsible for
 generating any necessary keepalive traffic, as stated in the DSO
 specification [RFC8490].

3.2. mDNS Messages On Multicast Links

 Discovery Relays listen for mDNS traffic on all configured multicast
 links that have at least one active subscription from a Client. When
 an mDNS message is received on a multicast link, it is forwarded on
 every open Client connection that is subscribed to mDNS traffic on
 that multicast link. In the event of congestion, where a particular
 Client connection has no buffer space for an mDNS message that would
 otherwise be forwarded to it, the mDNS message is not forwarded to
 it. Normal mDNS retry behavior is used to recover from this sort of
 packet loss. Discovery Relays are not expected to buffer more than a
 few mDNS packets. Excess mDNS packets are silently discarded. In
 practice this is not expected to be a issue. Particularly on
 networks like Wi-Fi, multicast packets are transmitted at rates ten
 or even a hundred times slower than unicast packets. This means that
 even at peak multicast packets rates, it is likely that a unicast TCP
 connection will able to carry those packets with ease.

 Clients send encapsulated mDNS messages they wish to have sent on
 their behalf on remote multicast link(s) on which the Client has an
 active subscription. A Discovery Relay will not transmit mDNS
 packets on any multicast link on which the Client does not have an
 active subscription, since it makes no sense for a Client to ask to
 have a query sent on its behalf if it’s not able to receive the
 responses to that query.

Lemon & Cheshire Expires August 26, 2021 [Page 7]

Internet-Draft mDNS Discovery Relay February 2021

4. Connections between Clients and Relays (details)

 When a Discovery Relay starts, it opens a passive TCP listener to
 receive incoming connection requests from Clients. This listener may
 be bound to one or more source IP addresses, or to the wildcard
 address, depending on the implementation. When a connection is
 received, the relay must first validate that it is a connection to an
 IP address to which connections are allowed. For example, it may be
 that only connections to ULAs are allowed, or to the IP addresses
 configured on certain interfaces. If the listener is bound to a
 specific IP address, this check is unnecessary.

 If the relay is using an IP address allow-list, the next step is for
 the relay to verify that that the source IP address of the connection
 is on its allow-list. If the connection is not permitted either
 because of the source address or the destination address, the
 Discovery Relay closes the connection. If possible, before closing
 the connection, the Discovery Relay first sends a TLS user_canceled
 alert ([RFC8446] Section 6.1). Discovery Relays SHOULD refuse to
 accept TCP connections to invalid destination addresses, rather than
 accepting and then closing the connection, if this is possible.

 Otherwise, the Discovery Relay will attempt to complete a TLS
 handshake with the Client. Clients are required to send the
 post_handshake_auth extension ([RFC8446] Section 4.2.5). If a
 Discovery Relay receives a ClientHello message with no
 post_handshake_auth extension, the Discovery Relay rejects the
 connection with a certificate_required alert ([RFC8446] Section 6.2).

 Once the TLS handshake is complete, the Discovery Relay MUST request
 post-handshake authentication ([RFC8446] Section 4.6.2). If the
 Client refuses to send a certificate, or the key presented does not
 match the key associated with the IP address from which the
 connection originated, or the CertificateVerify does not validate,
 the connection is dropped with the TLS access_denied alert ([RFC8446]
 Section 6.2).

 Clients MUST validate server certificates. If the client is
 configured with a server IP address and certificate, it can validate
 the server by comparing the certificate offered by the server to the
 certificate that was provided: they should be the same. If the
 certificate includes a Distinguished Name that is a fully-qualified
 domain name, the client SHOULD present that domain name to the server
 in an SNI request.

 Rather than being configured with an IP address and a certificate,
 the client may be configured with the server’s FQDN. In this case,
 the client uses the server’s FQDN as a Authentication Domain Name

Lemon & Cheshire Expires August 26, 2021 [Page 8]

Internet-Draft mDNS Discovery Relay February 2021

 [RFC8310] Section 7.1, and uses the authentication method described
 in [RFC8310] section 8.1, if the certificate is signed by a root
 authority the client trusts, or the method described in section 8.2
 of the same document if not. If neither method is available, then a
 locally-configured copy of the server certificate can be used, as in
 the previous paragraph.

 Once the connection is established and authenticated, it is treated
 as a DNS TCP connection [RFC7766].

 Aliveness of connections between Clients and Relays is maintained as
 described in Section 4 of the DSO specification [RFC8490]. Clients
 must also honor the ’Retry Delay’ TLV (section 5 of [RFC8490]) if
 sent by the Discovery Relay.

 Clients SHOULD avoid establishing more than one connection to a
 specific Discovery Relay. However, there may be situations where
 multiple connections to the same Discovery Relay are unavoidable, so
 Discovery Relays MUST be willing to accept multiple connections from
 the same Client.

 In order to know what links to request, the Client can be configured
 with a list of links supported by the Relay. However, in some
 networking contexts, dynamic changes in the availability of links are
 likely; therefore Clients may also use the Report Link Changes TLV to
 request that the Relay report on the availability of its links. In
 some contexts, for example when debugging, a Client may operate with
 no information about the set of links supported by a relay, simply
 relying on the relay to provide one.

Lemon & Cheshire Expires August 26, 2021 [Page 9]

Internet-Draft mDNS Discovery Relay February 2021

5. Traffic from Relays to Clients

 The mere act of connecting to a Discovery Relay does not result in
 any mDNS traffic being forwarded. In order to request that mDNS
 traffic from a particular multicast link be forwarded on a particular
 connection, the Client must send one or more DSO messages, each
 containing a single mDNS Link Data Request TLV (Section 8.1)
 indicating the multicast link from which traffic is requested.

 When an mDNS Link Data Request message is received, the Discovery
 Relay validates that it recognizes the link identifier, and that
 forwarding is enabled for that link. If both checks are successful,
 it MUST send a response with RCODE=0 (NOERROR). If the link
 identifier is not recognized, it sends a response with RCODE=3
 (NXDOMAIN/Name Error). If forwarding from that link to the Client is
 not enabled, it sends a response with RCODE=5 (REFUSED). If the
 relay cannot satisfy the request for some other reason, for example
 resource exhaustion, it sends a response with RCODE=2 (SERVFAIL).

 If the requested link is valid, the Relay begins forwarding all mDNS
 messages from that link to the Client. Delivery is not guaranteed:
 if there is no buffer space, packets will be dropped. It is expected
 that regular mDNS retry processing will take care of retransmission
 of lost packets. The amount of buffer space is implementation
 dependent, but generally should not be more than the bandwidth delay
 product of the TCP connection [RFC7323]. The Discovery Relay should
 use the TCP_NOTSENT_LOWAT mechanism [NOTSENT][PRIO] or equivalent, to
 avoid building up a backlog of data in excess of the amount necessary
 to have in flight to fill the bandwidth delay product of the TCP
 connection.

 Encapsulated mDNS messages from Relays to Clients are framed within
 DSO messages. Each DSO message can contain multiple TLVs, but only a
 single encapsulated mDNS message is conveyed per DSO message. Each
 forwarded mDNS message is sent in an Encapsulated mDNS Message TLV
 (Section 8.4). The source IP address and port of the message MUST be
 encoded in an IP Source TLV (Section 8.5). The multicast link on
 which the message was received MUST be encoded in a Link Identifier
 TLV (Section 8.3). As described in the DSO specification [RFC8490],
 a Client MUST silently ignore unrecognized Additional TLVs in mDNS
 messages, and MUST NOT discard mDNS messages that include
 unrecognized Additional TLVs.

 A Client may discontinue listening for mDNS messages on a particular
 multicast link by sending a DSO message containing an mDNS Link Data
 Discontinue TLV (Section 8.2). The Discovery Relay MUST discontinue
 forwarding mDNS messages when the Link Data Discontinue request is
 received. However, messages from that link that had previously been

Lemon & Cheshire Expires August 26, 2021 [Page 10]

Internet-Draft mDNS Discovery Relay February 2021

 queued may arrive after the Client has discontinued its listening.
 The Client should silently discard such messages. The Discovery
 Relay does not respond to the Link Data Discontinue message other
 than to discontinue forwarding mDNS messages from the specified
 links.

Lemon & Cheshire Expires August 26, 2021 [Page 11]

Internet-Draft mDNS Discovery Relay February 2021

6. Traffic from Clients to Relays

 Like mDNS traffic from relays, each mDNS message sent by a Client to
 a Discovery Relay is communicated in an Encapsulated mDNS Message TLV
 (Section 8.4) within a DSO message. Each message MUST contain
 exactly one Link Identifier TLV (Section 8.3). The Discovery Relay
 will transmit the mDNS message to the mDNS port and multicast address
 on the link specified in the message using the specified IP address
 family.

 Although the communication between Clients and Relays uses the DNS
 stream protocol and DNS Stateless Operations, there is no case in
 which a Client would legitimately send a DNS query (or anything else
 other than a DSO message) to a Relay. Therefore, if a Relay receives
 any message other than a DSO message, it MUST immediately abort that
 DSO session with a TCP reset (RST).

 When defining this behavior, the working group considered making it
 possible to specify more than one link identifier in an mDNSMessage
 TLV. A superficial evaluation of this suggested that this might be a
 useful optimization, since when a query is issued, it will often be
 issued to all links. However, on many link types, like Wi-Fi,
 multicast traffic is expensive
 [I-D.ietf-mboned-ieee802-mcast-problems] and should be generated
 frugally, so providing convenient ways to generate additional
 multicast traffic was determined to be an unwise optimization. In
 addition, because of the way mDNS handles retries, it will almost
 never be the case that the exact same message will be sent on more
 than one link. Therefore, the complexity that this optimization adds
 is not justified by the potential benefit, and this idea has been
 abandoned.

Lemon & Cheshire Expires August 26, 2021 [Page 12]

Internet-Draft mDNS Discovery Relay February 2021

7. Discovery Proxy Behavior

 Discovery Proxies treat multicast links for which Discovery Relay
 service is being used as if they were virtual interfaces; in other
 words, a Discovery Proxy serving multiple remote multicast links
 using multiple remote Discovery Relays behaves the same as a
 Discovery Proxy serving multiple local multicast links using multiple
 local physical network interfaces. In this section we refer to
 multicast links served directly by the Discovery Proxy as locally-
 connected links, and multicast links served through the Discovery
 Relay as relay-connected links. A relay-connected link can be
 thought of as similar to a link that a Discovery Proxy connects to
 using a USB Ethernet interface, just with a very long USB cable (that
 runs over TCP).

 When a Discovery Proxy receives a DNS query from a DNS client via
 unicast, it will generate corresponding mDNS query messages on the
 relevant multicast link(s) for which it is acting as a proxy. For
 locally-connected link(s), those query messages will be sent
 directly. For relay-connected link(s), the query messages will be
 sent through the Discovery Relay that is being used to serve that
 multicast link.

 Responses from devices on locally-connected links are processed
 normally. Responses from devices on relay-connected links are
 received by the Discovery Relay, encapsulated, and forwarded to the
 Client; the Client then processes these messages using the link-
 identifying information included in the encapsulation.

 In principle it could be the case that some device is capable of
 performing service discovery using Multicast DNS, but not using
 traditional unicast DNS. Responding to mDNS queries received from
 the Discovery Relay could address this use case. However, continued
 reliance on multicast is counter to the goals of the current work in
 service discovery, and to benefit from wide-area service discovery
 such client devices should be updated to support service discovery
 using unicast queries.

Lemon & Cheshire Expires August 26, 2021 [Page 13]

Internet-Draft mDNS Discovery Relay February 2021

8. DSO TLVs

 This document defines a modest number of new DSO TLVs.

8.1. mDNS Link Data Request

 The mDNS Link Data Request TLV conveys a link identifier from which a
 Client is requesting that a Discovery Relay forward mDNS traffic.
 The link identifier comes from the provisioning configuration (see
 Section 9). The DSO-TYPE for this TLV is TBD-R. DSO-LENGTH is
 always 5. DSO-DATA is the 8-bit address family followed by the link
 identifier, a 32-bit unsigned integer in network (big endian) byte
 order, as described in Section 9. An address family value of 1
 indicates IPv4 and 2 indicates IPv6, as recorded in the IANA Registry
 of Address Family Numbers [AdFam].

 The mDNS Link Data Request TLV can only be used as a primary TLV, and
 requires an acknowledgement.

 At most one mDNS Link Data Request TLV may appear in a DSO message.
 To request multiple link subscriptions, multiple separate DSO
 messages are sent, each containing a single mDNS Link Data Request
 TLV.

 A Client MUST NOT request a link if it already has an active
 subscription to that link on the same DSO connection. If a Discovery
 Relay receives a duplicate link subscription request, it MUST
 immediately abort that DSO session with a TCP reset (RST).

8.2. mDNS Link Data Discontinue

 The mDNS Link Data Discontinue TLV is used by Clients to unsubscribe
 to mDNS messages on the specified multicast link. DSO-TYPE is TBD-D.
 DSO-LENGTH is always 5. DSO-DATA is the 8-bit address family
 followed by the 32-bit link identifier, a 32-bit unsigned integer in
 network (big endian) byte order, as described in Section 9.

 The mDNS Link Data Discontinue TLV can only be used as a DSO
 unidirectional message TLV, and is not acknowledged.

 At most one mDNS Link Data Discontinue TLV may appear in a DSO
 message. To unsubscribe from multiple links, multiple separate DSO
 messages are sent, each containing a single mDNS Link Data
 Discontinue TLV.

Lemon & Cheshire Expires August 26, 2021 [Page 14]

Internet-Draft mDNS Discovery Relay February 2021

8.3. Link Identifier

 This option is used both in DSO messages from Discovery Relays to
 Clients that contain received mDNS messages, and from Clients to
 Discovery Relays that contain mDNS messages to be transmitted on the
 multicast link. In the former case, it indicates the multicast link
 on which the message was received; in the latter case, it indicates
 the multicast link on which the message should be transmitted. DSO-
 TYPE is TBD-L. DSO-LENGTH is always 5. DSO-DATA is the 8-bit
 address family followed by the link identifier, a 32-bit unsigned
 integer in network (big endian) byte order, as described in
 Section 9.

 The Link Identifier TLV can only be used as an additional TLV. The
 Link Identifier TLV can only appear at most once in a Discovery Relay
 DSO message.

8.4. Encapsulated mDNS Message

 The Encapsulated mDNS Message TLV is used to communicate an mDNS
 message that a Relay is forwarding from a multicast link to a Client,
 or that a Client is sending to a Relay for transmission on a
 multicast link. Only the application-layer payload of the mDNS
 message is carried in the DSO "Encapsulated mDNS Message" TLV, i.e.,
 just the DNS message itself, beginning with the DNS Message ID, not
 the IP or UDP headers. The DSO-TYPE for this TLV is TBD-M. DSO-
 LENGTH is the length of the encapsulated mDNS message. DSO-DATA is
 the content of the encapsulated mDNS message.

 The Encapsulated mDNS Message TLV can only be used as a DSO
 unidirectional message TLV, and is not acknowledged.

8.5. IP Source

 The IP Source TLV is used to report the IP source address and port
 from which an mDNS message was received. This TLV is present in DSO
 messages from Discovery Relays to Clients that contain encapsulated
 mDNS messages. DSO-TYPE is TBD-S. DSO-LENGTH is either 6, for an
 IPv4 address, or 18, for an IPv6 address. DSO-DATA is the two-byte
 source port, followed by the 4- or 16-byte IP Address. Both port and
 address are in the canonical byte order (i.e., the same
 representation as used in the UDP and IP packet headers, with no byte
 swapping).

 The IP Source TLV can only be used as an additional TLV. The IP
 Source TLV can only appear at most once in a Discovery Relay DSO
 message.

Lemon & Cheshire Expires August 26, 2021 [Page 15]

Internet-Draft mDNS Discovery Relay February 2021

8.6. Link State Request

 The Link State Request TLV requests that the Discovery Relay report
 link changes. When the relay is reporting link changes and a new
 link becomes available, it sends a Link Available message to the
 Client. When a link becomes unavailable, it sends a Link Unavailable
 message to the Client. If there are links available when the request
 is received, then for each such link the relay immediately sends a
 Link Available Message to the Client. DSO-TYPE is TBD-P. DSO-LENGTH
 is 0.

 The mDNS Link State Request TLV can only be used as a primary TLV,
 and requires an acknowledgement. The acknowledgment does not contain
 a Link Available TLV: it is just a response to the Link State Request
 message.

8.7. Link State Discontinue

 The Link State Discontinue TLV requests that the Discovery Relay stop
 reporting on the availability of links supported by the relay. This
 cancels the effect of a Link State Request TLV. DSO-TYPE is TBD-Q.
 DSO-LENGTH is 0.

 The mDNS Link State Discontinue TLV can only be used as a DSO
 unidirectional message TLV, and is not acknowledged.

8.8. Link Available

 The Link Available TLV is used by Discovery Relays to indicate to
 Clients that a new link has become available. The format is the same
 as the Link Identifier TLV. DSO-TYPE is TBD-V. The Link Available
 TLV may be accompanied by one or more Link Prefix TLVs which indicate
 IP prefixes the Relay knows to be present on the link.

 The mDNS Link Available TLV can only be used as a DSO unidirectional
 message TLV, and is not acknowledged.

8.9. Link Unavailable

 The Link Unavailable TLV is used by Discovery Relays to indicate to
 Clients that an existing link has become unavailable. The format is
 the same as the Link Identifier TLV. DSO-TYPE is TBD-U.

 The mDNS Link Unavailable TLV can only be used as a DSO
 unidirectional message TLV, and is not acknowledged.

Lemon & Cheshire Expires August 26, 2021 [Page 16]

Internet-Draft mDNS Discovery Relay February 2021

8.10. Link Prefix

 The Link Prefix TLV represents an IP address or prefix configured on
 a link. The length is 17 for an IPv6 address or prefix, and 5 for an
 IPv4 address or prefix. The TLV consists of a prefix length, between
 0 and 32 for IPv4 or between 0 and 128 for IPv6, represented as a
 single byte. This is followed by the IP address, either four or
 sixteen bytes. DSO-TYPE is TBD-K.

 The Link Prefix TLV can only be used as a secondary TLV.

Lemon & Cheshire Expires August 26, 2021 [Page 17]

Internet-Draft mDNS Discovery Relay February 2021

9. Provisioning

 In order for a Discovery Proxy to use Discovery Relays, it must be
 configured with sufficient information to identify multicast links on
 which service discovery is to be supported and, if it is not running
 on a host that is directly connected to those multicast links,
 connect to Discovery Relays supporting those multicast links.

 A Discovery Relay must be configured both with a set of multicast
 links to which the host on which it is running is connected, on which
 mDNS relay service is to be provided, and also with a list of one or
 more Clients authorized to use it.

 On a network supporting DNS Service Discovery using Discovery Relays,
 more than one different Discovery Relay implementation may be
 present. While it may be that only a single Discovery Proxy is
 present, that implementation will need to be able to be configured to
 interoperate with all of the Discovery Relays that are present.
 Consequently, it is necessary that a standard set of configuration
 parameters be defined for both Discovery Proxies and Discovery
 Relays.

 DNS Service Discovery generally operates within a constrained set of
 links, not across the entire internet. This section assumes that
 what will be configured will be a limited set of links operated by a
 single entity or small set of cooperating entities, among which
 services present on each link should be available to users on that
 link and every other link. This could be, for example, a home
 network, a small office network, or even a network covering an entire
 building or small set of buildings. The set of Discovery Proxies and
 Discovery Relays within such a network will be referred to in this
 section as a ’Discovery Domain’.

 Depending on the context, several different candidates for
 configuration of Discovery Proxies and Discovery Relays may be
 applicable. The simplest such mechanism is a manual configuration
 file, but regardless of provisioning mechanism, certain configuration
 information needs to be communicated to the devices, as outlined
 below.

 In the example we provide here, we only refer to configuring of IP
 addresses, private keys and certificates. It is also possible to use
 FQDNs to identify servers; this then allows for the use of DANE
 ([RFC8310] Section 8.2) or PKIX authentication [RFC6125]. Which
 method is used is to some extent up to the implementation, but at a
 minimum, it should be possible to associate an IP address with a
 self-signed certificate, and it should be possible to validate both

Lemon & Cheshire Expires August 26, 2021 [Page 18]

Internet-Draft mDNS Discovery Relay February 2021

 self-signed and PKIX-authenticated certificates, with PKIX, DANE or a
 pre-configured trust anchor.

9.1. Provisioned Objects

 Three types of objects must be described in order for Discovery
 Proxies and Discovery Relays to be provisioned: Discovery Proxies,
 Multicast Links, and Discovery Relays. "Human-readable" below means
 actual words or proper names that will make sense to an untrained
 human being. "Machine-readable" means a name that will be used by
 machines to identify the entity to which the name refers. Each
 entity must have a machine-readable name and may have a human-
 readable name. No two entities can have the same human-readable
 name. Similarly, no two entities can have the same machine-readable
 name.

Lemon & Cheshire Expires August 26, 2021 [Page 19]

Internet-Draft mDNS Discovery Relay February 2021

9.1.1. Multicast Link

 The description of a multicast link consists of:

 link-identifier A 32-bit identifier that uniquely identifies that
 link within the Discovery Domain. Each link MUST have exactly one
 such identifier. Link Identifiers do not have any special
 semantics, and are not intended to be human-readable.

 ldh-name A fully-qualified domain name for the multicast link that
 is used to form an LDH domain name as described in section 5.3 of
 the Discovery Proxy specification [RFC8766]. This name is used to
 identify the link during provisioning, and must be present.

 hr-name A human-readable user-friendly fully-qualified domain name
 for the multicast link. This name MUST be unique within the
 Discovery Domain. Each multicast link MUST have exactly one such
 name. The hr-name MAY be the same as the ldh-name. (The hr-name
 is allowed to contain spaces, punctuation and rich text, but it is
 not required to do so.)

 The ldh-name and hr-name can be used to form the LDH and human-
 readable domain names as described in [RFC8766], section 5.3.

 Note that the ldh-name and hr-name can be used in two different ways.

 On a small home network with little or no human administrative
 configuration, link names may be directly visible to the user. For
 example, a search in ’home.arpa’ on a small home network may discover
 services on both ethernet.home.arpa and wi-fi.home.arpa. In the case
 of a home user who has one Ethernet-connected printer and one Wi-Fi-
 connected printer, discovering that they have one printer on
 ethernet.home.arpa and another on wi-fi.home.arpa is understandable
 and meaningful.

 On a large corporate network with hundreds of Wi-Fi access points,
 the individual link names of the hundreds of multicast links are less
 likely to be useful to end users. In these cases, Discovery Broker
 functionality [I-D.sctl-discovery-broker] may be used to translate
 the many link names to something more meaningful to users. For
 example, in a building with 50 Wi-Fi access points, each with their
 own link names, services on all the different physical links may be
 presented to the user as appearing in ’headquarters.example.com’. In
 this case, the individual link names can be thought of similar to MAC
 addresses or IPv6 addresses. They are used internally by the
 software as unique identifiers, but generally are not exposed to end
 users.

Lemon & Cheshire Expires August 26, 2021 [Page 20]

Internet-Draft mDNS Discovery Relay February 2021

9.1.2. Discovery Proxy

 The description of a Discovery Proxy consists of:

 name a machine-readable name used to reference this Discovery Proxy
 in provisioning.

 hr-name an optional human-readable name which can appear in
 provisioning, monitoring and debugging systems. Must be unique
 within a Discovery Domain.

 certificate a certificate that identifies the Discovery Proxy. This
 certificate can be shared across services on the Discovery Proxy
 Host. The public key in the certificate is used both to uniquely
 identify the Discovery Proxy and to authenticate connections from
 it. The certificate should be signed by its own private key.

 private-key the private key corresponding to the public key in the
 certificate.

 source-ip-addresses a list of IP addresses that may be used by the
 Discovery Proxy when connecting to Discovery Relays. These
 addresses should be addresses that are configured on the Discovery
 Proxy Host. They should not be temporary addresses. All such
 addresses must be reachable within the Discovery Domain.

 public-ip-addresses a list of IP addresses that a Discovery Proxy
 listens on to receive requests from clients. This is not used for
 interoperation with Discovery Relays, but is mentioned here for
 completeness: the list of addresses listened on for incoming
 client requests may differ from the ’source-ip-addresses’ list of
 addresses used for issuing outbound connection requests to
 Discovery Relays. If any of these addresses are reachable from
 outside of the Discovery Domain, services in that domain will be
 discoverable outside of the domain.

 multicast links a list of multicast links on which this Discovery
 Proxy is expected to provide service

 The private key should never be distributed to other hosts; all of
 the other information describing a Discovery Proxy can be safely
 shared with Discovery Relays.

 In some configurations it may make sense for the Discovery Relay not
 to have a list of links, but simply to support the set of all links
 available on relays to which the Discovery Proxy is configured to
 communicate.

Lemon & Cheshire Expires August 26, 2021 [Page 21]

Internet-Draft mDNS Discovery Relay February 2021

9.1.3. Discovery Relay

 The description of a Discovery Relay consists of:

 name a required machine-readable identifier used to reference the
 relay

 hr-name an optional human-readable name which can appear in
 provisioning, monitoring and debugging systems. Must be unique
 within a Discovery Domain.

 certificate a certificate that identifies the Discovery Relay. This
 certificate can be shared across services on the Discovery Relay
 Host. Indeed, if a Discovery Proxy and Discovery Relay are
 running on the same host, the same certificate can be used for
 both. The public key in the certificate uniquely identifies the
 Discovery Relay and is used by a Discovery Relay Client (e.g., a
 Discovery Proxy) to verify that it is talking to the intended
 Discovery Relay after a TLS connection has been established. The
 certificate must either be signed by its own key, or have a
 signature chain that can be validated using PKIX authentication
 [RFC6125].

 private-key the private key corresponding to the public key in the
 certificate.

 listen-tuple a list of IP address/port tuples that may be used to
 connect to the Discovery Relay. The relay may be configured to
 listen on all addresses on a single port, but this is not
 required, so the port as well as the address must be specified.

 multicast links a list of multicast links to which this relay is
 physically connected.

 The private key should never be distributed to other hosts; all of
 the other information describing a Discovery Relay can be safely
 shared with Discovery Proxies.

 In some cases a Relay may not be configured with a static list of
 links, but may simply discover links by monitoring the set of
 available interfaces on the host on which the Relay is running. In
 that case, the relay could be configured to identify links based on
 the names of network interfaces, or based on the set of available
 prefixes seen on those interfaces. The details of this sort of
 configuration are not specified in this document.

Lemon & Cheshire Expires August 26, 2021 [Page 22]

Internet-Draft mDNS Discovery Relay February 2021

9.2. Configuration Files

 For this discussion, we assume the simplest possible means of
 configuring Discovery Proxies and Discovery Relays: the configuration
 file. Any environment where changes will happen on a regular basis
 will either require some automatic means of generating these
 configuration files as the network topology changes, or will need to
 use a more automatic method for configuration, such as HNCP
 [RFC7788].

 There are many different ways to organize configuration files. This
 discussion assumes that multicast links, relays and proxies will be
 specified as objects, as described above, perhaps in a master file,
 and then the specific configuration of each proxy or relay will
 reference the set of objects in the master file, referencing objects
 by name. This approach is not required, but is simply shown as an
 example. In addition, the private keys for each proxy or relay must
 appear only in that proxy or relay’s configuration file.

Lemon & Cheshire Expires August 26, 2021 [Page 23]

Internet-Draft mDNS Discovery Relay February 2021

 The master file contains a list of Discovery Relays, Discovery
 Proxies and Multicast Links. Each object has a name and all the
 other data associated with it. We do not formally specify the format
 of the file, but it might look something like this:

 Relay upstairs
 certificate xxx
 listen-tuple 192.0.2.1 1917
 listen-tuple fd00::1 1917
 link upstairs-wifi
 link upstairs-wired
 client-allow-list main

 Relay downstairs
 certificate yyy
 listen-tuple 192.51.100.1 2088
 listen-tuple fd00::2 2088
 link downstairs-wifi
 link downstairs-wired
 client-allow-list main

 Proxy main
 certificate zzz
 address 203.1.113.1

 Link upstairs-wifi
 id 1
 hr-name Upstairs Wifi

 Link upstairs-wired
 id 2
 hr-name Upstairs Wired

 Link downstairs-wifi
 id 3
 hr-name Downstairs Wifi

 Link downstairs-wired
 id 4
 hr-name Downstairs Wired

Lemon & Cheshire Expires August 26, 2021 [Page 24]

Internet-Draft mDNS Discovery Relay February 2021

9.3. Discovery Proxy Private Configuration

 The Discovery Proxy configuration contains enough information to
 identify which Discovery Proxy is being configured, enumerate the
 list of multicast links it is intended to serve, and provide keying
 information it can use to authenticate to Discovery Relays. It may
 also contain custom information about the port and/or IP address(es)
 on which it will respond to DNS queries.

 An example configuration, following the convention used in this
 section, might look something like this:

 Proxy main
 private-key zzz
 subscribe upstairs-wifi
 subscribe downstairs-wifi
 subscribe upstairs-wired
 subscribe downstairs-wired

 When combined with the master file, this configuration is sufficient
 for the Discovery Proxy to identify and connect to the Discovery
 Relays that serve the links it is configured to support.

9.4. Discovery Relay Private Configuration

 The Discovery Relay configuration just needs to tell the Discovery
 Relay what name to use to find its configuration in the master file,
 and what the private key is corresponding to its certificate (public
 key) in the master file. For example:

 Relay Downstairs
 private-key yyy

Lemon & Cheshire Expires August 26, 2021 [Page 25]

Internet-Draft mDNS Discovery Relay February 2021

10. Security Considerations

 Part of the purpose of the Multicast DNS Discovery Relay protocol is
 to place a simple relay, analogous to a BOOTP relay, into routers and
 similar devices that may not be updated frequently. The BOOTP
 [RFC0951] protocol has been around since 1985, and continues to be
 useful today. The BOOTP protocol uses no encryption, and in many
 enterprise networks this is considered acceptable. In contrast, the
 Discovery Relay protocol requires TLS 1.3. A concern is that after
 20 or 30 years, TLS 1.3, or some of the encryption algorithms it
 uses, may become obsolete, rendering devices that require it
 unusable. Our assessment is that TLS 1.3 probably will be around for
 many years to come. TLS 1.0 [RFC2246] was used for about a decade,
 and similarly TLS 1.2 [RFC5246] was also used for about a decade. We
 expect TLS 1.3 [RFC8446] to have at least that lifespan. In
 addition, recent IETF efforts are pushing for better software update
 practices for devices like routers, for other security reasons,
 making it likely that in ten years time it will be less common to be
 using routers that haven’t had a software update for ten years.
 However, authors of encryption specifications and libraries should be
 aware of the potential backwards compatibility issues if an
 encryption algorithm becomes deprecated. This specification
 RECOMMENDS that if an encryption algorithm becomes deprecated, then
 rather than remove that encryption algorithm entirely, encryption
 libraries should disable that encryption algorithm by default, but
 leave the code present with an option for client software to enable
 it in special cases, such as a recent Client talking to an ancient
 Discovery Relay. Using no encryption, like BOOTP, would eliminate
 this backwards compatibility concern, but we feel that in such a
 future hypothetical scenario, using even a weak encryption algorithm
 still makes passive eavesdropping and tampering harder, and is
 preferable to using no encryption at all.

Lemon & Cheshire Expires August 26, 2021 [Page 26]

Internet-Draft mDNS Discovery Relay February 2021

11. IANA Considerations

 The IANA is kindly requested to update the DSO Type Codes Registry
 [RFC8490] by allocating codes for each of the TBD type codes listed
 in the following table, and by updating this document, here and in
 Section 8. Each type code should list this document as its reference
 document.

 +----------+----------+---------------------------+
 | DSO-TYPE | Status | Name |
 +----------+----------+---------------------------+
 | TBD-R | Standard | Link Data Request |
 | TBD-D | Standard | Link Data Discontinue |
 | TBD-L | Standard | Link Identifier |
 | TBD-M | Standard | Encapsulated mDNS Message |
 | TBD-S | Standard | IP Source |
 | TBD-P | Standard | Link State Request |
 | TBD-Q | Standard | Link State Discontinue |
 | TBD-V | Standard | Link Available |
 | TBD-U | Standard | Link Unavailable |
 | TBD-K | Standard | Link Prefix |
 +----------+----------+---------------------------+

 DSO Type Codes to be allocated

12. Acknowledgments

 Thanks to Derek Atkins for the secdir early review.

Lemon & Cheshire Expires August 26, 2021 [Page 27]

Internet-Draft mDNS Discovery Relay February 2021

13. References

13.1. Normative References

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",
 RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

 [RFC7766] Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
 D. Wessels, "DNS Transport over TCP - Implementation
 Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,
 <https://www.rfc-editor.org/info/rfc7766>.

 [RFC7788] Stenberg, M., Barth, S., and P. Pfister, "Home Networking
 Control Protocol", RFC 7788, DOI 10.17487/RFC7788, April
 2016, <https://www.rfc-editor.org/info/rfc7788>.

Lemon & Cheshire Expires August 26, 2021 [Page 28]

Internet-Draft mDNS Discovery Relay February 2021

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8310] Dickinson, S., Gillmor, D., and T. Reddy, "Usage Profiles
 for DNS over TLS and DNS over DTLS", RFC 8310,
 DOI 10.17487/RFC8310, March 2018,
 <https://www.rfc-editor.org/info/rfc8310>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8490] Bellis, R., Cheshire, S., Dickinson, J., Dickinson, S.,
 Lemon, T., and T. Pusateri, "DNS Stateful Operations",
 RFC 8490, DOI 10.17487/RFC8490, March 2019,
 <https://www.rfc-editor.org/info/rfc8490>.

 [RFC8766] Cheshire, S., "Discovery Proxy for Multicast DNS-Based
 Service Discovery", RFC 8766, DOI 10.17487/RFC8766, June
 2020, <https://www.rfc-editor.org/info/rfc8766>.

13.2. Informative References

 [AdFam] "IANA Address Family Numbers Registry",
 <https://www.iana.org/assignments/address-family-
 numbers/>.

 [AdProx] Cheshire, S. and T. Lemon, "Advertising Proxy for DNS-SD
 Service Registration Protocol", draft-sctl-advertising-
 proxy-00 (work in progress), July 2020.

 [I-D.ietf-mboned-ieee802-mcast-problems]
 Perkins, C., McBride, M., Stanley, D., Kumari, W., and J.
 Zuniga, "Multicast Considerations over IEEE 802 Wireless
 Media", draft-ietf-mboned-ieee802-mcast-problems-12 (work
 in progress), October 2020.

 [I-D.sctl-discovery-broker]
 Cheshire, S. and T. Lemon, "Service Discovery Broker",
 draft-sctl-discovery-broker-00 (work in progress), July
 2017.

 [NOTSENT] Dumazet, E., "TCP_NOTSENT_LOWAT socket option", July 2013,
 <https://lwn.net/Articles/560082/>.

Lemon & Cheshire Expires August 26, 2021 [Page 29]

Internet-Draft mDNS Discovery Relay February 2021

 [PRIO] Chan, W., "Prioritization Only Works When There’s Pending
 Data to Prioritize", January 2014,
 <https://insouciant.org/tech/prioritization-only-works-
 when-theres-pending-data-to-prioritize/>.

 [RFC0951] Croft, W. and J. Gilmore, "Bootstrap Protocol", RFC 951,
 DOI 10.17487/RFC0951, September 1985,
 <https://www.rfc-editor.org/info/rfc951>.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, DOI 10.17487/RFC2246, January 1999,
 <https://www.rfc-editor.org/info/rfc2246>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [TR-069] Broadband Forum, "CPE WAN Management Protocol", November
 2013, <https://www.broadband-forum.org/technical/download/
 TR-069_Amendment-5.pdf>.

Authors’ Addresses

 Ted Lemon
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Phone: +1 (408) 996-1010
 Email: elemon@apple.com

 Stuart Cheshire
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Phone: +1 (408) 996-1010
 Email: cheshire@apple.com

Lemon & Cheshire Expires August 26, 2021 [Page 30]

Network Working Group C. Huitema
Internet-Draft Private Octopus Inc.
Intended status: Standards Track D. Kaiser
Expires: April 18, 2019 October 15, 2018

 Device Pairing Using Short Authentication Strings
 draft-ietf-dnssd-pairing-05

Abstract

 This document proposes a device pairing mechanism that establishes a
 relation between two devices by agreeing on a secret and manually
 verifying the secret’s authenticity using an SAS (short
 authentication string). Pairing has to be performed only once per
 pair of devices, as for a re-discovery at any later point in time,
 the exchanged secret can be used for mutual authentication.

 The proposed pairing method is suited for each application area where
 human operated devices need to establish a relation that allows
 configurationless and privacy preserving re-discovery at any later
 point in time. Since privacy preserving applications are the main
 suitors, we especially care about privacy.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 18, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Huitema & Kaiser Expires April 18, 2019 [Page 1]

Internet-Draft Device Pairing October 2018

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements . 3
 1.2. Document Organization 4
 2. Protocol Specification 4
 2.1. Discovery . 4
 2.2. Agreement on a Shared Secret 5
 2.3. Authentication . 6
 3. Optional Use of QR Codes 8
 3.1. Discovery Using QR Codes 8
 3.2. Agreement with QR Codes 9
 3.3. Authentication with QR Codes 9
 4. Security Considerations 9
 5. IANA Considerations . 10
 6. Acknowledgments . 10
 7. References . 10
 7.1. Normative References 10
 7.2. Informative References 11
 Authors’ Addresses . 11

1. Introduction

 To engage in secure and privacy preserving communication, hosts need
 to differentiate between authorized peers, which must both know about
 the host’s presence and be able to decrypt messages sent by the host,
 and other peers, which must not be able to decrypt the host’s
 messages and ideally should not obtain information that could be used
 to identify the host. The necessary relation between host and peer
 can be established by a centralized service, e.g. a certificate
 authority, by a web of trust, e.g. PGP, or -- without using global
 identities -- by device pairing.

 This document proposes a device pairing mechanism that provides human
 operated devices with pairwise authenticated secrets, allowing mutual
 automatic re-discovery at any later point in time along with mutual
 private authentication. We especially care about privacy and user-
 friendliness. This pairing system can provide the pairing secrets
 used in DNSSD Privacy Extensions [I-D.ietf-dnssd-privacy].

Huitema & Kaiser Expires April 18, 2019 [Page 2]

Internet-Draft Device Pairing October 2018

 The proposed pairing mechanism consists of three steps needed to
 establish a relationship between a host and a peer:

 1. Discovering the peer device. The host needs a means to discover
 network parameters necessary to establish a connection to the
 peer. During this discovery process, neither the host nor the
 peer must disclose its presence.

 2. Agreeing on pairing data. The devices have to agree on pairing
 data, which can be used by both parties at any later point in
 time to generate identifiers for re-discovery and to prove the
 authenticity of the pairing. The pairing data can e.g. be a
 shared secret agreed upon via a Diffie-Hellman key exchange.

 3. Authenticating pairing data. Since in most cases the messages
 necessary to agree upon pairing data are send over an insecure
 channel, means that guarantee the authenticity of these messages
 are necessary; otherwise the pairing data is in turn not suited
 as a means for a later proof of authenticity. For the proposed
 pairing mechanism we use manual authentication involving an SAS
 (short authentication string) to proof the authenticity of the
 pairing data.

 The design of this protocol is based on the analysis of pairing
 protocols issues presented in [I-D.ietf-dnssd-pairing-info] and in
 [K17].

 Many pairing scenarios involve cell phones equipped with cameras
 capable of reading a QR code. In these scenarios, scanning QR codes
 might be more user friendly than selecting names or reading short
 authentication strings from on screen menus. An optional use of QR
 codes in pairing protocols is presented is Section 3.

 DNSSD privacy requirements are analyzed in [I-D.ietf-dnssd-prireq]
 and scaling considerations are reviewed in
 [I-D.ietf-dnssd-privacyscaling]. Further work on these two drafts
 may lead to reviewing the mechanism proposed here.

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Huitema & Kaiser Expires April 18, 2019 [Page 3]

Internet-Draft Device Pairing October 2018

1.2. Document Organization

 NOTE TO RFC EDITOR: remove or rewrite this section before
 publication.

 The original version of this document was organized in two parts.
 The first part presented the pairing need, the list of requirements
 that shall be met. This first part was informational in nature. The
 second part composed the actual specification of the protocol.

 In his early review, Steve Kent observed that the style of the first
 part seems inappropriate for a standards track document, and
 suggested that the two parts should be split into two documents, the
 first part becoming an informational document, and the second
 focusing on standard track specification of the protocol, making
 reference to the informational document as appropriate.

 The DNS-SD working group approved this split during its meeting in
 Prague in July 2017. This version of the document implements the
 split, only retaining the specification part.

2. Protocol Specification

 In the proposed pairing protocol, we will consider the device that
 initiates the pairing as the "client" and the device that responds as
 the "server". The server will publish a "pairing service". The
 client will discover the service instance during the discovery phase,
 as explained in Section 2.1. The pairing service itself is specified
 in Section 2.3.

 We divide pairing in three parts: discovery, agreement, and
 authentication, detailed in the following subsections.

2.1. Discovery

 The goal of the discovery phase is establishing a connection, which
 is later used to exchange the pairing data between the two devices
 that are about to be paired in an IP network without any prior
 knowledge and without publishing any private information.

 When the pairing service starts, the server will advertise the
 pairing service according to DNS-SD [RFC6763] over mDNS [RFC6762].
 In conformance with DNS-SD, the service is described by an SRV record
 and by and empty TXT record. These records will be organized as
 follows:

 1. The pairing service is identified in DNS-SD as "_pairing._tcp".

Huitema & Kaiser Expires April 18, 2019 [Page 4]

Internet-Draft Device Pairing October 2018

 2. The instance name will be a text chosen by the server. It MAY be
 a random string if the server does not want to advertise its
 identity in the local environment, or the user friendly name of
 the server in other cases.

 3. The priority and weight fields of the SRV record SHOULD be set
 according to [RFC6763].

 4. The host name MUST be set to the host name advertised by the
 server in mDNS. The server MAY use a randomized host name as
 explained in [I-D.ietf-dnssd-privacy], provided that this name is
 properly published in mDNS.

 5. The port number MUST be set to the number at which the server is
 listening for the pairing service. This port number SHOULD be
 randomly picked by the server.

 The discovery proceeds as follows:

 1. The server advertises an instance of the above described pairing
 service and displays its instance name on the server’s screen.

 2. The client discovers all the instances of the pairing service
 available on the local network. This may result in the discovery
 of several instance names.

 3. Among these available instance names, the client’s user selects
 the name that matches the name displayed by the server.

 4. Per DNS-SD, the client then retrieves the SRV record of the
 selected instance, retrieves the corresponding server’s A (or
 AAAA) record, and establishes the connection.

2.2. Agreement on a Shared Secret

 Once the server has been selected at the end of the discovery phase,
 the client connects to it without further user intervention. Client
 and server use this connection for exchanging data that allows them
 to agree on a shared secret by using TLS and a key exporter.

 Devices implementing the service MUST support TLS 1.2 [RFC5246], and
 MAY negotiate TLS 1.3 when it becomes available. When using TLS, the
 client and server MUST negotiate a ciphersuite providing forward
 secrecy (PFS), and strong encryption (256 bits symmetric key). All
 implementations using TLS 1.2 MUST be able to negotiate the cipher
 suite TLS_DH_anon_WITH_AES_256_CBC_SHA256.

Huitema & Kaiser Expires April 18, 2019 [Page 5]

Internet-Draft Device Pairing October 2018

 Once the TLS connection has been established, each party extracts the
 pairing secret S_p from the connection context per [RFC5705], using
 the following parameters:

 Disambiguating label string: "PAIRING SECRET"

 Context value: empty.

 Length value: 32 bytes (256 bits).

 The secret "S_p" will be authenticated in the authentication part of
 the protocol.

2.3. Authentication

 The pairing protocol implemented on top of TLS allows the users to
 authenticate the shared secret established in the "Agreement" phase,
 and to minimize the risk of interference by a third party like a
 "man-in-the-middle". The pairing protocol is built using TLS. The
 following description uses the presentation language defined in
 section 4 of [RFC5246]. The protocol uses five message types,
 defined in the following enum:

 enum {
 ClientHash(1),
 ServerRandom(2),
 ClientRandom(3),
 ServerSuccess(4),
 ClientSuccess(5)
 } PairingMessageType;

 Once S_p has been obtained, the client picks a random number R_c,
 exactly 32 bytes long. The client then selects a hash algorithm,
 which MUST be the same algorithm as negotiated for building the PRF
 in the TLS connection. The client then computes the hash value H_c
 as:

 H_c = HMAC_hash(S_p, R_c)

 Where "HMAC_hash" is the HMAC function constructed with the
 selected algorithm.

 The client transmits the selected hash function and the computed
 value of H_c in the Client Hash message, over the TLS connection:

Huitema & Kaiser Expires April 18, 2019 [Page 6]

Internet-Draft Device Pairing October 2018

 struct {
 PairingMessageType messageType;
 hashAlgorithm hash;
 uint8 hashLength;
 opaque H_c[hashLength];
 } ClientHashMessage;

 messageType: Set to "ClientHash".

 hash: The code of the selected hash algorithm, per definition of
 HashAlgorithm in section 7.4.1.1.1 of [RFC5246].

 hashLength: The length of the hash H_c, which MUST be consistent
 with the selected algorithm "hash".

 H_c: The value of the client hash.

 Upon reception of this message, the server stores its value. The
 server picks a random number R_s, exactly 32 bytes long, and
 transmits it to the client in the server random message, over the TLS
 connection:

 struct {
 PairingMessageType messageType;
 opaque R_s[32];
 } ServerRandomMessage;

 messageType Set to "ServerRandom".

 R_s: The value of the random number chosen by the server.

 Upon reception of this message, the client discloses its own random
 number by transmitting the client random message:

 struct {
 PairingMessageType messageType;
 opaque R_c[32];
 } ClientRandomMessage;

 messageType Set to "ClientRandom".

 R_c: The value of the random number chosen by the client.

 Upon reception of this message, the server verifies that the number
 R_c hashes to the previously received value H_c. If the number does
 not match, the server MUST abandon the pairing attempt and abort the
 TLS connection.

Huitema & Kaiser Expires April 18, 2019 [Page 7]

Internet-Draft Device Pairing October 2018

 At this stage, both client and server can compute the short hash SAS
 as:

 SAS = first 20 bits of HMAC_hash(S_p, R_c || R_s)

 Where "HMAC_hash" is the HMAC function constructed with the hash
 algorithm selected by the client in the ClientHashMessage.

 Both client and server display the SAS as a 7 digit decimal integer,
 including leading zeroes, and ask the user to compare the values. If
 the SASes match, each user enters an agreement, for example by
 pressing a button labeled "OK", which results in the pairing being
 remembered. If they do not match, each user should cancel the
 pairing, for example by pressing a button labeled "CANCEL".

 If the values do match and both users agree, the protocol continues
 with the exchange of names, both server and client announcing their
 own preferred name in a Success message

 struct {
 PairingMessageType messageType;
 uint8 nameLength;
 opaque name[nameLength];
 } ClientSuccessMessage;

 messageType: Set to "ClientSuccess" if transmitted by the client,
 "ServerSuccess" if by the server.

 nameLength: The length of the string encoding the selected name.

 name: The selected name of the client or the server, encoded as a
 string of UTF8 characters.

 After receiving these messages, client and servers can orderly close
 the TLS connection, terminating the pairing exchange.

3. Optional Use of QR Codes

 When QR codes are supported, the discovery process can be independent
 of DNS-SD, because QR codes allow the transmission of a sufficient
 amount of data. The agreement process can also be streamlined by the
 scanning of a second QR code.

3.1. Discovery Using QR Codes

 If QR code scanning is available as out-of-band channel, the
 discovery data is directly transmitted via QR codes instead of DNS-SD
 over mDNS. Leveraging QR codes, the discovery proceeds as follows:

Huitema & Kaiser Expires April 18, 2019 [Page 8]

Internet-Draft Device Pairing October 2018

 1. The server displays a QR code containing the connection data
 otherwise found in the SRV and A or AAAA records: IPv4 or IPv6
 address, port number, and optionally host name.

 2. The client scans the QR code retrieving the necessary information
 for establishing a connection to the server.

 [[TODO: We should precisely specify the data layout of this QR code.
 It could either be the wire format of the corresponding resource
 records (which would be easier for us), or a more efficient
 representation. If we chose the wire format, we could use a fixed
 name as instance name.]]

3.2. Agreement with QR Codes

 When QR codes are available, the agreement on a shared secret
 proceeds exactly as in the general case.

3.3. Authentication with QR Codes

 The availability of QR codes does not change the required network
 messages or the computation of the SAS, which will performed exactly
 as specified in Section 2.3, but when QR codes are supported, the SAS
 may also be represented as QR code.

 In the general case, both client and server display the SAS as a
 decimal integer, and ask the user to compare the values. If the
 server supports QR codes, the server displays a QR code encoding the
 decimal string representation of the SAS. If the client is capable
 of scanning QR codes, it may scan the value and compare it to the
 locally computed value.

 Once user agreement has been obtained, the protocol continues as in
 the general case presented in Section 2.3.

4. Security Considerations

 We need to consider two types of attacks against a pairing system:
 attacks that occur during the establishment of the pairing relation,
 and attacks that occur after that establishment.

 During the establishment of the pairing system, we are concerned with
 privacy attacks and with MitM attacks. Privacy attacks reveal the
 existence of a pairing between two devices, which can be used to
 track graphs of relations. MitM attacks result in compromised
 pairing keys. The discovery procedures specified in Section 2.1 and
 the authentication procedures specified in Section 2.3 are
 specifically designed to mitigate such attacks, assuming that the

Huitema & Kaiser Expires April 18, 2019 [Page 9]

Internet-Draft Device Pairing October 2018

 client and user are in close, physical proximity and thus a human
 user can visually acquire and verify the pairing information.

 The establishment of the pairing results in the creation of a shared
 secret. After the establishment of the pairing relation, attackers
 who compromise one of the devices could access the shared secret.
 This will enable them to either track or spoof the devices. To
 mitigate such attacks, nodes MUST store the secret safely, and MUST
 be able to quickly revoke a compromised pairing.

5. IANA Considerations

 This draft does not require any IANA action.

6. Acknowledgments

 We would like to thank Steve Kent and Ted Lemon for their detailed
 reviews of this document, and for their advice on how to improve it.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

Huitema & Kaiser Expires April 18, 2019 [Page 10]

Internet-Draft Device Pairing October 2018

7.2. Informative References

 [I-D.ietf-dnssd-pairing-info]
 Kaiser, D. and C. Huitema, "Device Pairing Design Issues",
 draft-ietf-dnssd-pairing-info-01 (work in progress), April
 2018.

 [I-D.ietf-dnssd-prireq]
 Huitema, C., "DNS-SD Privacy and Security Requirements",
 draft-ietf-dnssd-prireq-00 (work in progress), September
 2018.

 [I-D.ietf-dnssd-privacy]
 Huitema, C. and D. Kaiser, "Privacy Extensions for DNS-
 SD", draft-ietf-dnssd-privacy-04 (work in progress), April
 2018.

 [I-D.ietf-dnssd-privacyscaling]
 Huitema, C., "DNS-SD Privacy Scaling Tradeoffs", draft-
 ietf-dnssd-privacyscaling-00 (work in progress), September
 2018.

 [K17] Kaiser, D., "Efficient Privacy-Preserving
 Configurationless Service Discovery Supporting Multi-Link
 Networks", 2017,
 <http://nbn-resolving.de/urn:nbn:de:bsz:352-0-422757>.

Authors’ Addresses

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net

 Daniel Kaiser
 Esch-sur-Alzette 4360
 Luxembourg

 Email: daniel@kais3r.de

Huitema & Kaiser Expires April 18, 2019 [Page 11]

Network Working Group D. Kaiser
Internet-Draft
Intended status: Informational C. Huitema
Expires: April 26, 2019 Private Octopus Inc.
 October 23, 2018

 Device Pairing Design Issues
 draft-ietf-dnssd-pairing-info-02

Abstract

 This document discusses issues and problems occuring in the design of
 device pairing mechanism. It presents experience with existing
 pairing systems and general user interaction requirements to make the
 case for "short authentication strings". It then reviews the design
 of cryptographic algorithms designed to maximise the robustness of
 the short authentication string mechanisms, as well as implementation
 considerations such as integration with TLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Kaiser & Huitema Expires April 26, 2019 [Page 1]

Internet-Draft Device Pairing Issues October 2018

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Document Organization 3
 2. Protocol Independent Secure Pairing 3
 3. Identity Assurance . 4
 4. Manual Authentication . 4
 4.1. Short PIN Proved Inadequate 4
 4.2. Push Buttons Just Work, But Are Insecure 5
 4.3. Short Range Communication 6
 4.4. Short Authentication Strings 6
 4.5. Revisiting the PIN versus SAS discussion 7
 5. Resist Cryptographic Attacks 8
 6. Privacy Requirements . 11
 7. Using TLS . 11
 8. QR codes . 12
 9. Intra User Pairing and Transitive Pairing 14
 10. Security Considerations 15
 11. IANA Considerations . 15
 12. Acknowledgments . 15
 13. Informative References 15
 Authors’ Addresses . 17

1. Introduction

 To engage in secure and privacy preserving communication, hosts need
 to differentiate between authorized peers, which must both know about
 the host’s presence and be able to decrypt messages sent by the host,
 and other peers, which must not be able to decrypt the host’s
 messages and ideally should not be aware of the host’s presence. The
 necessary relationship between host and peer can be established by a
 centralized service, e.g. a certificate authority, by a web of trust,
 e.g. PGP, or -- without using global identities -- by device
 pairing.

 The general pairing requirement is easy to state: establish a trust
 relation between two entities in a secure manner. But details
 matter, and in this section we explore the detailed requirements that
 will guide the design of a pairing protocol.

 This document does not specify an actual pairing protocol, but it
 served as the basis for the design of the pairing protocol developed
 for DNS-SD privacy [I-D.ietf-dnssd-pairing]. The requirement of a

Kaiser & Huitema Expires April 26, 2019 [Page 2]

Internet-Draft Device Pairing Issues October 2018

 pairing system for private discovery are analyzed in part in
 [I-D.ietf-dnssd-prireq].

1.1. Document Organization

 NOTE TO RFC EDITOR: remove or rewrite this section before
 publication.

 This document results from a split of an earlier pairing draft that
 contained two parts. The first part, presented the pairing need, and
 the list of requirements that shall be met. The second part
 presented the design is the actual specification of the protocol.

 In his early review, Steve Kent observed that the style of the first
 part seems inappropriate for a standards track document, and
 suggested that the two parts should be split into two documents, the
 first part becoming an informational document, and the second
 focusing on standard track specification of the protocol, making
 reference to the informational document as appropriate.

 The working group approved this split.

2. Protocol Independent Secure Pairing

 Many pairing protocols have already been developed, in particular for
 the pairing of devices over specific wireless networks. For example,
 the current Bluetooth specifications include a pairing protocol that
 has evolved over several revisions towards better security and
 usability [BTLEPairing]. The Wi-Fi Alliance defined the Wi-Fi
 Protected Setup process to ease the setup of security-enabled Wi-Fi
 networks in home and small office environments [WPS]. Other wireless
 standards have defined or are defining similar protocols, tailored to
 specific technologies.

 In this document we provide background and discuss the design of a
 manually authenticated pairing protocol that is independent of the
 underlying network protocol stack. We discuss (1) means allowing the
 two parties engaged in the pairing to discover each other in an
 existing unsecured network -- e.g. means for learning about the
 network parameters of the respective other device -- which allows
 them to establish a connection; (2) agreeing on a shared secret via
 this connection; and (3) manually authenticating this secret. For
 our discussion and our secure pairing protocol specification
 [I-D.ietf-dnssd-pairing], we assume an IP based unsecured network.
 With little adaption, this pairing mechanism can be used on other
 protocol stacks as well.

Kaiser & Huitema Expires April 26, 2019 [Page 3]

Internet-Draft Device Pairing Issues October 2018

 We limit the goal of the protocol to the establishment of a shared
 secret between two parties. Once that secret has been established,
 it can trivially be used to secure the exchange of other
 informations, such as for example public keys and certificates.

3. Identity Assurance

 The parties in the pairing must be able to identify each other. To
 put it simply, if Alice believes that she is establishing a pairing
 with Bob, she must somehow ensure that the pairing is actually
 established with Bob, and not with some interloper like Eve or
 Nessie. Providing this assurance requires designing both the
 protocol and the user interface (UI) with care.

 Consider for example an attack in which Eve tricks Alice into
 engaging in a pairing process while pretending to be Bob. Alice must
 be able to discover that something is wrong, and refuse to establish
 the pairing. The parties engaged in the pairing must at least be
 able to verify their identities, respectively.

4. Manual Authentication

 Because the pairing protocol is executed without prior knowledge, it
 is typically vulnerable to "Man-in-the-Middle" attacks. While Alice
 is trying to establish a pairing with Bob, Eve positions herself in
 the middle. Instead of getting a pairing between Alice and Bob, both
 Alice and Bob get paired with Eve. Because of this, the protocol
 requires specific features to detect Man-in-the-Middle attacks, and
 if possible resist them.

 This section discusses existing techniques that are used in practice
 for manually authenticating a Diffie-Hellman key exchange, and
 Section 5 provides a layman description of the MiTM problem and
 countermeasures. A more in depth exploration of manually
 authenticated pairing protocols may be found in [NR11] and [K17].

4.1. Short PIN Proved Inadequate

 The initial Bluetooth pairing protocol relied on a four digit PIN,
 displayed by one of the devices to be paired. The user read that PIN
 and provided it to the other device. The PIN was then used in a
 Password Authenticated Key Exchange. Wi-Fi Protected Setup [WPS]
 offered a similar option. There were various attacks against the
 actual protocol; some of the problems were caused by issues in the
 protocol, but most were tied to the usage of short PINs.

 In the reference implementation, the PIN is picked at random by the
 paired device before the beginning of the exchange. But this

Kaiser & Huitema Expires April 26, 2019 [Page 4]

Internet-Draft Device Pairing Issues October 2018

 requires that the paired device is capable of generating and
 displaying a four digit number. It turns out that many devices
 cannot do that. For example, an audio headset does not have any
 display capability. These limited devices ended up using static
 PINs, with fixed values like "0000" or "0001".

 Even when the paired device could display a random PIN, that PIN had
 to be copied by the user on the pairing device. It turns out that
 users do not like copying long series of numbers, and the usability
 thus dictated that the PINs be short -- four digits in practice. But
 there is only so much assurance as can be derived from a four digit
 key.

 The latest revisions of the Bluetooth Pairing protocol [BTLEPairing]
 do not include the short PIN option anymore. The PIN entry methods
 have been superseded by the simple "just works" method for devices
 without displays, and by a procedure based on an SAS (short
 authentication string) when displays are available.

 A further problem with these PIN based approaches is that -- in
 contrast to SASes -- the PIN is a secret instrumental in the security
 algorithm. To guarantee security, this PIN would have to be
 transmitted via a secure out-of-band channel.

4.2. Push Buttons Just Work, But Are Insecure

 Some devices are unable to input or display any code. The industry
 more or less converged on a "push button" solution. When the button
 is pushed, devices enter a "pairing" mode, during which they will
 accept a pairing request from whatever other device connects to them.

 The Bluetooth Pairing protocol [BTLEPairing] denotes that as the
 "just works" method. It does indeed work, and if the pairing
 succeeds the devices will later be able to use the pairing keys to
 authenticate connections. However, the procedure does not provide
 any protection against MitM attacks during the pairing process. The
 only protection is that pushing the button will only allow pairing
 for a limited time, thus limiting the opportunities of attacks.

 As we set up to define a pairing protocol with a broad set of
 applications, we cannot limit ourselves to an insecure "push button"
 method. But we probably need to allow for a mode of operation that
 works for input-limited and display limited devices.

Kaiser & Huitema Expires April 26, 2019 [Page 5]

Internet-Draft Device Pairing Issues October 2018

4.3. Short Range Communication

 Many pairing protocols that use out-of-band channels have been
 defined. Most of them are based on short range communication
 systems, where the short range limits the feasibility for attackers
 to access the channels. Example of such limited systems include for
 example:

 o QR codes, displayed on the screen of one device, and read by the
 camera of the other device.

 o Near Field Communication (NFC) systems, which provides wireless
 communication with a very short range.

 o Sound systems, in which one systems emits a sequence of sounds or
 ultrasounds that is picked by the microphone of the other system.

 A common problem with these solutions is that they require special
 capabilities that may not be present in every device. Another
 problem is that they are often one-way channels.

 The pairing protocols should not rely on the secrecy of the out-of-
 band channels; most of these out-of-band channels do not provide
 confidentiality. QR codes could be read by third parties. Powerful
 radio antennas might be able to interfere with NFC. Sensitive
 microphones might pick the sounds. However, a property that all of
 these channels share is authenticity, i.e. an assurance that the data
 obtained over the out-of-band channel actually comes from the other
 party. This is because these out-of-band channels involve the user
 transmitting information from one device to the other. We will
 discuss the specific case of QR codes in Section 8.

4.4. Short Authentication Strings

 The evolving pairing protocols seem to converge towards using Short
 Authentication Strings and verifying them via the "compare and
 confirm" method. This is in line with academic studies, such as
 [KFR09] or [USK11], and, from the users’ perspective, results in a
 very simple interaction:

 1. Alice and Bob compare displayed strings that represent a
 fingerprint of the afore exchanged pairing key.

 2. If the strings match, Alice and Bob accept the pairing.

 Most existing pairing protocols display the fingerprint of the key as
 a 6 or 7 digit number. Usability studies show that this method gives
 good results, with little risk that users mistakenly accept two

Kaiser & Huitema Expires April 26, 2019 [Page 6]

Internet-Draft Device Pairing Issues October 2018

 different numbers as matching. However, the authors of [USK11] found
 that people had more success comparing computer generated sentences
 than comparing numbers. This is in line with the argument in
 [XKCD936] to use sequences of randomly chosen common words as
 passwords. On the other hand, standardizing strings is more
 complicated than standardizing numbers. We would need to specify a
 list of common words, and the process to go from a binary fingerprint
 to a set of words. We would need to be concerned with
 internationalization issues, such as using different lists of words
 in German and in English. This could require the negotiation of word
 lists or languages inside the pairing protocols.

 In contrast, numbers are easy to specify, as in "take a 20 bit number
 and display it as an integer using decimal notation".

4.5. Revisiting the PIN versus SAS discussion

 In section Section 4.1 we presented the drawbacks of using short
 pins. One could object that many of the technical issues could be
 overcome by use of better PAKE algorithms, or by supporting longer
 PIN. And one could also argue that if PIN based pairing algorithms
 suffer from failure modes such as static PIN configuration, SAS based
 protocols are vulnerable to SAS bypass.

 The SAS bypass argument is rooted in the psychology of users. In
 practice, pairing processes can be stressful. The user has to
 discover on each device the proper combination of key entries that
 brings up the required pairing UI, will be anxious and eager to
 complete the procedure, and may well be predisposed to click "OK" in
 the final stage of the algorithm without actually verifying the SAS.
 Some users may bypass the required comparison step, because they just
 want to be done with the pairing.

 An advantage of PIN based processes is that they cannot be bypassed.
 The user must enter the PIN before continuing. Also, once the PIN is
 entered, everything is automatic. The user does not need to input
 more data, or press any additional button. PIN based protocols would
 be a great fit for the QR-code based interaction. One device would
 display a QR code that contains the PIN. Once the QR code is scanned
 by the other device, the process is automated.

 QR based PIN entry may be user friendly, but one of the arguments
 developed in Section 4.1 still holds. Let’s assume that an adversary
 somehow obtains the PIN, maybe by scanning the QR code at a distance.
 That adversary could mount MITM or impersonation attacks, and
 compromise the pairing process. It is thus very important to ensure
 that the PIN is only readable by the user doing the pairing.

Kaiser & Huitema Expires April 26, 2019 [Page 7]

Internet-Draft Device Pairing Issues October 2018

 We could also argue that the SAS bypass failure mode may be mitigated
 by specific user designs. For example, instead of just clicking OK,
 the user could be required to enter the SAS displayed by the other
 device. This requires about the same interactions as a PIN based
 process, and it would be slightly safer because the SAS does not have
 to be kept secret once the keys have been exchanged.

 If we summarize the debate, we see that both SAS and PIN based
 solutions have failure modes depending on implementations. In the
 SAS mode, the failure happens when the UI does not force the user to
 copy the PIN and relies on a simple "OK to continue" dialog. In the
 PIN mode, the failure happens when the device fails to generate a
 random PIN for each session, and comes pre-programmed with a simple
 static PIN of "0000" or "0001".

5. Resist Cryptographic Attacks

 It is tempting to believe that once two peers are connected, they
 could create a secret with a few simple steps, such as for example
 (1) exchange two nonces, (2) hash the concatenation of these nonces
 with the shared secret that is about to be established, (3) display a
 short authentication string composed of a short version of that hash
 on each device, and (4) verify that the two values match. This naive
 approach might yield the following sequence of messages:

 Alice Bob
 g^xA -->
 <-- g^xB
 nA -->
 <-- nB
 Computes Computes
 s = g^xAxB s = g^xAxB
 h = hash(s|nA|nB) h = hash(s|nA|nB)
 Displays short Displays short
 version of h version of h

 If the two short hashes match, Alice and Bob are supposedly assured
 that they have computed the same secret, but there is a problem.
 Let’s redraw the same message flow, this time involving the attacker
 Eve:

Kaiser & Huitema Expires April 26, 2019 [Page 8]

Internet-Draft Device Pairing Issues October 2018

 Alice Eve Bob
 g^xA -->
 g^xA’-->
 <-- g^xB
 <--g^xB’
 nA -->
 nA -->
 <-- nB
 Picks nB’
 smartly
 <--nB’
 Computes Computes
 s’ = g^xAxB’ s" = g^xA’xB
 h’ = hash(s’|nA|nB’) h" = hash(s"|nA|nB)
 Displays short Displays short
 version of h’ version of h"

 In order to pick a nonce nB’ that circumvents this naive security
 measure, Eve runs the following algorithm:

 s’ = g^xAxB’
 s" = g^xA’xB
 repeat
 pick a new version of nB’
 h’ = hash(s’|nA|nB’)
 h" = hash(s"|nA|nB)
 until the short version of h’
 matches the short version of h"

 Running this algorithm will take O(2^b) iterations on average
 (assuming a uniform distribution), where b is the bit length of the
 SAS. Since hash algorithms are fast, it is possible to try millions
 of values in less than a second. If the short string is made up of
 fewer than 6 digits, Eve will find a matching nonce quickly, and
 Alice and Bob will hardly notice the delay. Even if the matching
 string is as long as 8 letters, Eve will probably find a value where
 the short versions of h’ and h" are close enough, e.g. start and end
 with the same two or three letters. Alice and Bob may well be
 fooled.

 Eve could also utilize the fact that she may freely choose the whole
 input for the hash function and thus choose g^xA’ and g^xB’ so that
 an arbitrary collision (birthday attack) instead of a second preimage
 is sufficient for fooling Alice and Bob.

 The classic solution to such problems is to "commit" a possible
 attacker to a nonce before sending it. This commitment can be

Kaiser & Huitema Expires April 26, 2019 [Page 9]

Internet-Draft Device Pairing Issues October 2018

 realized by a hash. In the modified exchange, Alice sends a secure
 hash of her nonce before sending the actual value:

 Alice Bob
 g^xA -->
 <-- g^xB

 Computes Computes
 s = g^xAxB s = g^xAxB
 h_a = hash(s|nA) -->
 <-- nB
 nA -->
 verifies h_a == hash(s|nA)
 Computes Computes
 h = hash(s|nA|nB) h = hash(s|nA|nB)
 Displays short Displays short
 version of h version of h

 Alice will only disclose nA after having confirmation from Bob that
 hash(nA) has been received. At that point, Eve has a problem. She
 can still forge the values of the nonces, but she needs to pick the
 nonce nA’ before the actual value of nA has been disclosed. Eve
 would still have a random chance of fooling Alice and Bob, but it
 will be a very small chance: one in a million if the short
 authentication string is made of 6 digits, even fewer if that string
 is longer.

 Nguyen et al. [NR11] survey these protocols and compare them with
 respect to the amount of necessary user interaction and the
 computation time needed on the devices. The authors state that such
 a protocol is optimal with respect to user interaction if it suffices
 for users to verify a single b-bit SAS while having a one-shot attack
 success probability of 2^-b. Further, n consecutive attacks on the
 protocol must not have a better success probability then n one-shot
 attacks.

 There is still a theoretical problem, if Eve has somehow managed to
 "crack" the hash function. We can build "defense in depth" by some
 simple measures. In the design presented above, the hash "h_a"
 depends on the shared secret "s", which acts as a "salt" and reduces
 the effectiveness of potential attacks based on pre-computed
 catalogs. The simplest design uses a concatenation mechanism, but we
 could instead use a keyed-hash message authentication code (HMAC
 [RFC2104], [RFC6151]), using the shared secret as a key, since the
 HMAC construct has proven very robust over time. Then, we can
 constrain the size of the random numbers to be exactly the same as
 the output of the hash function. Hash attacks often require padding

Kaiser & Huitema Expires April 26, 2019 [Page 10]

Internet-Draft Device Pairing Issues October 2018

 the input string with arbitrary data; restraining the size limits the
 likelyhood of such padding.

6. Privacy Requirements

 Pairing exposes a relation between several devices and their owners.
 Adversaries may attempt to collect this information, for example in
 an attempt to track devices, their owners, or their social graph. It
 is often argued that pairing could be performed in a safe place, from
 which adversaries are assumed absent, but experience shows that such
 assumptions are often misguided. It is much safer to acknowledge the
 privacy issues and design the pairing process accordingly.

 In order to start the pairing process, devices must first discover
 each other. We do not have the option of using the private discovery
 protocol [I-D.ietf-dnssd-privacy] since the privacy of that protocol
 depends on a pre-existing pairing. In the simplest design, one of
 the devices will announce a user-friendly name using DNS-SD.
 Adversaries could monitor the discovery protocol, and record that
 name. An alternative would be for one device to announce a random
 name, and communicate it to the other device via some private
 channel. There is an obvious tradeoff here: friendly names are
 easier to use but less private than random names. We anticipate that
 different users will choose different tradeoffs, for example using
 friendly names if they assume that the environment is safe, and using
 random names in public places.

 During the pairing process, the two devices establish a connection
 and validate a pairing secret. As discussed in Section 4, we have to
 assume that adversaries can mount MitM attacks. The pairing protocol
 can detect such attacks and resist them, but the attackers will have
 access to all messages exchanged before the validation is performed.
 It is important to not exchange any privacy sensitive information
 before that validation. This includes, for example, the identities
 of the parties or their public keys.

7. Using TLS

 The pairing algorithms typically combine the establishment of a
 shared secret through an [EC]DH exchange with the verification of
 that secret through displaying and comparing a "short authentication
 string" (SAS). As explained in Section 5, the secure comparison
 requires a "commit before disclose" mechanism.

 We have three possible designs: (1) create a pairing algorithm from
 scratch, specifying our own cryptographic protocol; (2) use an [EC]DH
 version of TLS to negotiate a shared secret, export the key to the
 application as specified in [RFC5705], and implement the "commit

Kaiser & Huitema Expires April 26, 2019 [Page 11]

Internet-Draft Device Pairing Issues October 2018

 before disclose" and SAS verification as part of the pairing
 application; or, (3) use TLS, integrate the "commit before disclose"
 and SAS verification as TLS extensions, and export the verified key
 to the application as specified in [RFC5705].

 When faced with the same choice, the designers of ZRTP [RFC6189]
 chose to design a new protocol integrated in the general framework of
 real time communications. We don’t want to follow that path, and
 would rather not create yet another protocol. We would need to
 reinvent a lot of the negotiation capabilities that are part of TLS,
 not to mention algorithm agility, post quantum, and all that sort of
 things. It is thus pretty clear that we should use TLS.

 It turns out that there was already an attempt to define SAS
 extensions for TLS ([I-D.miers-tls-sas]). It is a very close match
 to our third design option, full integration of SAS in TLS, but the
 draft has expired, and there does not seem to be any support for the
 SAS options in the common TLS packages.

 In our design, we will choose the middle ground option -- use TLS for
 [EC]DH, and implement the SAS verification as part of the pairing
 application. This minimizes dependencies on TLS packages to the
 availability of a key export API following [RFC5705]. We will need
 to specify the hash algorithm used for the SAS computation and
 validation, which carries some of the issues associated with
 "designing our own crypto". One solution would be to use the same
 hash algorithm negotiated by the TLS connection, but common TLS
 packages do not always make this algorithm identifier available
 through standard APIs. A fallback solution is to specify a state of
 the art keyed MAC algorithm.

8. QR codes

 In Section 4.3, we reviewed a number of short range communication
 systems that can be used to facilitate pairing. Out of these, QR
 codes stand aside because most devices that can display a short
 string can also display the image of a QR code, and because many
 pairing scenarios involve cell phones equipped with cameras capable
 of reading a QR code.

 QR codes are displayed as images. An adversary equipped with
 powerful cameras could read the QR code just as well as the pairing
 parties. If the pairing protocol design embedded passwords or pins
 in the QR code, adversaries could access these data and compromise
 the protocol. On the other hand, there are ways to use QR codes even
 without assuming secrecy.

Kaiser & Huitema Expires April 26, 2019 [Page 12]

Internet-Draft Device Pairing Issues October 2018

 QR codes could be used at two of the three stages of pairing:
 Discovering the peer device, and authenticating the shared secret.
 Using QR codes provides advantages in both phases:

 o Typical network based discovery involves interaction with two
 devices. The device to be discovered is placed in "server" mode,
 and waits for requests from the network. The device performing
 the discovery retrieves a list of candidates from the network.
 When there is more than one such candidate, the device user is
 expected to select the desired target from a list. In QR code
 mode, the discovered device will display a QR code, which the user
 will scan using the second device. The QR code will embed the
 device’s name, its IP address, and the port number of the pairing
 service. The connection will be automatic, without relying on the
 network discovery. This is arguably less error-prone and safer
 than selecting from a network provided list.

 o SAS based agreement involves displaying a short string on each
 device’s display, and asking the user to verify that both devices
 display the same string. In QR code mode, one device could
 display a QR code containing this short string. The other device
 could scan it and compare it to the locally computed version.
 Because the procedure is automated, there is no dependency on the
 user diligence at comparing the short strings.

 Offering QR codes as an alternative to discovery and agreement is
 straightforward. If QR codes are used, the pairing program on the
 server side might display something like:

 Please connect to "Bob’s phone 359"
 or scan the following QR code:

 mmmmmmm m m mmmmmmm
 # mmm # ## "m # mmm #
 # ### # m" #" # ### #
 #mmmmm# # m m #mmmmm#
 mm m mm"## m mmm mm
 " ##"mm m"# ####"m""#
 #"mmm mm# m"# ""m" "m
 mmmmmmm #mmm###mm# m
 # mmm # m "mm " " "
 # ### # " m # "## "#
 #mmmmm# ### m"m m m

 If Alice’s device is capable of reading the QR code, it will just
 scan it, establishes a connection, and run the pairing protocol.
 After the protocol messages have been exchanged, Bob’s device will

Kaiser & Huitema Expires April 26, 2019 [Page 13]

Internet-Draft Device Pairing Issues October 2018

 display a new QR code, encoding the hash code that should be matched.
 The UI might look like this:

 Please scan the following QR code,
 or verify that your device displays
 the number: 388125

 mmmmmmm mmm mmmmmmm
 # mmm # ""#m# # mmm #
 # ### # "# # # ### #
 #mmmmm# # m"m #mmmmm#
 mmmmm mmm" m m m m m
 #"m mmm#"#"#"#m m#m
 ""mmmmm"m#""#""m # m
 mmmmmmm # "m"m "m"#"m
 # mmm # mmmm m "# #"
 # ### # #mm"#"#m "
 #mmmmm# #mm"#""m "m"

 Did the number match (Yes/No)?

 With the use of QR code, the pairing is established with little
 reliance on user judgment, which is arguably safer.

9. Intra User Pairing and Transitive Pairing

 There are two usage modes for pairing: inter-user, and intra-user.
 Users have multiple devices. The simplest design is to not
 distinguish between pairing devices belonging to two users, e.g.,
 Alice’s phone and Bob’s phone, and devices belonging to the same
 user, e.g., Alice’s phone and her laptop. This will most certainly
 work, but it raises the problem of transitivity. If Bob needs to
 interact with Alice, should he install just one pairing for "Alice
 and Bob", or should he install four pairings between Alice phone and
 laptop and Bob phone and laptop? Also, what happens if Alice gets a
 new phone?

 One tempting response is to devise a synchronization mechanism that
 will let devices belonging to the same user share their pairings with
 other users. But it is fairly obvious that such service will have to
 be designed cautiously. The pairing system relies on shared secrets.
 It is much easier to understand how to manage secrets shared between
 exactly two parties than secrets shared with an unspecified set of
 devices.

 Transitive pairing raises similar issues. Suppose that a group of
 users wants to collaborate. Will they need to set up a fully
 connected graph of pairings using the simple peer-to-peer mechanism,

Kaiser & Huitema Expires April 26, 2019 [Page 14]

Internet-Draft Device Pairing Issues October 2018

 or could they use some transitive set, so that if Alice is connected
 with Bob and Bob with Carol, Alice automatically gets connected with
 Carol? Such transitive mechanisms could be designed, e.g. using a
 variation of Needham-Scroeder symmetric key protocol [NS1978], but it
 will require some extensive work. Groups can of course use simpler
 solution, e.g., build some star topology.

 Given the time required, intra-user pairing synchronization
 mechanisms and transitive pairing mechanisms are left for further
 study.

10. Security Considerations

 This document lists a set of security issues that have to be met by
 pairing protocols, but does not specify any protocol.

11. IANA Considerations

 This draft does not require any IANA action.

12. Acknowledgments

 We would like to thank Steve Kent for a detailed early review of an
 early draft of this document. Both him and Ted Lemon were
 influential in the decision to separate the analysis of pairing
 requirements from the specification of pairing protocol in
 [I-D.ietf-dnssd-pairing]

13. Informative References

 [BTLEPairing]
 Bluetooth SIG, "Bluetooth Low Energy Security Overview",
 2016,
 <https://developer.bluetooth.org/TechnologyOverview/Pages/
 LE-Security.aspx>.

 [I-D.ietf-dnssd-pairing]
 Huitema, C. and D. Kaiser, "Device Pairing Using Short
 Authentication Strings", draft-ietf-dnssd-pairing-04 (work
 in progress), April 2018.

 [I-D.ietf-dnssd-prireq]
 Huitema, C., "DNS-SD Privacy and Security Requirements",
 draft-ietf-dnssd-prireq-00 (work in progress), September
 2018.

Kaiser & Huitema Expires April 26, 2019 [Page 15]

Internet-Draft Device Pairing Issues October 2018

 [I-D.ietf-dnssd-privacy]
 Huitema, C. and D. Kaiser, "Privacy Extensions for DNS-
 SD", draft-ietf-dnssd-privacy-04 (work in progress), April
 2018.

 [I-D.miers-tls-sas]
 Miers, I., Green, M., and E. Rescorla, "Short
 Authentication Strings for TLS", draft-miers-tls-sas-00
 (work in progress), February 2014.

 [K17] Kaiser, D., "Efficient Privacy-Preserving
 Configurationless Service Discovery Supporting Multi-Link
 Networks", 2017,
 <http://nbn-resolving.de/urn:nbn:de:bsz:352-0-422757>.

 [KFR09] Kainda, R., Flechais, I., and A. Roscoe, "Usability and
 Security of Out-Of-Band Channels in Secure Device Pairing
 Protocols", DOI: 10.1145/1572532.1572547, SOUPS
 09, Proceedings of the 5th Symposium on Usable Privacy and
 Security, Mountain View, CA, January 2009.

 [NR11] Nguyen, L. and A. Roscoe, "Authentication protocols based
 on low-bandwidth unspoofable channels: a comparative
 survey", DOI: 10.3233/JCS-2010-0403, Journal of Computer
 Security, Volume 19 Issue 1, Pages 139-201, January 2011.

 [NS1978] Needham, R. and M. Schroeder, ". Using encryption for
 authentication in large networks of computers",
 Communications of the ACM 21 (12): 993-999,
 DOI: 10.1145/359657.359659, December 1978.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
 RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <https://www.rfc-editor.org/info/rfc6151>.

Kaiser & Huitema Expires April 26, 2019 [Page 16]

Internet-Draft Device Pairing Issues October 2018

 [RFC6189] Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:
 Media Path Key Agreement for Unicast Secure RTP",
 RFC 6189, DOI 10.17487/RFC6189, April 2011,
 <https://www.rfc-editor.org/info/rfc6189>.

 [USK11] Uzun, E., Saxena, N., and A. Kumar, "Pairing devices for
 social interactions: a comparative usability evaluation",
 DOI: 10.1145/1978942.1979282, Proceedings of the
 International Conference on Human Factors in Computing
 Systems, CHI 2011, Vancouver, BC, Canada, May 2011.

 [WPS] Wi-Fi Alliance, "Wi-Fi Protected Setup", 2016,
 <http://www.wi-fi.org/discover-wi-fi/
 wi-fi-protected-setup>.

 [XKCD936] Munroe, R., "XKCD: Password Strength", 2011,
 <https://www.xkcd.com/936/>.

Authors’ Addresses

 Daniel Kaiser
 Esch-sur-Alzette 4360
 Luxembourg

 Email: daniel@kais3r.de

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net

Kaiser & Huitema Expires April 26, 2019 [Page 17]

Network Working Group C. Huitema
Internet-Draft Private Octopus Inc.
Intended status: Standards Track D. Kaiser
Expires: April 18, 2019 University of Konstanz
 October 15, 2018

 Privacy Extensions for DNS-SD
 draft-ietf-dnssd-privacy-05

Abstract

 DNS-SD (DNS Service Discovery) normally discloses information about
 both the devices offering services and the devices requesting
 services. This information includes host names, network parameters,
 and possibly a further description of the corresponding service
 instance. Especially when mobile devices engage in DNS Service
 Discovery over Multicast DNS at a public hotspot, a serious privacy
 problem arises.

 We propose to solve this problem by a two-stage approach. In the
 first stage, hosts discover Private Discovery Service Instances via
 DNS-SD using special formats to protect their privacy. These service
 instances correspond to Private Discovery Servers running on peers.
 In the second stage, hosts directly query these Private Discovery
 Servers via DNS-SD over TLS. A pairwise shared secret necessary to
 establish these connections is only known to hosts authorized by a
 pairing system.

 Revisions of this draft are currently considered in the DNSSD working
 group.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 18, 2019.

Huitema & Kaiser Expires April 18, 2019 [Page 1]

Internet-Draft DNS-SD Privacy Extensions October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements . 4
 2. Design of the Private DNS-SD Discovery Service 4
 2.1. Device Pairing . 5
 2.2. Discovery of the Private Discovery Service 5
 2.2.1. Obfuscated Instance Names 5
 2.2.2. Using a Predictable Nonce 6
 2.2.3. Using a Short Proof 7
 2.2.4. Direct Queries 8
 2.3. Private Discovery Service 9
 2.3.1. A Note on Private DNS Services 10
 2.4. Randomized Host Names 11
 2.5. Timing of Obfuscation and Randomization 11
 3. Private Discovery Service Specification 11
 3.1. Host Name Randomization 12
 3.2. Device Pairing . 12
 3.3. Private Discovery Server 12
 3.3.1. Establishing TLS Connections 12
 3.4. Publishing Private Discovery Service Instances 13
 3.5. Discovering Private Discovery Service Instances 14
 3.6. Direct Discovery of Private Discovery Service Instances . 15
 3.7. Using the Private Discovery Service 16
 4. Security Considerations 16
 4.1. Attacks Against the Pairing System 16
 4.2. Denial of Discovery of the Private Discovery Service . . 16
 4.3. Replay Attacks Against Discovery of the Private Discovery
 Service . 17
 4.4. Denial of Private Discovery Service 17
 4.5. Replay Attacks against the Private Discovery Service . . 17
 4.6. Replay attacks and clock synchronization 18
 4.7. Fingerprinting the number of published instances 18

Huitema & Kaiser Expires April 18, 2019 [Page 2]

Internet-Draft DNS-SD Privacy Extensions October 2018

 5. IANA Considerations . 18
 6. Acknowledgments . 19
 7. References . 19
 7.1. Normative References 19
 7.2. Informative References 20
 Authors’ Addresses . 21

1. Introduction

 DNS-SD [RFC6763] over mDNS [RFC6762] enables configurationless
 service discovery in local networks. It is very convenient for
 users, but it requires the public exposure of the offering and
 requesting identities along with information about the offered and
 requested services. Parts of the published information can seriously
 breach the user’s privacy. These privacy issues and potential
 solutions are discussed in [KW14a] and [KW14b].

 There are cases when nodes connected to a network want to provide or
 consume services without exposing their identity to the other parties
 connected to the same network. Consider for example a traveler
 wanting to upload pictures from a phone to a laptop when connected to
 the Wi-Fi network of an Internet cafe, or two travelers who want to
 share files between their laptops when waiting for their plane in an
 airport lounge.

 We expect that these exchanges will start with a discovery procedure
 using DNS-SD [RFC6763] over mDNS [RFC6762]. One of the devices will
 publish the availability of a service, such as a picture library or a
 file store in our examples. The user of the other device will
 discover this service, and then connect to it.

 When analyzing these scenarios in [I-D.ietf-dnssd-prireq], we find
 that the DNS-SD messages leak identifying information such as the
 instance name, the host name or service properties. We review the
 design constraint of a solution in Section 2, and describe the
 proposed solution in Section 3.

 While we focus on a mDNS-based distribution of the DNS-SD resource
 records, our solution is agnostic about the distribution method and
 also works with other distribution methods, e.g. the classical
 hierarchical DNS.

 The solution presented here relies on 1-1 pairings between clients
 and servers. Discussions during the IETF 101 in London showed that
 this requirement of a full mesh of pairings poses some scalability
 issues, as explained in [I-D.ietf-dnssd-privacyscaling]. The next
 revision of this draft may propose a different mechanism.

Huitema & Kaiser Expires April 18, 2019 [Page 3]

Internet-Draft DNS-SD Privacy Extensions October 2018

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Design of the Private DNS-SD Discovery Service

 In this section, we present the design of a two-stage solution that
 enables private use of DNS-SD, without affecting existing users. The
 solution is largely based on the architecture proposed in [KW14b] and
 [K17], which separates the general private discovery problem in three
 components. The first component is an offline pairing mechanism,
 which is performed only once per pair of users. It establishes a
 shared secret over an authenticated channel, allowing devices to
 authenticate using this secret without user interaction at any later
 point in time. We use the pairing system proposed in
 [I-D.ietf-dnssd-pairing].

 The further two components are online (in contrast to pairing they
 are performed anew each time joining a network) and compose the two
 service discovery stages, namely

 o Discovery of the Private Discovery Service -- the first stage --
 in which hosts discover the Private Discovery Service (PDS), a
 special service offered by every host supporting our extension.
 After the discovery, hosts connect to the PSD offered by paired
 peers.

 o Actual Service Discovery -- the second stage -- is performed
 through the Private Discovery Service, which only accepts
 encrypted messages associated with an authenticated session; thus
 not compromising privacy.

 In other words, the hosts first discover paired peers and then
 directly engage in privacy preserving service discovery.

 The stages are independent with respect to means used for
 transmitting the necessary data. While in our extension the messages
 for the first stage are transmitted using IP multicast, the messages
 for the second stage are transmitted via unicast. One could also
 imagine using a Distributed Hash Table for the first stage, being
 completely independent of multicast.

Huitema & Kaiser Expires April 18, 2019 [Page 4]

Internet-Draft DNS-SD Privacy Extensions October 2018

2.1. Device Pairing

 Any private discovery solution needs to differentiate between
 authorized devices, which are allowed to get information about
 discoverable entities, and other devices, which should not be aware
 of the availability of private entities. The commonly used solution
 to this problem is establishing a "device pairing".

 Device pairing has to be performed only once per pair of users. This
 is important for user-friendliness, as it is the only step that
 demands user-interaction. After this single pairing, privacy
 preserving service discovery works fully automatically. In this
 document, we utilize [I-D.ietf-dnssd-pairing] as the pairing
 mechanism.

 The pairing yields a mutually authenticated shared secret, and
 optionally mutually authenticated public keys or certificates added
 to a local web of trust. Public key technology has many advantages,
 but shared secrets are typically easier to handle on small devices.

2.2. Discovery of the Private Discovery Service

 The first stage of service discovery is to check whether instances of
 compatible Private Discovery Services are available in the local
 scope. The goal of that stage is to identify devices that share a
 pairing with the querier, and are available locally. The service
 instances can be browsed using regular DNS-SD procedures, and then
 filtered so that only instances offered by paired devices are
 retained.

2.2.1. Obfuscated Instance Names

 The instance names for the Private Discovery Service are obfuscated,
 so that authorized peers can associate the instance with its
 publisher, but unauthorized peers can only observe what looks like a
 random name. To achieve this, the names are composed as the
 concatenation of a nonce and a proof, which is composed by hashing
 the nonce with a pairing key:

 PrivateInstanceName = <nonce>|<proof>
 proof = hash(<nonce>|<key>)

 The publisher will publish as many instances as it has established
 pairings.

 The discovering party that looks for instances of the service will
 receive lists of advertisements from nodes present on the network.
 For each advertisement, it will parse the instance name, and then,

Huitema & Kaiser Expires April 18, 2019 [Page 5]

Internet-Draft DNS-SD Privacy Extensions October 2018

 for each available pairing key, compares the proof to the hash of the
 nonce concatenated with this pairing key. If there is no match, it
 discards the instance name. If there is a match, it has discovered a
 peer.

2.2.2. Using a Predictable Nonce

 Assume that there are N nodes on the local scope, and that each node
 has on average M pairings. Each node will publish on average M
 records, and the node engaging in discovery may have to process on
 average N*M instance names. The discovering node will have to
 compute on average M potential hashes for each nonce. The number of
 hash computations would scale as O(N*M*M), which means that it could
 cause a significant drain of resource in large networks.

 In order to minimize the amount of computing resource, we suggest
 that the nonce be derived from the current time, for example set to a
 representation of the current time rounded to some period. With this
 convention, receivers can predict the nonces that will appear in the
 published instances.

 The publishers will have to create new records at the end of each
 rounding period. If the rounding period is set too short, they will
 have to repeat that very often, which is inefficient. On the other
 hand, if the rounding period is too long, the system may be exposed
 to replay attacks. We initially proposed a value of about 5 minutes,
 which would work well for the mDNS variant of DNS-SD. However, this
 may cause an excessive number of updates for the DNS server based
 version of DNS-SD. We propose to set a value of about 30 minutes,
 which seems to be a reasonable compromise.

 Receivers can pre-calculate all the M relevant proofs once per time
 interval and then establish a mapping from the corresponding instance
 names to the pairing data in form of a hash table. These M relevant
 proofs are the proofs resulting from hashing a host’s M pairing keys
 alongside the current nonce. Each time they receive an instance
 name, they can test in O(1) time if the received service information
 is relevant or not.

 Unix defines a 32 bit time stamp as the number of seconds elapsed
 since January 1st, 1970 not counting leap seconds. The most
 significant 20 bits of this 32 bit number represent the number of
 2048 seconds intervals since the epoch. 2048 seconds correspond to 34
 minutes and 8 seconds, which is close enough to our design goal of 30
 minutes. We will thus use this 20 bit number as nonce, which for
 simplicity will be padded zeroes to 24 bits and encoded in 3 octets.

Huitema & Kaiser Expires April 18, 2019 [Page 6]

Internet-Draft DNS-SD Privacy Extensions October 2018

 For coping with time skew, receivers pre-calculate proofs for the
 respective next time interval and store hash tables for the last, the
 current, and the next time interval. When receiving a service
 instance name, receivers first check whether the nonce corresponds to
 the current, the last or the next time interval, and if so, check
 whether the instance name is in the corresponding hash table. For
 (approximately) meeting our design goal of 5 min validity, the last
 time interval may only be considered if the current one is less than
 half way over and the next time interval may only be considered if
 the current time interval is more than half way over.

 Publishers will need to compute O(M) hashes at most once per time
 stamp interval. If records can be created "on the fly", publishers
 will only need to perform that computation upon receipt of the first
 query during a given interval, and cache the computed results for the
 remainder of the interval. There are however scenarios in which
 records have to be produced in advance, for example when records are
 published within a scope defined by a domain name and managed by a
 "classic" DNS server. In such scenarios, publishers will need to
 perform the computations and publication exactly once per time stamp
 interval.

2.2.3. Using a Short Proof

 Devices will have to publish as many instance names as they have
 peers. The instance names will have to be represented via a text
 string, which means that the binary concatenation of nonce and proof
 will have to be encoded using a binary-to-text conversion such as
 BASE64 ([RFC2045] section 6.8) or BASE32 ([RFC4648] section 6).

 Using long proofs, such as the full output of SHA256 [RFC4055], would
 generate fairly long instance names: 48 characters using BASE64, or
 56 using BASE32. These long names would inflate the network traffic
 required when discovering the privacy service. They would also limit
 the number of DNS-SD PTR records that could be packed in a single
 1500 octet sized packet, to 23 or fewer with BASE64, or 20 or fewer
 with BASE32.

 Shorter proofs lead to shorter messages, which is more efficient as
 long as we do not encounter too many collisions. A collision will
 happen if the proof computed by the publisher using one key matches a
 proof computed by a receiver using another key. If a receiver
 mistakenly believes that a proof fits one of its peers, it will
 attempt to connect to the service as explained in section Section 3.5
 but in the absence of the proper pairwise shared key, the connection
 will fail. This will not create an actual error, but the probability
 of such events should be kept low.

Huitema & Kaiser Expires April 18, 2019 [Page 7]

Internet-Draft DNS-SD Privacy Extensions October 2018

 The following table provides the probability that a discovery agent
 maintaining 100 pairings will observe a collision after receiving
 100000 advertisement records. It also provides the number of
 characters required for the encoding of the corresponding instance
 name in BASE64 or BASE32, assuming 24 bit nonces.

 +-------+------------+--------+--------+
 | Proof | Collisions | BASE64 | BASE32 |
 +-------+------------+--------+--------+
 | 24 | 5.96046% | 8 | 16 |
 | 32 | 0.02328% | 11 | 16 |
 | 40 | 0.00009% | 12 | 16 |
 | 48 | 3.6E-09 | 12 | 16 |
 | 56 | 1.4E-11 | 15 | 16 |
 +-------+------------+--------+--------+

 Table 1

 The table shows that for a proof, 24 bits would be too short. 32 bits
 might be long enough, but the BASE64 encoding requires padding if the
 input is not an even multiple of 24 bits, and BASE32 requires padding
 if the input is not a multiple of 40 bits. Given that, the desirable
 proof lengths are thus 48 bits if using BASE64, or 56 bits if using
 BASE32. The resulting instance name will be either 12 characters
 long with BASE64, allowing 54 advertisements in an 1500 byte mDNS
 message, or 16 characters long with BASE32, allowing 47
 advertisements per message.

 In the specification section, we will assume BASE64, and 48 bit
 proofs composed of the first 6 bytes of a SHA256 hash.

2.2.4. Direct Queries

 The preceding sections assume that the discovery is performed using
 the classic DNS-SD process, in which a query for all available
 "instance names" of a service provides a list of PTR records. The
 discoverer will then select the instance names that correspond to its
 peers, and request the SRV and TXT records corresponding to the
 service instance, and then obtain the relevant A or AAAA records.
 This is generally required in DNS-SD because the instance names are
 not known in advance, but for the Private Discovery Service the
 instance names can be predicted, and a more efficient Direct Query
 method can be used.

 At a given time, the node engaged in discovery can predict the nonce
 that its peer will use, since that nonce is composed by rounding the
 current time. The node can also compute the proofs that its peers
 might use, since it knows the nonce and the keys. The node can thus

Huitema & Kaiser Expires April 18, 2019 [Page 8]

Internet-Draft DNS-SD Privacy Extensions October 2018

 build a list of instance names, and directly query the SRV records
 corresponding to these names. If peers are present, they will answer
 directly.

 This "direct query" process will result in fewer network messages
 than the regular DNS-SD query process in some circumstances,
 depending on the number of peers per node and the number of nodes
 publishing the presence discovery service in the desired scope.

 When using mDNS, it is possible to pack multiple queries in a single
 broadcast message. Using name compression and 12 characters per
 instance name, it is possible to pack 70 queries in a 1500 octet mDNS
 multicast message. It is also possible to request unicast replies to
 the queries, resulting in significant efficiency gains in wireless
 networks.

2.3. Private Discovery Service

 The Private Discovery Service discovery allows discovering a list of
 available paired devices, and verifying that either party knows the
 corresponding shared secret. At that point, the querier can engage
 in a series of directed discoveries.

 We have considered defining an ad-hoc protocol for the private
 discovery service, but found that just using TLS would be much
 simpler. The directed Private Discovery Service is just a regular
 DNS-SD service, accessed over TLS, using the encapsulation of DNS
 over TLS defined in [RFC7858]. The main difference with plain DNS
 over TLS is the need for an authentication based on pre-shared keys.

 We assume that the pairing process has provided each pair of
 authorized client and server with a shared secret. We can use that
 shared secret to provide mutual authentication of clients and servers
 using "Pre-Shared Key" authentication, as defined in [RFC4279] and
 incorporated in the latest version of TLS [I-D.ietf-tls-tls13].

 One difficulty is the reliance on a key identifier in the protocol.
 For example, in TLS 1.3 the PSK extension is defined as:

Huitema & Kaiser Expires April 18, 2019 [Page 9]

Internet-Draft DNS-SD Privacy Extensions October 2018

 opaque psk_identity<0..2^16-1>;

 struct {
 select (Role) {
 case client:
 psk_identity identities<2..2^16-1>;

 case server:
 uint16 selected_identity;
 }
 } PreSharedKeyExtension

 According to the protocol, the PSK identity is passed in clear text
 at the beginning of the key exchange. This is logical, since server
 and clients need to identify the secret that will be used to protect
 the connection. But if we used a static identifier for the key,
 adversaries could use that identifier to track server and clients.
 The solution is to use a time-varying identifier, constructed exactly
 like the "proof" described in Section 2.2, by concatenating a nonce
 and the hash of the nonce with the shared secret.

2.3.1. A Note on Private DNS Services

 Our solution uses a variant of the DNS over TLS protocol [RFC7858]
 defined by the DNS Private Exchange working group (DPRIVE). DPRIVE
 further published an UDP variant, DNS over DTLS [RFC8094], which
 would also be a candidate.

 DPRIVE and Private Discovery, however, solve two somewhat different
 problems. While DPRIVE is concerned with the confidentiality of DNS
 transactions addressing the problems outlined in [RFC7626], DPRIVE
 does not address the confidentiality or privacy issues with
 publication of services, and is not a direct solution to DNS-SD
 privacy:

 o Discovery queries are scoped by the domain name within which
 services are published. As nodes move and visit arbitrary
 networks, there is no guarantee that the domain services for these
 networks will be accessible using DNS over TLS or DNS over DTLS.

 o Information placed in the DNS is considered public. Even if the
 server does support DNS over TLS, third parties will still be able
 to discover the content of PTR, SRV and TXT records.

 o Neither DNS over TLS nor DNS over DTLS applies to mDNS.

Huitema & Kaiser Expires April 18, 2019 [Page 10]

Internet-Draft DNS-SD Privacy Extensions October 2018

 In contrast, we propose using mutual authentication of the client and
 server as part of the TLS solution, to ensure that only authorized
 parties learn the presence of a service.

2.4. Randomized Host Names

 Instead of publishing their actual host names in the SRV records,
 nodes could publish randomized host names. That is the solution
 argued for in [RFC8117].

 Randomized host names will prevent some of the tracking. Host names
 are typically not visible by the users, and randomizing host names
 will probably not cause much usability issues.

2.5. Timing of Obfuscation and Randomization

 It is important that the obfuscation of instance names is performed
 at the right time, and that the obfuscated names change in synchrony
 with other identifiers, such as MAC Addresses, IP Addresses or host
 names. If the randomized host name changed but the instance name
 remained constant, an adversary would have no difficulty linking the
 old and new host names. Similarly, if IP or MAC addresses changed
 but host names remained constant, the adversary could link the new
 addresses to the old ones using the published name.

 The problem is handled in [RFC8117], which recommends to pick a new
 random host name at the time of connecting to a new network. New
 instance names for the Private Discovery Services should be composed
 at the same time.

3. Private Discovery Service Specification

 The proposed solution uses the following components:

 o Host name randomization to prevent tracking.

 o Device pairing yielding pairwise shared secrets.

 o A Private Discovery Server (PDS) running on each host.

 o Discovery of the PDS instances using DNS-SD.

 These components are detailed in the following subsections.

Huitema & Kaiser Expires April 18, 2019 [Page 11]

Internet-Draft DNS-SD Privacy Extensions October 2018

3.1. Host Name Randomization

 Nodes publishing services with DNS-SD and concerned about their
 privacy MUST use a randomized host name. The randomized name MUST be
 changed when network connectivity changes, to avoid the correlation
 issues described in Section 2.5. The randomized host name MUST be
 used in the SRV records describing the service instance, and the
 corresponding A or AAAA records MUST be made available through DNS or
 mDNS, within the same scope as the PTR, SRV and TXT records used by
 DNS-SD.

 If the link-layer address of the network connection is properly
 obfuscated (e.g. using MAC Address Randomization), the Randomized
 Host Name MAY be computed using the algorithm described in section
 3.7 of [RFC7844]. If this is not possible, the randomized host name
 SHOULD be constructed by simply picking a 48 bit random number
 meeting the Randomness Requirements for Security expressed in
 [RFC4075], and then use the hexadecimal representation of this number
 as the obfuscated host name.

3.2. Device Pairing

 Nodes that want to leverage the Private Directory Service for private
 service discovery among peers MUST share a secret with each of these
 peers. Each shared secret MUST be a 256 bit randomly chosen number.
 We RECOMMEND using the pairing mechanism proposed in
 [I-D.ietf-dnssd-pairing] to establish these secrets.

3.3. Private Discovery Server

 A Private Discovery Server (PDS) is a minimal DNS server running on
 each host. Its task is to offer resource records corresponding to
 private services only to authorized peers. These peers MUST share a
 secret with the host (see Section 3.2). To ensure privacy of the
 requests, the service is only available over TLS [RFC5246], and the
 shared secrets are used to mutually authenticate peers and servers.

 The Private Name Server SHOULD support DNS push notifications
 [I-D.ietf-dnssd-push], e.g. to facilitate an up-to-date contact list
 in a chat application without polling.

3.3.1. Establishing TLS Connections

 The PDS MUST only answer queries via DNS over TLS [RFC7858] and MUST
 use a PSK authenticated TLS handshake [RFC4279]. The client and
 server SHOULD negotiate a forward secure cipher suite such as DHE-PSK
 or ECDHE-PSK when available. The shared secret exchanged during
 pairing MUST be used as PSK. To guarantee interoperability,

Huitema & Kaiser Expires April 18, 2019 [Page 12]

Internet-Draft DNS-SD Privacy Extensions October 2018

 implementations of the Private Name Server MUST support
 TLS_PSK_WITH_AES_256_GCM_SHA384.

 When using the PSK based authentication, the "psk_identity" parameter
 identifying the pre-shared key MUST be identical to the "Instance
 Identifier" defined in Section 3.4, i.e. 24 bit nonce and 48 bit
 proof encoded in BASE64 as 12 character string. The server will use
 the pairing key associated with this instance identifier.

3.4. Publishing Private Discovery Service Instances

 Nodes that provide the Private Discovery Service SHOULD advertise
 their availability by publishing instances of the service through
 DNS-SD.

 The DNS-SD service type for the Private Discovery Service is
 "_pds._tcp".

 Each published instance describes one server and one pairing. In the
 case where a node manages more than one pairing, it should publish as
 many instances as necessary to advertise the PDS to all paired peers.

 Each instance name is composed as follows:

 pick a 24 bit nonce, set to the 20 most significant bits of the
 32 bit Unix GMT time padded with 4 zeroes.

 For example, on August 22, 2017 at 20h 4 min and 54 seconds
 international time, the Unix 32 bit time had the
 hexadecimal value 0x599C8E68. The corresponding nonce
 would be set to the 24 bits: 0x599C80.

 compute a 48 bit proof:
 proof = first 48 bits of HASH(<nonce>|<pairing key>)

 set the 72 bit binary identifier as the concatenation
 of nonce and proof

 set instance_name = BASE64(binary identifier)

 In this formula, HASH SHOULD be the function SHA256 defined in
 [RFC4055], and BASE64 is defined in section 6.8 of [RFC2045]. The
 concatenation of a 24 bit nonce and 48 bit proof result in a 72 bit
 string. The BASE64 conversion is 12 characters long per [RFC6763].

Huitema & Kaiser Expires April 18, 2019 [Page 13]

Internet-Draft DNS-SD Privacy Extensions October 2018

3.5. Discovering Private Discovery Service Instances

 Nodes that wish to discover Private Discovery Service Instances
 SHOULD issue a DNS-SD discovery request for the service type
 "_pds._tcp". They MAY, as an alternative, use the Direct Discovery
 procedure defined in Section 3.6. When using the Direct Discovery
 procedure over mDNS, nodes SHOULD always set the QU-bit (unicast
 response requested, see [RFC6762] Section 5.4) because responses
 related to a "_pds._tcp" instance are only relevant for the querying
 node itself.

 When nodes send a DNS-SD discovery request, they will receive in
 response a series of PTR records, each providing the name of one of
 the instances present in the scope.

 For each time interval, the querier SHOULD pre-calculate a hash table
 mapping instance names to pairings according to the following
 conceptual algorithm:

 nonce = 20 bit rounded time stamp of the \
 respective next time interval padded to \
 24 bits with four zeroes
 for each available pairing
 retrieve the key Xj of pairing number j
 compute F = first 48 bits of hash(nonce, Xj)
 construct the binary instance_name as described \
 in the previous section
 instance_names[nonce][instance_name] = Xj;

 The querier SHOULD store the hash tables for the previous, the
 current, and the next time interval.

 The querier SHOULD examine each instance to see whether it
 corresponds to one of its available pairings, according to the
 following conceptual algorithm:

Huitema & Kaiser Expires April 18, 2019 [Page 14]

Internet-Draft DNS-SD Privacy Extensions October 2018

 for each received instance_name:
 convert the instance name to binary using BASE64
 if the conversion fails,
 discard the instance.
 if the binary instance length is not 72 bits,
 discard the instance.

 nonce = first 24 bits of binary.

 Check that the 4 least significant bits of the nonce
 have the value 0, and that the 20 most significant
 bits of the nonce match the first 20 bits of
 the current time, or the previous interval (20 bit number
 minus 1) if the current interval is less than half over,
 or the next interval (20 bit number plus 1) if the
 current interval is more than half over. If the
 nonce does not match an acceptable value, discard
 the instance.

 if ((Xj = instance_names[nonce][instance_name]) != null)
 mark the pairing number j as available

 The check of the current time is meant to mitigate replay attacks,
 while not mandating a time synchronization precision better than 15
 minutes.

 Once a pairing has been marked available, the querier SHOULD try
 connecting to the corresponding instance, using the selected key.
 The connection is likely to succeed, but it MAY fail for a variety of
 reasons. One of these reasons is the probabilistic nature of the
 proof, which entails a small chance of "false positive" match. This
 will occur if the hash of the nonce with two different keys produces
 the same result. In that case, the TLS connection will fail with an
 authentication error or a decryption error.

3.6. Direct Discovery of Private Discovery Service Instances

 Nodes that wish to discover Private Discovery Service Instances MAY
 use the following Direct Discovery procedure instead of the regular
 DNS-SD Discovery explained in Section 3.5.

 To perform Direct Discovery, nodes should compose a list of Private
 Discovery Service Instances Names. There will be one name for each
 pairing available to the node. The Instance name for each name will
 be composed of a nonce and a proof, using the algorithm specified in
 Section 3.4.

Huitema & Kaiser Expires April 18, 2019 [Page 15]

Internet-Draft DNS-SD Privacy Extensions October 2018

 The querier will issue SRV record queries for each of these names.
 The queries will only succeed if the corresponding instance is
 present, in which case a pairing is discovered. After that, the
 querier SHOULD try connecting to the corresponding instance, as
 explained in Section 3.4.

3.7. Using the Private Discovery Service

 Once instances of the Private Discovery Service have been discovered,
 peers can establish TLS connections and send DNS requests over these
 connections, as specified in DNS-SD.

4. Security Considerations

 This document specifies a method for protecting the privacy of nodes
 that offer and query for services. This is especially useful when
 operating in a public space. Hiding the identity of the publishing
 nodes prevents some forms of "targeting" of high value nodes.
 However, adversaries can attempt various attacks to break the
 anonymity of the service, or to deny it. A list of these attacks and
 their mitigations are described in the following sections.

4.1. Attacks Against the Pairing System

 There are a variety of attacks against pairing systems, which may
 result in compromised pairing secrets. If an adversary manages to
 acquire a compromised key, the adversary will be able to perform
 private service discovery according to Section 3.5. This will allow
 tracking of the service. The adversary will also be able to discover
 which private services are available for the compromised pairing.

 Attacks on pairing systems are detailed in [I-D.ietf-dnssd-pairing].

4.2. Denial of Discovery of the Private Discovery Service

 The algorithm described in Section 3.5 scales as O(M*N), where M is
 the number of pairings per node and N is the number of nodes in the
 local scope. Adversaries can attack this service by publishing
 "fake" instances, effectively increasing the number N in that scaling
 equation.

 Similar attacks can be mounted against DNS-SD: creating fake
 instances will generally increase the noise in the system and make
 discovery less usable. Private Discovery Service discovery SHOULD
 use the same mitigations as DNS-SD.

 The attack could be amplified if the clients needed to compute proofs
 for all the nonces presented in Private Discovery Service Instance

Huitema & Kaiser Expires April 18, 2019 [Page 16]

Internet-Draft DNS-SD Privacy Extensions October 2018

 names. This is mitigated by the specification of nonces as rounded
 time stamps in Section 3.5. If we assume that timestamps must not be
 too old, there will be a finite number of valid rounded timestamps at
 any time. Even if there are many instances present, they would all
 pick their nonces from this small number of rounded timestamps, and a
 smart client will make sure that proofs are only computed once per
 valid time stamp.

4.3. Replay Attacks Against Discovery of the Private Discovery Service

 Adversaries can record the service instance names published by
 Private Discovery Service instances, and replay them later in
 different contexts. Peers engaging in discovery can be misled into
 believing that a paired server is present. They will attempt to
 connect to the absent peer, and in doing so will disclose their
 presence in a monitored scope.

 The binary instance identifiers defined in Section 3.4 start with 24
 bits encoding the most significant bits of the "UNIX" time. In order
 to protect against replay attacks, clients SHOULD verify that this
 time is reasonably recent, as specified in Section 3.5.

4.4. Denial of Private Discovery Service

 The Private Discovery Service is only available through a mutually
 authenticated TLS connection, which provides state-of-the-art
 protection mechanisms. However, adversaries can mount a denial of
 service attack against the service. In the absence of shared
 secrets, the connections will fail, but the servers will expend some
 CPU cycles defending against them.

 To mitigate such attacks, nodes SHOULD restrict the range of network
 addresses from which they accept connections, matching the expected
 scope of the service.

 This mitigation will not prevent denial of service attacks performed
 by locally connected adversaries; but protecting against local denial
 of service attacks is generally very difficult. For example, local
 attackers can also attack mDNS and DNS-SD by generating a large
 number of multicast requests.

4.5. Replay Attacks against the Private Discovery Service

 Adversaries may record the PSK Key Identifiers used in successful
 connections to a private discovery service. They could attempt to
 replay them later against nodes advertising the private service at
 other times or at other locations. If the PSK identifier is still
 valid, the server will accept the TLS connection, and in doing so

Huitema & Kaiser Expires April 18, 2019 [Page 17]

Internet-Draft DNS-SD Privacy Extensions October 2018

 will reveal being the same server observed at a previous time or
 location.

 The PSK identifiers defined in Section 3.3.1 start with the 24 most
 significant bits of the "UNIX" time. In order to mitigate replay
 attacks, servers SHOULD verify that this time is reasonably recent,
 and fail the connection if it is too old, or if it occurs too far in
 the future.

 The processing of timestamps is however affected by the accuracy of
 computer clocks. If the check is too strict, reasonable connections
 could fail. To further mitigate replay attacks, servers MAY record
 the list of valid PSK identifiers received in a recent past, and fail
 connections if one of these identifiers is replayed.

4.6. Replay attacks and clock synchronization

 The mitigation of replay attacks relies on verification of the time
 encoded in the nonce. This verification assumes that the hosts
 engaged in discovery have a reasonably accurate sense of the current
 time.

4.7. Fingerprinting the number of published instances

 Adversaries could monitor the number of instances published by a
 particular device, which in the absence of mitigations will reflect
 the number of pairings established by that device. This number will
 probably vary between 1 and maybe 100, providing the adversary with
 maybe 6 or 7 bits of input in a fingerprinting algorithm.

 Devices MAY protect against this fingerprinting by publishing a
 number of "fake" instances in addition to the real ones. The fake
 instance identifiers will contain the same nonce as the genuine
 instance identifiers, and random bits instead of the proof. Peers
 should be able to quickly discard these fake instances, as the proof
 will not match any of the values that they expect. One plausible
 padding strategy is to ensure that the total number of published
 instances, either fake or genuine, matches one of a few values such
 as 16, 32, 64, or higher powers of 2.

5. IANA Considerations

 This draft does not require any IANA action.

Huitema & Kaiser Expires April 18, 2019 [Page 18]

Internet-Draft DNS-SD Privacy Extensions October 2018

6. Acknowledgments

 This draft results from initial discussions with Dave Thaler, and
 encouragements from the DNS-SD working group members. We would like
 to thank Stephane Bortzmeyer and Ted Lemon for their detailed reviews
 of the working draft.

7. References

7.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
 Algorithms and Identifiers for RSA Cryptography for use in
 the Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile", RFC 4055,
 DOI 10.17487/RFC4055, June 2005,
 <https://www.rfc-editor.org/info/rfc4055>.

 [RFC4075] Kalusivalingam, V., "Simple Network Time Protocol (SNTP)
 Configuration Option for DHCPv6", RFC 4075,
 DOI 10.17487/RFC4075, May 2005,
 <https://www.rfc-editor.org/info/rfc4075>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",
 RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <https://www.rfc-editor.org/info/rfc4279>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

Huitema & Kaiser Expires April 18, 2019 [Page 19]

Internet-Draft DNS-SD Privacy Extensions October 2018

7.2. Informative References

 [I-D.ietf-dnssd-pairing]
 Huitema, C. and D. Kaiser, "Device Pairing Using Short
 Authentication Strings", draft-ietf-dnssd-pairing-04 (work
 in progress), April 2018.

 [I-D.ietf-dnssd-prireq]
 Huitema, C., "DNS-SD Privacy and Security Requirements",
 draft-ietf-dnssd-prireq-00 (work in progress), September
 2018.

 [I-D.ietf-dnssd-privacyscaling]
 Huitema, C., "DNS-SD Privacy Scaling Tradeoffs", draft-
 ietf-dnssd-privacyscaling-00 (work in progress), September
 2018.

 [I-D.ietf-dnssd-push]
 Pusateri, T. and S. Cheshire, "DNS Push Notifications",
 draft-ietf-dnssd-push-15 (work in progress), September
 2018.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

 [K17] Kaiser, D., "Efficient Privacy-Preserving
 Configurationless Service Discovery Supporting Multi-Link
 Networks", 2017,
 <http://nbn-resolving.de/urn:nbn:de:bsz:352-0-422757>.

 [KW14a] Kaiser, D. and M. Waldvogel, "Adding Privacy to Multicast
 DNS Service Discovery", DOI 10.1109/TrustCom.2014.107,
 2014, <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=7011331>.

 [KW14b] Kaiser, D. and M. Waldvogel, "Efficient Privacy Preserving
 Multicast DNS Service Discovery",
 DOI 10.1109/HPCC.2014.141, 2014,
 <http://ieeexplore.ieee.org/xpl/
 articleDetails.jsp?arnumber=7056899>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

Huitema & Kaiser Expires April 18, 2019 [Page 20]

Internet-Draft DNS-SD Privacy Extensions October 2018

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC7626] Bortzmeyer, S., "DNS Privacy Considerations", RFC 7626,
 DOI 10.17487/RFC7626, August 2015,
 <https://www.rfc-editor.org/info/rfc7626>.

 [RFC7844] Huitema, C., Mrugalski, T., and S. Krishnan, "Anonymity
 Profiles for DHCP Clients", RFC 7844,
 DOI 10.17487/RFC7844, May 2016,
 <https://www.rfc-editor.org/info/rfc7844>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC8094] Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
 Transport Layer Security (DTLS)", RFC 8094,
 DOI 10.17487/RFC8094, February 2017,
 <https://www.rfc-editor.org/info/rfc8094>.

 [RFC8117] Huitema, C., Thaler, D., and R. Winter, "Current Hostname
 Practice Considered Harmful", RFC 8117,
 DOI 10.17487/RFC8117, March 2017,
 <https://www.rfc-editor.org/info/rfc8117>.

Authors’ Addresses

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net
 URI: http://privateoctopus.com/

 Daniel Kaiser
 University of Konstanz
 Konstanz 78457
 Germany

 Email: daniel.kaiser@uni-konstanz.de

Huitema & Kaiser Expires April 18, 2019 [Page 21]

Internet Engineering Task Force T. Pusateri
Internet-Draft Unaffiliated
Intended status: Standards Track S. Cheshire
Expires: April 15, 2020 Apple Inc.
 October 13, 2019

 DNS Push Notifications
 draft-ietf-dnssd-push-25

Abstract

 The Domain Name System (DNS) was designed to return matching records
 efficiently for queries for data that are relatively static. When
 those records change frequently, DNS is still efficient at returning
 the updated results when polled, as long as the polling rate is not
 too high. But there exists no mechanism for a client to be
 asynchronously notified when these changes occur. This document
 defines a mechanism for a client to be notified of such changes to
 DNS records, called DNS Push Notifications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 15, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Pusateri & Cheshire Expires April 15, 2020 [Page 1]

Internet-Draft DNS Push Notifications October 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 3
 1.2. Fatal Errors . 3
 2. Motivation . 4
 3. Overview . 5
 4. State Considerations . 6
 5. Transport . 7
 6. Protocol Operation . 8
 6.1. Discovery . 9
 6.2. DNS Push Notification SUBSCRIBE 13
 6.2.1. SUBSCRIBE Request 13
 6.2.2. SUBSCRIBE Response 16
 6.3. DNS Push Notification Updates 20
 6.3.1. PUSH Message . 20
 6.4. DNS Push Notification UNSUBSCRIBE 26
 6.4.1. UNSUBSCRIBE Message 26
 6.5. DNS Push Notification RECONFIRM 28
 6.5.1. RECONFIRM Message 29
 6.6. DNS Stateful Operations TLV Context Summary 31
 6.7. Client-Initiated Termination 32
 6.8. Client Fallback to Polling 33
 7. Security Considerations 34
 7.1. Security Services . 35
 7.2. TLS Name Authentication 35
 7.3. TLS Early Data . 36
 7.4. TLS Session Resumption 36
 8. IANA Considerations . 37
 9. Acknowledgements . 37
 10. References . 38
 10.1. Normative References 38
 10.2. Informative References 40
 Authors’ Addresses . 42

Pusateri & Cheshire Expires April 15, 2020 [Page 2]

Internet-Draft DNS Push Notifications October 2019

1. Introduction

 Domain Name System (DNS) records may be updated using DNS Update
 [RFC2136]. Other mechanisms such as a Discovery Proxy [DisProx] can
 also generate changes to a DNS zone. This document specifies a
 protocol for DNS clients to subscribe to receive asynchronous
 notifications of changes to RRsets of interest. It is immediately
 relevant in the case of DNS Service Discovery [RFC6763] but is not
 limited to that use case, and provides a general DNS mechanism for
 DNS record change notifications. Familiarity with the DNS protocol
 and DNS packet formats is assumed [RFC1034] [RFC1035] [RFC6895].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here. These words may also appear in this
 document in lower case as plain English words, absent their normative
 meanings.

1.2. Fatal Errors

 Certain invalid situations are described in this specification, like
 a server sending a Push Notification subscription request to a
 client, or a client sending a Push Notification response to a server.
 These should never occur with a correctly implemented client and
 server, and if they do occur then they indicate a serious
 implementation error. In these extreme cases there is no reasonable
 expectation of a graceful recovery, and the recipient detecting the
 error should respond by unilaterally aborting the session without
 regard for data loss. Such cases are addressed by having an engineer
 investigate the cause of the failure and fixing the problem in the
 software.

 Where this specification says "forcibly abort", it means sending a
 TCP RST to terminate the TCP connection, and the TLS session running
 over that TCP connection. In the BSD Sockets API, this is achieved
 by setting the SO_LINGER option to zero before closing the socket.

Pusateri & Cheshire Expires April 15, 2020 [Page 3]

Internet-Draft DNS Push Notifications October 2019

2. Motivation

 As the domain name system continues to adapt to new uses and changes
 in deployment, polling has the potential to burden DNS servers at
 many levels throughout the network. Other network protocols have
 successfully deployed a publish/subscribe model following the
 Observer design pattern [obs]. XMPP Publish-Subscribe [XEP0060] and
 Atom [RFC4287] are examples. While DNS servers are generally highly
 tuned and capable of a high rate of query/response traffic, adding a
 publish/subscribe model for tracking changes to DNS records can
 deliver more timely notification of changes with reduced CPU usage
 and lower network traffic.

 Multicast DNS [RFC6762] implementations always listen on a well known
 link-local IP multicast group address, and changes are sent to that
 multicast group address for all group members to receive. Therefore,
 Multicast DNS already has asynchronous change notification
 capability. When DNS Service Discovery [RFC6763] is used across a
 wide area network using Unicast DNS (possibly facilitated via a
 Discovery Proxy [DisProx]) it would be beneficial to have an
 equivalent capability for Unicast DNS, to allow clients to learn
 about DNS record changes in a timely manner without polling.

 The DNS Long-Lived Queries (LLQ) mechanism [LLQ] is an existing
 deployed solution to provide asynchronous change notifications, used
 by Apple’s Back to My Mac [RFC6281] service introduced in Mac OS X
 10.5 Leopard in 2007. Back to My Mac was designed in an era when the
 data center operations staff asserted that it was impossible for a
 server to handle large numbers of mostly-idle TCP connections, so LLQ
 was defined as a UDP-based protocol, effectively replicating much of
 TCP’s connection state management logic in user space, and creating
 its own imitation of existing TCP features like the three-way
 handshake, flow control, and reliability.

 This document builds on experience gained with the LLQ protocol, with
 an improved design. Instead of using UDP, this specification uses
 DNS Stateful Operations (DSO) [RFC8490] running over TLS over TCP,
 and therefore doesn’t need to reinvent existing TCP functionality.
 Using TCP also gives long-lived low-traffic connections better
 longevity through NAT gateways without depending on the gateway to
 support NAT Port Mapping Protocol (NAT-PMP) [RFC6886] or Port Control
 Protocol (PCP) [RFC6887], or resorting to excessive keepalive
 traffic.

Pusateri & Cheshire Expires April 15, 2020 [Page 4]

Internet-Draft DNS Push Notifications October 2019

3. Overview

 A DNS Push Notification client subscribes for Push Notifications for
 a particular RRset by connecting to the appropriate Push Notification
 server for that RRset, and sending DSO message(s) indicating the
 RRset(s) of interest. When the client loses interest in receiving
 further updates to these records, it unsubscribes.

 The DNS Push Notification server for a DNS zone is any server capable
 of generating the correct change notifications for a name. It may be
 a primary, secondary, or stealth name server [RFC7719].

 The "_dns-push-tls._tcp.<zone>" SRV record for a zone MAY reference
 the same target host and port as that zone’s
 "_dns-update-tls._tcp.<zone>" SRV record. When the same target host
 and port is offered for both DNS Updates and DNS Push Notifications,
 a client MAY use a single DSO session to that server for both DNS
 Updates and DNS Push Notification Subscriptions. DNS Updates and DNS
 Push Notifications may be handled on different ports on the same
 target host, in which case they are not considered to be the "same
 server" for the purposes of this specification, and communications
 with these two ports are handled independently. Supporting DNS
 Updates and DNS Push Notifications on the same server is OPTIONAL. A
 DNS Push Notification server is not required to support DNS Update.

 Standard DNS Queries MAY be sent over a DNS Push Notification (i.e.,
 DSO) session. For any zone for which the server is authoritative, it
 MUST respond authoritatively for queries for names falling within
 that zone (e.g., the "_dns-push-tls._tcp.<zone>" SRV record) both for
 normal DNS queries and for DNS Push Notification subscriptions. For
 names for which the server is acting as a recursive resolver (e.g.,
 when the server is the local recursive resolver) for any query for
 which it supports DNS Push Notification subscriptions, it MUST also
 support standard queries.

 DNS Push Notifications impose less load on the responding server than
 rapid polling would, but Push Notifications do still have a cost, so
 DNS Push Notification clients MUST NOT recklessly create an excessive
 number of Push Notification subscriptions. Specifically:

 (a) A subscription should only be active when there is a valid reason
 to need live data (for example, an on-screen display is currently
 showing the results to the user) and the subscription SHOULD be
 cancelled as soon as the need for that data ends (for example, when
 the user dismisses that display). In the case of a device like a
 smartphone which, after some period of inactivity, goes to sleep or
 otherwise darkens its screen, it should cancel its subscriptions when
 darkening the screen (since the user cannot see any changes on the

Pusateri & Cheshire Expires April 15, 2020 [Page 5]

Internet-Draft DNS Push Notifications October 2019

 display anyway) and reinstate its subscriptions when re-awakening
 from display sleep.

 (b) A DNS Push Notification client SHOULD NOT routinely keep a DNS
 Push Notification subscription active 24 hours a day, 7 days a week,
 just to keep a list in memory up to date so that if the user does
 choose to bring up an on-screen display of that data, it can be
 displayed really fast. DNS Push Notifications are designed to be
 fast enough that there is no need to pre-load a "warm" list in memory
 just in case it might be needed later.

 Generally, as described in the DNS Stateful Operations specification
 [RFC8490], a client must not keep a DSO session to a server open
 indefinitely if it has no subscriptions (or other operations) active
 on that session. A client may close a DSO session immediately it
 becomes idle, and then if needed in the future, open a new session
 when required. Alternatively, a client may speculatively keep an
 idle DSO session open for some time, subject to the constraint that
 it must not keep a session open that has been idle for more than the
 session’s idle timeout (15 seconds by default) [RFC8490].

 Note that a DSO session that has an active DNS Push Notification
 subscription is not considered idle, even if there is no traffic
 flowing for an extended period of time. In this case the DSO
 inactivity timeout does not apply, because the session is not
 inactive, but the keepalive interval does still apply, to ensure
 generation of sufficient messages to maintain state in middleboxes
 (such at NAT gateways or firewalls) and for the client and server to
 periodically verify that they still have connectivity to each other.
 This is described in Section 6.2 of the DSO specification [RFC8490].

4. State Considerations

 Each DNS Push Notification server is capable of handling some finite
 number of Push Notification subscriptions. This number will vary
 from server to server and is based on physical machine
 characteristics, network bandwidth, and operating system resource
 allocation. After a client establishes a session to a DNS server,
 each subscription is individually accepted or rejected. Servers may
 employ various techniques to limit subscriptions to a manageable
 level. Correspondingly, the client is free to establish simultaneous
 sessions to alternate DNS servers that support DNS Push Notifications
 for the zone and distribute subscriptions at the client’s discretion.
 In this way, both clients and servers can react to resource
 constraints.

Pusateri & Cheshire Expires April 15, 2020 [Page 6]

Internet-Draft DNS Push Notifications October 2019

5. Transport

 Other DNS operations like DNS Update [RFC2136] MAY use either User
 Datagram Protocol (UDP) [RFC0768] or Transmission Control Protocol
 (TCP) [RFC0793] as the transport protocol, in keeping with the
 historical precedent that DNS queries must first be sent over UDP
 [RFC1123]. This requirement to use UDP has subsequently been relaxed
 [RFC7766].

 In keeping with the more recent precedent, DNS Push Notification is
 defined only for TCP. DNS Push Notification clients MUST use DNS
 Stateful Operations [RFC8490] running over TLS over TCP [RFC7858].

 Connection setup over TCP ensures return reachability and alleviates
 concerns of state overload at the server, which is a potential
 problem with connectionless protocols, which can be more vulnerable
 to being exploited by attackers using spoofed source addresses. All
 subscribers are guaranteed to be reachable by the server by virtue of
 the TCP three-way handshake. Flooding attacks are possible with any
 protocol, and a benefit of TCP is that there are already established
 industry best practices to guard against SYN flooding and similar
 attacks [SYN] [RFC4953].

 Use of TCP also allows DNS Push Notifications to take advantage of
 current and future developments in TCP, such as Multipath TCP (MPTCP)
 [RFC6824], TCP Fast Open (TFO) [RFC7413], the TCP RACK fast loss
 detection algorithm [I-D.ietf-tcpm-rack], and so on.

 Transport Layer Security (TLS) [RFC8446] is well understood, and used
 by many application-layer protocols running over TCP. TLS is
 designed to prevent eavesdropping, tampering, and message forgery.
 TLS is REQUIRED for every connection between a client subscriber and
 server in this protocol specification. Additional security measures
 such as client authentication during TLS negotiation may also be
 employed to increase the trust relationship between client and
 server.

Pusateri & Cheshire Expires April 15, 2020 [Page 7]

Internet-Draft DNS Push Notifications October 2019

6. Protocol Operation

 The DNS Push Notification protocol is a session-oriented protocol,
 and makes use of DNS Stateful Operations (DSO) [RFC8490].

 For details of the DSO message format refer to the DNS Stateful Oper-
 ations specification [RFC8490]. Those details are not repeated here.

 DNS Push Notification clients and servers MUST support DSO. A single
 server can support DNS Queries, DNS Updates, and DNS Push
 Notifications (using DSO) on the same TCP port.

 A DNS Push Notification exchange begins with the client discovering
 the appropriate server, using the procedure described in Section 6.1,
 and then making a TLS/TCP connection to it.

 A typical DNS Push Notification client will immediately issue a DSO
 Keepalive operation to request a session timeout and/or keepalive
 interval longer than the 15-second default values, but this is not
 required. A DNS Push Notification client MAY issue other requests on
 the session first, and only issue a DSO Keepalive operation later if
 it determines that to be necessary. Sending either a DSO Keepalive
 operation or a Push Notification subscription request over the TLS/
 TCP connection to the server signals the client’s support of DSO and
 serves to establish a DSO session.

 In accordance with the current set of active subscriptions, the
 server sends relevant asynchronous Push Notifications to the client.
 Note that a client MUST be prepared to receive (and silently ignore)
 Push Notifications for subscriptions it has previously removed, since
 there is no way to prevent the situation where a Push Notification is
 in flight from server to client while the client’s UNSUBSCRIBE
 message cancelling that subscription is simultaneously in flight from
 client to server.

Pusateri & Cheshire Expires April 15, 2020 [Page 8]

Internet-Draft DNS Push Notifications October 2019

6.1. Discovery

 The first step in establishing a DNS Push Notification subscription
 is to discover an appropriate DNS server that supports DNS Push
 Notifications for the desired zone.

 The client begins by opening a DSO Session to its normal configured
 DNS recursive resolver and requesting a Push Notification
 subscription. This connection is made to TCP port 853, the default
 port for DNS-over-TLS [RFC7858]. If the request for a Push
 Notification subscription is successful, and the recursive resolver
 doesn’t already have an active subscription for that name, type, and
 class, then the recursive resolver will make a corresponding Push
 Notification subscription on the client’s behalf. Results received
 are relayed to the client. This is closely analogous to how a client
 sends a normal DNS query to its configured DNS recursive resolver
 which, if it doesn’t already have appropriate answer(s) in its cache,
 issues an upstream query to satisfy the request.

 In many contexts, the recursive resolver will be able to handle Push
 Notifications for all names that the client may need to follow. Use
 of VPN tunnels and Private DNS [RFC8499] can create some additional
 complexity in the client software here; the techniques to handle VPN
 tunnels and Private DNS for DNS Push Notifications are the same as
 those already used to handle this for normal DNS queries.

 If the recursive resolver does not support DNS over TLS, or supports
 DNS over TLS but is not listening on TCP port 853, or supports DNS
 over TLS on TCP port 853 but does not support DSO on that port, then
 the DSO Session session establishment will fail [RFC8490].

 If the recursive resolver does support DSO but not Push Notification
 subscriptions, then it will return the DSO error code DSOTYPENI (11).

 In some cases, the recursive resolver may support DSO and Push
 Notification subscriptions, but may not be able to subscribe for Push
 Notifications for a particular name. In this case, the recursive
 resolver should return SERVFAIL to the client. This includes being
 unable to establish a connection to the zone’s DNS Push Notification
 server or establishing a connection but receiving a non success
 response code. In some cases, where the client has a pre-established
 trust relationship with the owner of the zone (that is not handled
 via the usual mechanisms for VPN software) the client may handle
 these failures by contacting the zone’s DNS Push server directly.

 In any of the cases described above where the client fails to
 establish a DNS Push Notification subscription via its configured
 recursive resolver, the client should proceed to discover the

Pusateri & Cheshire Expires April 15, 2020 [Page 9]

Internet-Draft DNS Push Notifications October 2019

 appropriate server for direct communication. The client MUST also
 determine which TCP port on the server is listening for connections,
 which need not be (and often is not) the typical TCP port 53 used for
 conventional DNS, or TCP port 853 used for DNS over TLS.

 The discovery algorithm described here is an iterative algorithm,
 which starts with the full name of the record to which the client
 wishes to subscribe. Successive SOA queries are then issued,
 trimming one label each time, until the closest enclosing
 authoritative server is discovered. There is also an optimization to
 enable the client to take a "short cut" directly to the SOA record of
 the closest enclosing authoritative server in many cases.

 1. The client begins the discovery by sending a DNS query to its
 local resolver, with record type SOA [RFC1035] for the record
 name to which it wishes to subscribe. As an example, suppose the
 client wishes to subscribe to PTR records with the name
 _ipp._tcp.headoffice.example.com (to discover Internet Printing
 Protocol (IPP) printers [RFC8010] [RFC8011] being advertised in
 the head office of Example Company.). The client begins by
 sending an SOA query for _ipp._tcp.headoffice.example.com to the
 local recursive resolver. The goal is to determine the server
 authoritative for the name _ipp._tcp.headoffice.example.com. The
 closest enclosing DNS zone containing the name
 _ipp._tcp.headoffice.example.com could be example.com, or
 headoffice.example.com, or _tcp.headoffice.example.com, or even
 _ipp._tcp.headoffice.example.com. The client does not know in
 advance where the closest enclosing zone cut occurs, which is why
 it uses the iterative procedure described here to discover this
 information.

 2. If the requested SOA record exists, it will be returned in the
 Answer section with a NOERROR response code, and the client has
 succeeded in discovering the information it needs.
 (This language is not placing any new requirements on DNS
 recursive resolvers. This text merely describes the existing
 operation of the DNS protocol [RFC1034] [RFC1035].)

 3. If the requested SOA record does not exist, the client will get
 back a NOERROR/NODATA response or an NXDOMAIN/Name Error
 response. In either case, the local resolver would normally
 include the SOA record for the closest enclosing zone of the
 requested name in the Authority Section. If the SOA record is
 received in the Authority Section, then the client has succeeded
 in discovering the information it needs.
 (This language is not placing any new requirements on DNS
 recursive resolvers. This text merely describes the existing

Pusateri & Cheshire Expires April 15, 2020 [Page 10]

Internet-Draft DNS Push Notifications October 2019

 operation of the DNS protocol regarding negative responses
 [RFC2308].)

 4. If the client receives a response containing no SOA record, then
 it proceeds with the iterative approach. The client strips the
 leading label from the current query name, and if the resulting
 name has at least two labels in it, the client sends an SOA query
 for that new name, and processing continues at step 2 above,
 repeating the iterative search until either an SOA is received,
 or the query name consists of a single label, i.e., a Top Level
 Domain (TLD). In the case of a single-label name (TLD), this is
 a network configuration error, which should not happen, and the
 client gives up. The client may retry the operation at a later
 time, of the client’s choosing, such after a change in network
 attachment.

 5. Once the SOA is known (either by virtue of being seen in the
 Answer Section, or in the Authority Section), the client sends a
 DNS query with type SRV [RFC2782] for the record name
 "_dns-push-tls._tcp.<zone>", where <zone> is the owner name of
 the discovered SOA record.

 6. If the zone in question is set up to offer DNS Push Notifications
 then this SRV record MUST exist. (If this SRV record does not
 exist then the zone is not correctly configured for DNS Push
 Notifications as specified in this document.) The SRV "target"
 contains the name of the server providing DNS Push Notifications
 for the zone. The port number on which to contact the server is
 in the SRV record "port" field. The address(es) of the target
 host MAY be included in the Additional Section, however, the
 address records SHOULD be authenticated before use as described
 below in Section 7.2 and in the specification for using DANE TLSA
 Records with SRV Records [RFC7673], if applicable.

 7. More than one SRV record may be returned. In this case, the
 "priority" and "weight" values in the returned SRV records are
 used to determine the order in which to contact the servers for
 subscription requests. As described in the SRV specification
 [RFC2782], the server with the lowest "priority" is first
 contacted. If more than one server has the same "priority", the
 "weight" indicates the weighted probability that the client
 should contact that server. Higher weights have higher
 probabilities of being selected. If a server is not willing to
 accept a subscription request, or is not reachable within a
 reasonable time, as determined by the client, then a subsequent
 server is to be contacted.

Pusateri & Cheshire Expires April 15, 2020 [Page 11]

Internet-Draft DNS Push Notifications October 2019

 Each time a client makes a new DNS Push Notification subscription, it
 SHOULD repeat the discovery process in order to determine the
 preferred DNS server for that subscription at that time. If a client
 already has a DSO session with that DNS server the client SHOULD
 reuse that existing DSO session for the new subscription, otherwise,
 a new DSO session is established. The client MUST respect the DNS
 TTL values on records it receives while performing the discovery
 process and store them in its local cache with this lifetime (as it
 will generally be do anyway for all DNS queries it performs). This
 means that, as long as the DNS TTL values on the authoritative
 records are set to reasonable values, repeated application of the
 discovery process can be completed nearly instantaneously by the
 client, using only locally-stored cached data.

Pusateri & Cheshire Expires April 15, 2020 [Page 12]

Internet-Draft DNS Push Notifications October 2019

6.2. DNS Push Notification SUBSCRIBE

 After connecting, and requesting a longer idle timeout and/or
 keepalive interval if necessary, a DNS Push Notification client
 then indicates its desire to receive DNS Push Notifications for
 a given domain name by sending a SUBSCRIBE request to the server.
 A SUBSCRIBE request is encoded in a DSO message [RFC8490].
 This specification defines a primary DSO TLV for DNS Push
 Notification SUBSCRIBE Requests (tentatively DSO Type Code 0x40).

 DSO messages with the SUBSCRIBE TLV as the Primary TLV are permitted
 in TLS early data, provided that the precautions described in
 Section 7.3 are followed.

 The entity that initiates a SUBSCRIBE request is by definition the
 client. A server MUST NOT send a SUBSCRIBE request over an existing
 session from a client. If a server does send a SUBSCRIBE request
 over a DSO session initiated by a client, this is a fatal error and
 the client MUST forcibly abort the connection immediately.

 Each SUBSCRIBE request generates exactly one SUBSCRIBE response from
 the server. The entity that initiates a SUBSCRIBE response is by
 definition the server. A client MUST NOT send a SUBSCRIBE response.
 If a client does send a SUBSCRIBE response, this is a fatal error and
 the server MUST forcibly abort the connection immediately.

6.2.1. SUBSCRIBE Request

 A SUBSCRIBE request begins with the standard DSO 12-byte header
 [RFC8490], followed by the SUBSCRIBE primary TLV. A SUBSCRIBE
 request is illustrated in Figure 1.

 The MESSAGE ID field MUST be set to a unique value, that the client
 is not using for any other active operation on this DSO session. For
 the purposes here, a MESSAGE ID is in use on this session if the
 client has used it in a request for which it has not yet received a
 response, or if the client has used it for a subscription which it
 has not yet cancelled using UNSUBSCRIBE. In the SUBSCRIBE response
 the server MUST echo back the MESSAGE ID value unchanged.

 The other header fields MUST be set as described in the DSO spec-
 ification [RFC8490]. The DNS OPCODE field contains the OPCODE value
 for DNS Stateful Operations (6). The four count fields must be zero,
 and the corresponding four sections must be empty (i.e., absent).

 The DSO-TYPE is SUBSCRIBE (tentatively 0x40).

Pusateri & Cheshire Expires April 15, 2020 [Page 13]

Internet-Draft DNS Push Notifications October 2019

 The DSO-LENGTH is the length of the DSO-DATA that follows, which
 specifies the name, type, and class of the record(s) being sought.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 | MESSAGE ID | \
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 |QR| OPCODE(6) | Z | RCODE | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | QDCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ > HEADER
 | ANCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | NSCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | ARCOUNT (MUST BE ZERO) | /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /
 | DSO-TYPE = SUBSCRIBE (tentatively 0x40) |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | DSO-LENGTH (number of octets in DSO-DATA) |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 \ NAME \ \
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | TYPE | > DSO-DATA
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | CLASS | /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /

 Figure 1: SUBSCRIBE Request

 The DSO-DATA for a SUBSCRIBE request MUST contain exactly one NAME,
 TYPE, and CLASS. Since SUBSCRIBE requests are sent over TCP,
 multiple SUBSCRIBE DSO request messages can be concatenated in a
 single TCP stream and packed efficiently into TCP segments.

 If accepted, the subscription will stay in effect until the client
 cancels the subscription using UNSUBSCRIBE or until the DSO session
 between the client and the server is closed.

 SUBSCRIBE requests on a given session MUST be unique. A client MUST
 NOT send a SUBSCRIBE message that duplicates the NAME, TYPE and CLASS
 of an existing active subscription on that DSO session. For the
 purpose of this matching, the established DNS case-insensitivity for
 US-ASCII letters [RFC0020] applies (e.g., "example.com" and
 "Example.com" are the same). If a server receives such a duplicate
 SUBSCRIBE message, this is a fatal error and the server MUST forcibly
 abort the connection immediately.

Pusateri & Cheshire Expires April 15, 2020 [Page 14]

Internet-Draft DNS Push Notifications October 2019

 DNS wildcarding is not supported. That is, a wildcard ("*") in a
 SUBSCRIBE message matches only a literal wildcard character ("*") in
 the zone, and nothing else.

 Aliasing is not supported. That is, a CNAME in a SUBSCRIBE message
 matches only a literal CNAME record in the zone, and no other records
 with the same owner name.

 A client may SUBSCRIBE to records that are unknown to the server at
 the time of the request (providing that the name falls within one of
 the zone(s) the server is responsible for) and this is not an error.
 The server MUST NOT return NXDOMAIN in this case. The server MUST
 accept these requests and send Push Notifications if and when
 matching records are found in the future.

 If neither TYPE nor CLASS are ANY (255) then this is a specific
 subscription to changes for the given NAME, TYPE and CLASS. If one
 or both of TYPE or CLASS are ANY (255) then this subscription matches
 any type and/or any class, as appropriate.

 NOTE: A little-known quirk of DNS is that in DNS QUERY requests,
 QTYPE and QCLASS 255 mean "ANY" not "ALL". They indicate that the
 server should respond with ANY matching records of its choosing, not
 necessarily ALL matching records. This can lead to some surprising
 and unexpected results, where a query returns some valid answers but
 not all of them, and makes QTYPE = 255 (ANY) queries less useful than
 people sometimes imagine.

 When used in conjunction with SUBSCRIBE, TYPE and CLASS 255 should be
 interpreted to mean "ALL", not "ANY". After accepting a subscription
 where one or both of TYPE or CLASS are 255, the server MUST send Push
 Notification Updates for ALL record changes that match the
 subscription, not just some of them.

Pusateri & Cheshire Expires April 15, 2020 [Page 15]

Internet-Draft DNS Push Notifications October 2019

6.2.2. SUBSCRIBE Response

 A SUBSCRIBE response begins with the standard DSO 12-byte header
 [RFC8490]. The QR bit in the header is set indicating it is a
 response. The header MAY be followed by one or more optional TLVs,
 such as a Retry Delay TLV. A SUBSCRIBE response is illustrated in
 Figure 2.

 The MESSAGE ID field MUST echo the value given in the MESSAGE ID
 field of the SUBSCRIBE request. This is how the client knows which
 request is being responded to.

 The other header fields MUST be set as described in the DSO spec-
 ification [RFC8490]. The DNS OPCODE field contains the OPCODE value
 for DNS Stateful Operations (6). The four count fields must be zero,
 and the corresponding four sections must be empty (i.e., absent).

 A SUBSCRIBE response message MUST NOT include a SUBSCRIBE TLV. If a
 client receives a SUBSCRIBE response message containing a SUBSCRIBE
 TLV then the response message is processed but the SUBSCRIBE TLV MUST
 be silently ignored.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 | MESSAGE ID | \
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 |QR| OPCODE(6) | Z | RCODE | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | QDCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ > HEADER
 | ANCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | NSCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | ARCOUNT (MUST BE ZERO) | /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /

 Figure 2: SUBSCRIBE Response

Pusateri & Cheshire Expires April 15, 2020 [Page 16]

Internet-Draft DNS Push Notifications October 2019

 In the SUBSCRIBE response the RCODE indicates whether or not the
 subscription was accepted. Supported RCODEs are as follows:

 +-----------+-------+---+
 | Mnemonic | Value | Description |
 +-----------+-------+---+
NOERROR	0	SUBSCRIBE successful.
FORMERR	1	Server failed to process request due to a
		malformed request.
SERVFAIL	2	Server failed to process request due to a
		problem with the server.
NOTIMP	4	Server does not implement DSO.
REFUSED	5	Server refuses to process request for policy
		or security reasons.
NOTAUTH	9	Server is not authoritative for the requested
		name.
DSOTYPENI	11	SUBSCRIBE operation not supported.
 +-----------+-------+---+

 Table 1: SUBSCRIBE Response codes

 This document specifies only these RCODE values for SUBSCRIBE
 Responses. Servers sending SUBSCRIBE Responses SHOULD use one of
 these values. Note that NXDOMAIN is not a valid RCODE in response to
 a SUBSCRIBE Request. However, future circumstances may create
 situations where other RCODE values are appropriate in SUBSCRIBE
 Responses, so clients MUST be prepared to accept SUBSCRIBE Responses
 with any other RCODE value.

 If the server sends a nonzero RCODE in the SUBSCRIBE response, that
 means:

 a. the client is (at least partially) misconfigured, or
 b. the server resources are exhausted, or
 c. there is some other unknown failure on the server.

 In any case, the client shouldn’t retry the subscription to this
 server right away. If multiple SRV records were returned as
 described in Section 6.1, Paragraph 7, a subsequent server MAY be
 tried immediately.

 If the client has other successful subscriptions to this server,
 these subscriptions remain even though additional subscriptions may
 be refused. Neither the client nor the server are required to close
 the connection, although, either end may choose to do so.

 If the server sends a nonzero RCODE then it SHOULD append a Retry
 Delay TLV [RFC8490] to the response specifying a delay before the

Pusateri & Cheshire Expires April 15, 2020 [Page 17]

Internet-Draft DNS Push Notifications October 2019

 client attempts this operation again. Recommended values for the
 delay for different RCODE values are given below. These recommended
 values apply both to the default values a server should place in the
 Retry Delay TLV, and the default values a client should assume if the
 server provides no Retry Delay TLV.

 For RCODE = 1 (FORMERR) the delay may be any value selected by the
 implementer. A value of five minutes is RECOMMENDED, to reduce
 the risk of high load from defective clients.

 For RCODE = 2 (SERVFAIL) the delay should be chosen according to
 the level of server overload and the anticipated duration of that
 overload. By default, a value of one minute is RECOMMENDED. If a
 more serious server failure occurs, the delay may be longer in
 accordance with the specific problem encountered.

 For RCODE = 4 (NOTIMP), which occurs on a server that doesn’t
 implement DNS Stateful Operations [RFC8490], it is unlikely that
 the server will begin supporting DSO in the next few minutes, so
 the retry delay SHOULD be one hour. Note that in such a case, a
 server that doesn’t implement DSO is unlikely to place a Retry
 Delay TLV in its response, so this recommended value in particular
 applies to what a client should assume by default.

 For RCODE = 5 (REFUSED), which occurs on a server that implements
 DNS Push Notifications, but is currently configured to disallow
 DNS Push Notifications, the retry delay may be any value selected
 by the implementer and/or configured by the operator.

 If the server being queried is listed in a
 "_dns-push-tls._tcp.<zone>" SRV record for the zone, then this is
 a misconfiguration, since this server is being advertised as
 supporting DNS Push Notifications for this zone, but the server
 itself is not currently configured to perform that task. Since it
 is possible that the misconfiguration may be repaired at any time,
 the retry delay should not be set too high. By default, a value
 of 5 minutes is RECOMMENDED.

 For RCODE = 9 (NOTAUTH), which occurs on a server that implements
 DNS Push Notifications, but is not configured to be authoritative
 for the requested name, the retry delay may be any value selected
 by the implementer and/or configured by the operator.

 If the server being queried is listed in a
 "_dns-push-tls._tcp.<zone>" SRV record for the zone, then this is
 a misconfiguration, since this server is being advertised as
 supporting DNS Push Notifications for this zone, but the server
 itself is not currently configured to perform that task. Since it

Pusateri & Cheshire Expires April 15, 2020 [Page 18]

Internet-Draft DNS Push Notifications October 2019

 is possible that the misconfiguration may be repaired at any time,
 the retry delay should not be set too high. By default, a value
 of 5 minutes is RECOMMENDED.

 For RCODE = 11 (DSOTYPENI), which occurs on a server that
 implements DSO but doesn’t implement DNS Push Notifications, it is
 unlikely that the server will begin supporting DNS Push
 Notifications in the next few minutes, so the retry delay SHOULD
 be one hour.

 For other RCODE values, the retry delay should be set by the
 server as appropriate for that error condition. By default, a
 value of 5 minutes is RECOMMENDED.

 For RCODE = 9 (NOTAUTH), the time delay applies to requests for other
 names falling within the same zone. Requests for names falling
 within other zones are not subject to the delay. For all other
 RCODEs the time delay applies to all subsequent requests to this
 server.

 After sending an error response the server MAY allow the session to
 remain open, or MAY send a DNS Push Notification Retry Delay
 Operation TLV instructing the client to close the session, as
 described in the DSO specification [RFC8490]. Clients MUST correctly
 handle both cases.

Pusateri & Cheshire Expires April 15, 2020 [Page 19]

Internet-Draft DNS Push Notifications October 2019

6.3. DNS Push Notification Updates

 Once a subscription has been successfully established, the server
 generates PUSH messages to send to the client as appropriate. In the
 case that the answer set was already non-empty at the moment the
 subscription was established, an initial PUSH message will be sent
 immediately following the SUBSCRIBE Response. Subsequent changes to
 the answer set are then communicated to the client in subsequent PUSH
 messages.

 A client MUST NOT send a PUSH message. If a client does send a PUSH
 message, or a PUSH message is sent with the QR bit set indicating
 that it is a response, this is a fatal error and the receiver MUST
 forcibly abort the connection immediately.

6.3.1. PUSH Message

 A PUSH unidirectional message begins with the standard DSO 12-byte
 header [RFC8490], followed by the PUSH primary TLV. A PUSH message
 is illustrated in Figure 3.

 In accordance with the definition of DSO unidirectional messages, the
 MESSAGE ID field MUST be zero. There is no client response to a PUSH
 message.

 The other header fields MUST be set as described in the DSO spec-
 ification [RFC8490]. The DNS OPCODE field contains the OPCODE value
 for DNS Stateful Operations (6). The four count fields must be zero,
 and the corresponding four sections must be empty (i.e., absent).

 The DSO-TYPE is PUSH (tentatively 0x41).

 The DSO-LENGTH is the length of the DSO-DATA that follows, which
 specifies the changes being communicated.

 The DSO-DATA contains one or more change notifications. A PUSH
 Message MUST contain at least one change notification. If a PUSH
 Message is received that contains no change notifications, this is a
 fatal error, and the client MUST forcibly abort the connection
 immediately.

 The change notification records are formatted similarly to how DNS
 Resource Records are conventionally expressed in DNS messages, as
 illustrated in Figure 3, and are interpreted as described below.

Pusateri & Cheshire Expires April 15, 2020 [Page 20]

Internet-Draft DNS Push Notifications October 2019

 The TTL field holds an unsigned 32-bit integer [RFC2181]. If the TTL
 is in the range 0 to 2,147,483,647 seconds (0 to 2^31 - 1, or
 0x7FFFFFFF), then a new DNS Resource Record with the given name,
 type, class and RDATA is added. Type and class MUST NOT be 255
 (ANY). If either type or class are 255 (ANY) this is a fatal error,
 and the client MUST forcibly abort the connection immediately. A TTL
 of 0 means that this record should be retained for as long as the
 subscription is active, and should be discarded immediately the
 moment the subscription is cancelled.

 If the TTL has the value 0xFFFFFFFF, then the DNS Resource Record
 with the given name, type, class and RDATA is removed. Type and
 class MUST NOT be 255 (ANY). If either type or class are 255 (ANY)
 this is a fatal error, and the client MUST forcibly abort the
 connection immediately.

 If the TTL has the value 0xFFFFFFFE, then this is a ’collective’
 remove notification. For collective remove notifications RDLEN MUST
 be zero and consequently the RDATA MUST be empty. If a change
 notification is received where TTL = 0xFFFFFFFE and RDLEN is not
 zero, this is a fatal error, and the client MUST forcibly abort the
 connection immediately.

 There are three types of collective remove notification:

 For collective remove notifications, if CLASS is not 255 (ANY) and
 TYPE is not 255 (ANY) then for the given name this removes all
 records of the specified type in the specified class.

 For collective remove notifications, if CLASS is not 255 (ANY) and
 TYPE is 255 (ANY) then for the given name this removes all records of
 all types in the specified class.

 For collective remove notifications, if CLASS is 255 (ANY), then for
 the given name this removes all records of all types in all classes.
 In this case TYPE MUST be set to zero on transmission, and MUST be
 silently ignored on reception.

Pusateri & Cheshire Expires April 15, 2020 [Page 21]

Internet-Draft DNS Push Notifications October 2019

 Summary of change notification types:

 Remove all RRsets from a name, in all classes
 TTL = 0xFFFFFFFE, RDLEN = 0, CLASS = 255 (ANY)

 Remove all RRsets from a name, in given class:
 TTL = 0xFFFFFFFE, RDLEN = 0, CLASS gives class, TYPE = 255 (ANY)

 Remove specified RRset from a name, in given class:
 TTL = 0xFFFFFFFE, RDLEN = 0
 CLASS and TYPE specify the RRset being removed

 Remove an individual RR from a name:
 TTL = 0xFFFFFFFF
 CLASS, TYPE, RDLEN and RDATA specify the RR being removed

 Add individual RR to a name
 TTL >= 0 and TTL <= 0x7FFFFFFF
 CLASS, TYPE, RDLEN, RDATA and TTL specify the RR being added

 Note that it is valid for the RDATA of an added or removed DNS
 Resource Record to be empty (zero length). For example, an Address
 Prefix List Resource Record [RFC3123] may have empty RDATA.
 Therefore, a change notification with RDLEN = 0 does not
 automatically indicate a remove notification. If RDLEN = 0 and TTL
 is the in the range 0 - 0x7FFFFFFF, this change notification signals
 the addition of a record with the given name, type, class, and empty
 RDATA. If RDLEN = 0 and TTL = 0xFFFFFFFF, this change notification
 signals the removal specifically of that single record with the given
 name, type, class, and empty RDATA.

 If the TTL is any value other than 0xFFFFFFFF, 0xFFFFFFFE, or a value
 in the range 0 - 0x7FFFFFFF, then the receiver SHOULD silently ignore
 this particular change notification record. The connection is not
 terminated and other valid change notification records within this
 PUSH message are processed as usual.

 For efficiency, when generating a PUSH message, a server SHOULD
 include as many change notifications as it has immediately available
 to send, rather than sending each change notification as a separate
 DSO message. Once it has exhausted the list of change notifications
 immediately available to send, a server SHOULD then send the PUSH
 message immediately, rather than waiting to see if additional change
 notifications become available.

Pusateri & Cheshire Expires April 15, 2020 [Page 22]

Internet-Draft DNS Push Notifications October 2019

 For efficiency, when generating a PUSH message, a server SHOULD use
 standard DNS name compression, with offsets relative to the beginning
 of the DNS message [RFC1035]. When multiple change notifications in
 a single PUSH message have the same owner name, this name compression
 can yield significant savings. Name compression should be performed
 as specified in Section 18.14 of the Multicast DNS specification
 [RFC6762], namely, owner names should always be compressed, and names
 appearing within RDATA should be compressed for only the RR types
 listed below:

 NS, CNAME, PTR, DNAME, SOA, MX, AFSDB, RT, KX, RP, PX, SRV, NSEC

 Servers may generate PUSH messages up to a maximum DNS message length
 of 16,382 bytes, counting from the start of the DSO 12-byte header.
 Including the two-byte length prefix that is used to frame DNS over a
 byte stream like TLS, this makes a total of 16,384 bytes. Servers
 MUST NOT generate PUSH messages larger than this. Where the
 immediately available change notifications are sufficient to exceed a
 DNS message length of 16,382 bytes, the change notifications MUST be
 communicated in separate PUSH messages of up to 16,382 bytes each.
 DNS name compression becomes less effective for messages larger than
 16,384 bytes, so little efficiency benefit is gained by sending
 messages larger than this.

 If a client receives a PUSH message with a DNS message length larger
 than 16,382 bytes, this is a fatal error, and the client MUST
 forcibly abort the connection immediately.

Pusateri & Cheshire Expires April 15, 2020 [Page 23]

Internet-Draft DNS Push Notifications October 2019

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 | MESSAGE ID (MUST BE ZERO) | \
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 |QR| OPCODE(6) | Z | RCODE | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | QDCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ > HEADER
 | ANCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | NSCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | ARCOUNT (MUST BE ZERO) | /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /
 | DSO-TYPE = PUSH (tentatively 0x41) |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | DSO-LENGTH (number of octets in DSO-DATA) |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 \ NAME \ \
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | TYPE | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | CLASS | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | TTL | |
 | (32-bit unsigned big-endian integer) | > DSO-DATA
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | RDLEN (16-bit unsigned big-endian integer) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 \ RDATA (sized as necessary) \ |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 : NAME, TYPE, CLASS, TTL, RDLEN, RDATA : |
 : Repeated As Necessary : /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /

 Figure 3: PUSH Message

 When processing the records received in a PUSH Message, the receiving
 client MUST validate that the records being added or removed
 correspond with at least one currently active subscription on that
 session. Specifically, the record name MUST match the name given in
 the SUBSCRIBE request, subject to the usual established DNS case-
 insensitivity for US-ASCII letters. For individual additions and
 removals, if the TYPE in the SUBSCRIBE request was not ANY (255) then
 the TYPE of the record must match the TYPE given in the SUBSCRIBE
 request, and if the CLASS in the SUBSCRIBE request was not ANY (255)
 then the CLASS of the record must match the CLASS given in the

Pusateri & Cheshire Expires April 15, 2020 [Page 24]

Internet-Draft DNS Push Notifications October 2019

 SUBSCRIBE request. For collective removals, at least one of the
 records being removed must match an active subscription. If a
 matching active subscription on that session is not found, then that
 particular addition/removal record is silently ignored. Processing
 of other additions and removal records in this message is not
 affected. The DSO session is not closed. This is to allow for the
 unavoidable race condition where a client sends an outbound
 UNSUBSCRIBE while inbound PUSH messages for that subscription from
 the server are still in flight.

 In the case where a single change affects more than one active
 subscription, only one PUSH message is sent. For example, a PUSH
 message adding a given record may match both a SUBSCRIBE request with
 the same TYPE and a different SUBSCRIBE request with TYPE = 255
 (ANY). It is not the case that two PUSH messages are sent because
 the new record matches two active subscriptions.

 The server SHOULD encode change notifications in the most efficient
 manner possible. For example, when three AAAA records are removed
 from a given name, and no other AAAA records exist for that name, the
 server SHOULD send a "remove an RRset from a name" PUSH message, not
 three separate "remove an individual RR from a name" PUSH messages.
 Similarly, when both an SRV and a TXT record are removed from a given
 name, and no other records of any kind exist for that name, the
 server SHOULD send a "remove all RRsets from a name" PUSH message,
 not two separate "remove an RRset from a name" PUSH messages.

 A server SHOULD combine multiple change notifications in a single
 PUSH message when possible, even if those change notifications apply
 to different subscriptions. Conceptually, a PUSH message is a
 session-level mechanism, not a subscription-level mechanism.

 The TTL of an added record is stored by the client. While the
 subscription is active, the TTL is not decremented, because a change
 to the TTL would produce a new update. For as long as a relevant
 subscription remains active, the client SHOULD assume that when a
 record goes away the server will notify it of that fact.
 Consequently, a client does not have to poll to verify that the
 record is still there. Once a subscription is cancelled
 (individually, or as a result of the DSO session being closed) record
 aging for records covered by the subscription resumes and records are
 removed from the local cache when their TTL reaches zero.

Pusateri & Cheshire Expires April 15, 2020 [Page 25]

Internet-Draft DNS Push Notifications October 2019

6.4. DNS Push Notification UNSUBSCRIBE

 To cancel an individual subscription without closing the entire DSO
 session, the client sends an UNSUBSCRIBE message over the established
 DSO session to the server.

 The entity that initiates an UNSUBSCRIBE message is by definition the
 client. A server MUST NOT send an UNSUBSCRIBE message over an
 existing session from a client. If a server does send an UNSUBSCRIBE
 message over a DSO session initiated by a client, or an UNSUBSCRIBE
 message is sent with the QR bit set indicating that it is a response,
 this is a fatal error and the receiver MUST forcibly abort the
 connection immediately.

6.4.1. UNSUBSCRIBE Message

 An UNSUBSCRIBE unidirectional message begins with the standard DSO
 12-byte header [RFC8490], followed by the UNSUBSCRIBE primary TLV.
 An UNSUBSCRIBE message is illustrated in Figure 4.

 In accordance with the definition of DSO unidirectional messages, the
 MESSAGE ID field MUST be zero. There is no server response to an
 UNSUBSCRIBE message.

 The other header fields MUST be set as described in the DSO spec-
 ification [RFC8490]. The DNS OPCODE field contains the OPCODE value
 for DNS Stateful Operations (6). The four count fields must be zero,
 and the corresponding four sections must be empty (i.e., absent).

 The DSO-TYPE is UNSUBSCRIBE (tentatively 0x42).

 The DSO-LENGTH field contains the value 2, the length of the 2-octet
 MESSAGE ID contained in the DSO-DATA.

 The DSO-DATA contains the value previously given in the MESSAGE ID
 field of an active SUBSCRIBE request. This is how the server knows
 which SUBSCRIBE request is being cancelled. After receipt of the
 UNSUBSCRIBE message, the SUBSCRIBE request is no longer active.

 It is allowable for the client to issue an UNSUBSCRIBE message for a
 previous SUBSCRIBE request for which the client has not yet received
 a SUBSCRIBE response. This is to allow for the case where a client
 starts and stops a subscription in less than the round-trip time to
 the server. The client is NOT required to wait for the SUBSCRIBE
 response before issuing the UNSUBSCRIBE message.

Pusateri & Cheshire Expires April 15, 2020 [Page 26]

Internet-Draft DNS Push Notifications October 2019

 Consequently, it is possible for a server to receive an UNSUBSCRIBE
 message that does not match any currently active subscription. This
 can occur when a client sends a SUBSCRIBE request, which subsequently
 fails and returns an error code, but the client sent an UNSUBSCRIBE
 message before it became aware that the SUBSCRIBE request had failed.
 Because of this, servers MUST silently ignore UNSUBSCRIBE messages
 that do not match any currently active subscription.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 | MESSAGE ID (MUST BE ZERO) | \
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 |QR| OPCODE(6) | Z | RCODE | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | QDCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ > HEADER
 | ANCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | NSCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | ARCOUNT (MUST BE ZERO) | /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /
 | DSO-TYPE = UNSUBSCRIBE (tentatively 0x42) |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | DSO-LENGTH (2) |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 | SUBSCRIBE MESSAGE ID | > DSO-DATA
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /

 Figure 4: UNSUBSCRIBE Message

Pusateri & Cheshire Expires April 15, 2020 [Page 27]

Internet-Draft DNS Push Notifications October 2019

6.5. DNS Push Notification RECONFIRM

 Sometimes, particularly when used with a Discovery Proxy [DisProx], a
 DNS Zone may contain stale data. When a client encounters data that
 it believes may be stale (e.g., an SRV record referencing a target
 host+port that is not responding to connection requests) the client
 can send a RECONFIRM message to ask the server to re-verify that the
 data is still valid. For a Discovery Proxy, this causes it to issue
 new Multicast DNS queries to ascertain whether the target device is
 still present. How the Discovery Proxy causes these new Multicast
 DNS queries to be issued depends on the details of the underlying
 Multicast DNS implementation being used. For example, a Discovery
 Proxy built on Apple’s dns_sd.h API [SD-API] responds to a DNS Push
 Notification RECONFIRM message by calling the underlying API’s
 DNSServiceReconfirmRecord() routine.

 For other types of DNS server, the RECONFIRM operation is currently
 undefined, and SHOULD result in a NOERROR response, but otherwise
 need not cause any action to occur.

 Frequent use of RECONFIRM operations may be a sign of network
 unreliability, or some kind of misconfiguration, so RECONFIRM
 operations MAY be logged or otherwise communicated to a human
 administrator to assist in detecting and remedying such network
 problems.

 If, after receiving a valid RECONFIRM message, the server determines
 that the disputed records are in fact no longer valid, then
 subsequent DNS PUSH Messages will be generated to inform interested
 clients. Thus, one client discovering that a previously-advertised
 device (like a network printer) is no longer present has the side
 effect of informing all other interested clients that the device in
 question is now gone.

 The entity that initiates a RECONFIRM message is by definition the
 client. A server MUST NOT send a RECONFIRM message over an existing
 session from a client. If a server does send a RECONFIRM message
 over a DSO session initiated by a client, or a RECONFIRM message is
 sent with the QR bit set indicating that it is a response, this is a
 fatal error and the receiver MUST forcibly abort the connection
 immediately.

Pusateri & Cheshire Expires April 15, 2020 [Page 28]

Internet-Draft DNS Push Notifications October 2019

6.5.1. RECONFIRM Message

 A RECONFIRM unidirectional message begins with the standard DSO
 12-byte header [RFC8490], followed by the RECONFIRM primary TLV.
 A RECONFIRM message is illustrated in Figure 5.

 In accordance with the definition of DSO unidirectional messages, the
 MESSAGE ID field MUST be zero. There is no server response to a
 RECONFIRM message.

 The other header fields MUST be set as described in the DSO spec-
 ification [RFC8490]. The DNS OPCODE field contains the OPCODE value
 for DNS Stateful Operations (6). The four count fields must be zero,
 and the corresponding four sections must be empty (i.e., absent).

 The DSO-TYPE is RECONFIRM (tentatively 0x43).

 The DSO-LENGTH is the length of the data that follows, which
 specifies the name, type, class, and content of the record being
 disputed.

 The DSO-DATA for a RECONFIRM message MUST contain exactly one record.
 The DSO-DATA for a RECONFIRM message has no count field to specify
 more than one record. Since RECONFIRM messages are sent over TCP,
 multiple RECONFIRM messages can be concatenated in a single TCP
 stream and packed efficiently into TCP segments.

 TYPE MUST NOT be the value ANY (255) and CLASS MUST NOT be the value
 ANY (255).

 DNS wildcarding is not supported. That is, a wildcard ("*") in a
 RECONFIRM message matches only a literal wildcard character ("*") in
 the zone, and nothing else.

 Aliasing is not supported. That is, a CNAME in a RECONFIRM message
 matches only a literal CNAME record in the zone, and no other records
 with the same owner name.

 Note that there is no RDLEN field, since the length of the RDATA can
 be inferred from DSO-LENGTH, so an additional RDLEN field would be
 redundant.

Pusateri & Cheshire Expires April 15, 2020 [Page 29]

Internet-Draft DNS Push Notifications October 2019

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 | MESSAGE ID (MUST BE ZERO) | \
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 |QR| OPCODE(6) | Z | RCODE | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | QDCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ > HEADER
 | ANCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | NSCOUNT (MUST BE ZERO) | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | ARCOUNT (MUST BE ZERO) | /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /
 | DSO-TYPE = RECONFIRM (tentatively 0x43) |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | DSO-LENGTH (number of octets in DSO-DATA) |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ \
 \ NAME \ \
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 | TYPE | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ > DSO-DATA
 | CLASS | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
 \ RDATA \ /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ /

 Figure 5: RECONFIRM Message

Pusateri & Cheshire Expires April 15, 2020 [Page 30]

Internet-Draft DNS Push Notifications October 2019

6.6. DNS Stateful Operations TLV Context Summary

 This document defines four new DSO TLVs. As recommended in
 Section 8.2 of the DNS Stateful Operations specification [RFC8490],
 the valid contexts of these new TLV types are summarized below.

 The client TLV contexts are:

 C-P: Client request message, primary TLV
 C-U: Client unidirectional message, primary TLV
 C-A: Client request or unidirectional message, additional TLV
 CRP: Response back to client, primary TLV
 CRA: Response back to client, additional TLV

 +-------------+-----+-----+-----+-----+-----+
 | TLV Type | C-P | C-U | C-A | CRP | CRA |
 +-------------+-----+-----+-----+-----+-----+
 | SUBSCRIBE | X | | | | |
 | PUSH | | | | | |
 | UNSUBSCRIBE | | X | | | |
 | RECONFIRM | | X | | | |
 +-------------+-----+-----+-----+-----+-----+

 Table 2: DSO TLV Client Context Summary

 The server TLV contexts are:

 S-P: Server request message, primary TLV
 S-U: Server unidirectional message, primary TLV
 S-A: Server request or unidirectional message, additional TLV
 SRP: Response back to server, primary TLV
 SRA: Response back to server, additional TLV

 +-------------+-----+-----+-----+-----+-----+
 | TLV Type | S-P | S-U | S-A | SRP | SRA |
 +-------------+-----+-----+-----+-----+-----+
 | SUBSCRIBE | | | | | |
 | PUSH | | X | | | |
 | UNSUBSCRIBE | | | | | |
 | RECONFIRM | | | | | |
 +-------------+-----+-----+-----+-----+-----+

 Table 3: DSO TLV Server Context Summary

Pusateri & Cheshire Expires April 15, 2020 [Page 31]

Internet-Draft DNS Push Notifications October 2019

6.7. Client-Initiated Termination

 An individual subscription is terminated by sending an UNSUBSCRIBE
 TLV for that specific subscription, or all subscriptions can be
 cancelled at once by the client closing the DSO session. When a
 client terminates an individual subscription (via UNSUBSCRIBE) or all
 subscriptions on that DSO session (by ending the session) it is
 signaling to the server that it is no longer interested in receiving
 those particular updates. It is informing the server that the server
 may release any state information it has been keeping with regards to
 these particular subscriptions.

 After terminating its last subscription on a session via UNSUBSCRIBE,
 a client MAY close the session immediately, or it may keep it open if
 it anticipates performing further operations on that session in the
 future. If a client wishes to keep an idle session open, it MUST
 respect the maximum idle time required by the server [RFC8490].

 If a client plans to terminate one or more subscriptions on a session
 and doesn’t intend to keep that session open, then as an efficiency
 optimization it MAY instead choose to simply close the session, which
 implicitly terminates all subscriptions on that session. This may
 occur because the client computer is being shut down, is going to
 sleep, the application requiring the subscriptions has terminated, or
 simply because the last active subscription on that session has been
 cancelled.

 When closing a session, a client should perform an orderly close of
 the TLS session. Typical APIs will provide a session close method
 that will send a TLS close_notify alert (see Section 6.1 of the TLS
 1.3 specification [RFC8446]). This instructs the recipient that the
 sender will not send any more data over the session. After sending
 the TLS close_notify alert the client MUST gracefully close the
 underlying connection using a TCP FIN, so that the TLS close_notify
 is reliably delivered. The mechanisms for gracefully closing a TCP
 connection with a TCP FIN vary depending on the networking API. For
 example, in the BSD Sockets API, sending a TCP FIN is achieved by
 calling "shutdown(s,SHUT_WR)" and keeping the socket open until all
 remaining data has been read from it.

 If the session is forcibly closed at the TCP level by sending a RST
 from either end of the connection, data may be lost.

Pusateri & Cheshire Expires April 15, 2020 [Page 32]

Internet-Draft DNS Push Notifications October 2019

6.8. Client Fallback to Polling

 There are cases where a client may exhaust all avenues for
 establishing a DNS Push Notification subscription without success.
 This can happen if the client’s configured recursive resolver does
 not support DNS over TLS, or supports DNS over TLS but is not
 listening on TCP port 853, or supports DNS over TLS on TCP port 853
 but does not support DSO on that port, or for some other reason is
 unable to provide a DNS Push Notification subscription. In this case
 the client will attempt to communicate directly with an appropriate
 server, and it may be that the zone apex discovery fails, or there is
 no "_dns-push-tls._tcp.<zone>" SRV record, or server indicated in the
 SRV record is misconfigured, or is unresponsive for some other
 reason.

 Regardless of the reason for the failure, after being unable to
 establish the desired DNS Push Notification subscription, it is
 likely that the client will still wish to know the answer it seeks,
 even if that answer cannot be obtained with the timely change
 notifications provided by DNS Push Notifications. In such cases it
 is likely that the client will obtain the answer it seeks via a
 conventional DNS query instead, repeated at some interval to detect
 when the answer RRset changes.

 In the case where a client responds to its failure to establish a DNS
 Push Notification subscription by falling back to polling with
 conventional DNS queries instead, the polling rate should be
 controlled to avoid placing excessive burden on the server. The
 interval between successive DNS queries for the same name, type and
 class SHOULD be at least the minimum of: 900 seconds (15 minutes), or
 two seconds more than the TTL of the answer RRset.

 The reason that for TTLs shorter than 898 seconds the query should
 not be reissued until two seconds *after* the answer RRset has
 expired is to ensure that the answer RRset has also expired from the
 cache on the client’s configured recursive resolver. Otherwise
 (particularly if the clocks on the client and the recursive resolver
 do not run at precisely the same rate) there’s a risk of a race
 condition where the client queries its configured recursive resolver
 just as the answer RRset has one second remaining in the recursive
 resolver’s cache. The client would then receive a reply telling it
 that the answer RRset has one second remaining, and then the client
 would then re-query the recursive resolver again one second later
 when the answer RRset actually expires, and only then would the
 recursive resolver issue a new query to fetch new fresh data from the
 authoritative server. Waiting until the answer RRset has definitely
 expired from the the cache on the client’s configured recursive

Pusateri & Cheshire Expires April 15, 2020 [Page 33]

Internet-Draft DNS Push Notifications October 2019

 resolver avoids this race condition and unnecessary additional
 queries it causes.

 Each time a client is about to reissue its query to discover changes
 to the answer RRset, it should first make a new attempt to establish
 a DNS Push Notification subscription, using previously cached DNS
 answers as appropriate. After a temporary misconfiguration has been
 remedied, this allows a client that is polling to return to using DNS
 Push Notifications for asynchronous notification of changes.

7. Security Considerations

 The Strict Privacy Usage Profile for DNS over TLS is REQUIRED for DNS
 Push Notifications [RFC8310]. Cleartext connections for DNS Push
 Notifications are not permissible. Since this is a new protocol,
 transition mechanisms from the Opportunistic Privacy profile are
 unnecessary.

 Also, see Section 9 of the DNS over (D)TLS Usage Profiles document
 [RFC8310] for additional recommendations for various versions of TLS
 usage.

 As a consequence of requiring TLS, client certificate authentication
 and verification may also be enforced by the server for stronger
 client-server security or end-to-end security. However,
 recommendations for security in particular deployment scenarios are
 outside the scope of this document.

 DNSSEC is RECOMMENDED for the authentication of DNS Push Notification
 servers. TLS alone does not provide complete security. TLS
 certificate verification can provide reasonable assurance that the
 client is really talking to the server associated with the desired
 host name, but since the desired host name is learned via a DNS SRV
 query, if the SRV query is subverted then the client may have a
 secure connection to a rogue server. DNSSEC can provide added
 confidence that the SRV query has not been subverted.

Pusateri & Cheshire Expires April 15, 2020 [Page 34]

Internet-Draft DNS Push Notifications October 2019

7.1. Security Services

 It is the goal of using TLS to provide the following security
 services:

 Confidentiality: All application-layer communication is encrypted
 with the goal that no party should be able to decrypt it except
 the intended receiver.

 Data integrity protection: Any changes made to the communication in
 transit are detectable by the receiver.

 Authentication: An end-point of the TLS communication is
 authenticated as the intended entity to communicate with.

 Anti-replay protection: TLS provides for the detection of and
 prevention against messages sent previously over a TLS connection
 (such as DNS Push Notifications). If prior messages are re-sent
 at a later time as a form of a man-in-the-middle attack then the
 receiver will detect this and reject the replayed messages.

 Deployment recommendations on the appropriate key lengths and cypher
 suites are beyond the scope of this document. Please refer to TLS
 Recommendations [BCP195] for the best current practices. Keep in
 mind that best practices only exist for a snapshot in time and
 recommendations will continue to change. Updated versions or errata
 may exist for these recommendations.

7.2. TLS Name Authentication

 As described in Section 6.1, the client discovers the DNS Push
 Notification server using an SRV lookup for the record name
 "_dns-push-tls._tcp.<zone>". The server connection endpoint SHOULD
 then be authenticated using DANE TLSA records for the associated SRV
 record. This associates the target’s name and port number with a
 trusted TLS certificate [RFC7673]. This procedure uses the TLS
 Server Name Indication (SNI) extension [RFC6066] to inform the server
 of the name the client has authenticated through the use of TLSA
 records. Therefore, if the SRV record passes DNSSEC validation and a
 TLSA record matching the target name is useable, an SNI extension
 must be used for the target name to ensure the client is connecting
 to the server it has authenticated. If the target name does not have
 a usable TLSA record, then the use of the SNI extension is optional.
 See Usage Profiles for DNS over TLS and DNS over DTLS [RFC8310] for
 more information on authenticating domain names.

Pusateri & Cheshire Expires April 15, 2020 [Page 35]

Internet-Draft DNS Push Notifications October 2019

7.3. TLS Early Data

 DSO messages with the SUBSCRIBE TLV as the Primary TLV are permitted
 in TLS early data. Using TLS early data can save one network round
 trip, and can result in the client obtaining results faster.

 However, there are some factors to consider before using TLS early
 data.

 TLS Early Data is not forward secret. In cases where forward secrecy
 of DNS Push Notification subscriptions is required, the client should
 not use TLS Early Data.

 With TLS early data there are no guarantees of non-replay between
 connections. If packets are duplicated and delayed in the network,
 the later arrivals could be mistaken for new subscription requests.
 Generally this is not a major concern, since the amount of state
 generated on the server for these spurious subscriptions is small and
 short-lived, since the TCP connection will not complete the three-way
 handshake. Servers MAY choose to implement rate-limiting measures
 that are activated when the server detects an excessive number of
 spurious subscription requests.

 For further guidance please see discussion of zero round-trip data
 (Section 2.3, Section 8, and Appendix E.5) in the TLS 1.3
 specification, [RFC8446].

7.4. TLS Session Resumption

 TLS Session Resumption [RFC8446] is permissible on DNS Push
 Notification servers. However, closing the TLS connection terminates
 the DSO session. When the TLS session is resumed, the DNS Push
 Notification server will not have any subscription state and will
 proceed as with any other new DSO session. Use of TLS Session
 Resumption may allow a TLS connection to be set up more quickly, but
 the client will still have to recreate any desired subscriptions.

Pusateri & Cheshire Expires April 15, 2020 [Page 36]

Internet-Draft DNS Push Notifications October 2019

8. IANA Considerations

 This document defines a new service name, only applicable for the TCP
 protocol, to be recorded in the IANA Service Type Registry
 [RFC6335][SRVTYPE].

 +-----------------------+------+----------------------+-------------+
 | Name | Port | Value | Definition |
 +-----------------------+------+----------------------+-------------+
 | DNS Push Notification | None | "_dns-push-tls._tcp" | Section 6.1 |
 | Service Type | | | |
 +-----------------------+------+----------------------+-------------+

 Table 4: IANA Service Type Assignments

 This document defines four new DNS Stateful Operation TLV types to be
 recorded in the IANA DSO Type Code Registry [RFC8490][DSOTYPE].

 +-------------+------------+--------+-----------------+-------------+
 | Name | Value | Early | Status | Definition |
 | | | Data | | |
 +-------------+------------+--------+-----------------+-------------+
SUBSCRIBE	TBA (0x40)	OK	Standards Track	Section 6.2
PUSH	TBA (0x41)	NO	Standards Track	Section 6.3
UNSUBSCRIBE	TBA (0x42)	NO	Standards Track	Section 6.4
RECONFIRM	TBA (0x43)	NO	Standards Track	Section 6.5
 +-------------+------------+--------+-----------------+-------------+

 Table 5: IANA DSO TLV Type Code Assignments

 This document defines no new DNS OPCODEs or RCODEs.

9. Acknowledgements

 The authors would like to thank Kiren Sekar and Marc Krochmal for
 previous work completed in this field.

 This draft has been improved due to comments from Ran Atkinson, Tim
 Chown, Sara Dickinson, Mark Delany, Ralph Droms, Jan Komissar, Eric
 Rescorla, Michael Richardson, David Schinazi, Manju Shankar Rao,
 Robert Sparks, Markus Stenberg, Andrew Sullivan, Michael Sweet, Dave
 Thaler, Brian Trammell, Bernie Volz, Eric Vyncke, Christopher Wood,
 Liang Xia, and Soraia Zlatkovic. Ted Lemon provided clarifying text
 that was greatly appreciated.

Pusateri & Cheshire Expires April 15, 2020 [Page 37]

Internet-Draft DNS Push Notifications October 2019

10. References

10.1. Normative References

 [DSOTYPE] "DSO Type Code Registry",
 <https://www.iana.org/assignments/dns-parameters/>.

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <https://www.rfc-editor.org/info/rfc20>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 DOI 10.17487/RFC1123, October 1989,
 <https://www.rfc-editor.org/info/rfc1123>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

Pusateri & Cheshire Expires April 15, 2020 [Page 38]

Internet-Draft DNS Push Notifications October 2019

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <https://www.rfc-editor.org/info/rfc2782>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6895] Eastlake 3rd, D., "Domain Name System (DNS) IANA
 Considerations", BCP 42, RFC 6895, DOI 10.17487/RFC6895,
 April 2013, <https://www.rfc-editor.org/info/rfc6895>.

 [RFC7673] Finch, T., Miller, M., and P. Saint-Andre, "Using DNS-
 Based Authentication of Named Entities (DANE) TLSA Records
 with SRV Records", RFC 7673, DOI 10.17487/RFC7673, October
 2015, <https://www.rfc-editor.org/info/rfc7673>.

 [RFC7766] Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
 D. Wessels, "DNS Transport over TCP - Implementation
 Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,
 <https://www.rfc-editor.org/info/rfc7766>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8310] Dickinson, S., Gillmor, D., and T. Reddy, "Usage Profiles
 for DNS over TLS and DNS over DTLS", RFC 8310,
 DOI 10.17487/RFC8310, March 2018,
 <https://www.rfc-editor.org/info/rfc8310>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Pusateri & Cheshire Expires April 15, 2020 [Page 39]

Internet-Draft DNS Push Notifications October 2019

 [RFC8490] Bellis, R., Cheshire, S., Dickinson, J., Dickinson, S.,
 Lemon, T., and T. Pusateri, "DNS Stateful Operations",
 RFC 8490, DOI 10.17487/RFC8490, March 2019,
 <https://www.rfc-editor.org/info/rfc8490>.

 [SRVTYPE] "Service Name and Transport Protocol Port Number
 Registry", <http://www.iana.org/assignments/service-names-
 port-numbers/>.

10.2. Informative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, May 2015,
 <http://www.rfc-editor.org/info/bcp195>.

 [DisProx] Cheshire, S., "Discovery Proxy for Multicast DNS-Based
 Service Discovery", draft-ietf-dnssd-hybrid-10 (work in
 progress), March 2019.

 [I-D.ietf-tcpm-rack]
 Cheng, Y., Cardwell, N., Dukkipati, N., and P. Jha, "RACK:
 a time-based fast loss detection algorithm for TCP",
 draft-ietf-tcpm-rack-05 (work in progress), April 2019.

 [LLQ] Cheshire, S. and M. Krochmal, "DNS Long-Lived Queries",
 draft-sekar-dns-llq-03 (work in progress), March 2019.

 [obs] "Observer Pattern",
 <https://en.wikipedia.org/wiki/Observer_pattern>.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC3123] Koch, P., "A DNS RR Type for Lists of Address Prefixes
 (APL RR)", RFC 3123, DOI 10.17487/RFC3123, June 2001,
 <https://www.rfc-editor.org/info/rfc3123>.

 [RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, DOI 10.17487/RFC4287,
 December 2005, <https://www.rfc-editor.org/info/rfc4287>.

 [RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks",
 RFC 4953, DOI 10.17487/RFC4953, July 2007,
 <https://www.rfc-editor.org/info/rfc4953>.

Pusateri & Cheshire Expires April 15, 2020 [Page 40]

Internet-Draft DNS Push Notifications October 2019

 [RFC6281] Cheshire, S., Zhu, Z., Wakikawa, R., and L. Zhang,
 "Understanding Apple’s Back to My Mac (BTMM) Service",
 RFC 6281, DOI 10.17487/RFC6281, June 2011,
 <https://www.rfc-editor.org/info/rfc6281>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC6886] Cheshire, S. and M. Krochmal, "NAT Port Mapping Protocol
 (NAT-PMP)", RFC 6886, DOI 10.17487/RFC6886, April 2013,
 <https://www.rfc-editor.org/info/rfc6886>.

 [RFC6887] Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
 P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
 DOI 10.17487/RFC6887, April 2013,
 <https://www.rfc-editor.org/info/rfc6887>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7719] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", RFC 7719, DOI 10.17487/RFC7719, December
 2015, <https://www.rfc-editor.org/info/rfc7719>.

 [RFC8010] Sweet, M. and I. McDonald, "Internet Printing
 Protocol/1.1: Encoding and Transport", STD 92, RFC 8010,
 DOI 10.17487/RFC8010, January 2017,
 <https://www.rfc-editor.org/info/rfc8010>.

 [RFC8011] Sweet, M. and I. McDonald, "Internet Printing
 Protocol/1.1: Model and Semantics", STD 92, RFC 8011,
 DOI 10.17487/RFC8011, January 2017,
 <https://www.rfc-editor.org/info/rfc8011>.

 [RFC8499] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
 January 2019, <https://www.rfc-editor.org/info/rfc8499>.

Pusateri & Cheshire Expires April 15, 2020 [Page 41]

Internet-Draft DNS Push Notifications October 2019

 [SD-API] "dns_sd.h API",
 <https://opensource.apple.com/source/mDNSResponder/
 mDNSResponder-878.70.2/mDNSShared/dns_sd.h.auto.html>.

 [SYN] Eddy, W., "Defenses Against TCP SYN Flooding Attacks", The
 Internet Protocol Journal, Cisco Systems, Volume 9,
 Number 4, December 2006.

 [XEP0060] Millard, P., Saint-Andre, P., and R. Meijer, "Publish-
 Subscribe", XSF XEP 0060, July 2010.

Authors’ Addresses

 Tom Pusateri
 Unaffiliated
 Raleigh, NC 27608
 USA

 Phone: +1 919 867 1330
 Email: pusateri@bangj.com

 Stuart Cheshire
 Apple Inc.
 One Apple Park Way
 Cupertino, CA 95014
 USA

 Phone: +1 (408) 996-1010
 Email: cheshire@apple.com

Pusateri & Cheshire Expires April 15, 2020 [Page 42]

Internet Engineering Task Force S. Cheshire
Internet-Draft Apple Inc.
Intended status: Informational T. Lemon
Expires: January 15, 2019 Nibbhaya Consulting
 July 14, 2018

 Service Registration Protocol for DNS-Based Service Discovery
 draft-sctl-service-registration-02

Abstract

 The DNS-SD Service Registration Protocol uses the standard DNS Update
 mechanism to enable DNS-Based Service Discovery using only unicast
 packets. This eliminates the dependency on Multicast DNS as the
 foundation layer, which greatly improves scalability and improves
 performance on networks where multicast service is not an optimal
 choice, particularly 802.11 (Wi-Fi) and 802.15.4 (IoT) networks.
 DNS-SD Service registration uses public keys and SIG(0) to allow
 services to defend their registrations against attack.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 15, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Cheshire & Lemon Expires January 15, 2019 [Page 1]

Internet-Draft Service Registration Protocol July 2018

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 DNS-Based Service Discovery [RFC6763] is a component of Zero
 Configuration Networking [RFC6760] [ZC] [I-D.cheshire-dnssd-roadmap].

 This document describes an enhancement to DNS-Based Service Discovery
 [RFC6763] that allows services to automatically register their
 services using the DNS protocol rather than using mDNS. There is
 already a large installed base of DNS-SD clients that can do service
 discovery using the DNS protocol. This extension makes it much
 easier to take advantage of this existing functionality.

 This document is intended for three audiences: implementors of
 software that provides services that should be advertised using DNS-
 SD, implementors of DNS servers that will be used in contexts where
 DNS-SD registration is needed, and administrators of networks where
 DNS-SD service is required. The document is intended to provide
 sufficient information to allow interoperable implementation of the
 registration protocol.

 DNS-Based Service Discovery (DNS-SD) allows services to advertise the
 fact that they provide service, and to provide the information
 required to access that service. Clients can then discover the set
 of services of a particular type that are available. They can then
 select a service from among those that are available and obtain the
 information required to use it.

 The DNS-SD Service Registration protocol, described in this document,
 provides a reasonably secure mechanism for publishing this
 information. Once published, these services can be readily
 discovered by clients using standard DNS lookups.

 In the DNS-Based Service Discovery specification [RFC6763] Section 10
 "Populating the DNS with Information" briefly discusses ways that
 services can publish their information in the DNS namespace. In the
 case of Multicast DNS [RFC6762], it allows services to publish their
 information on the local link, using names in the ".local" namespace,
 which makes their services directly discoverable by peers attached to
 that same local link.

 RFC6763 also allows clients to discover services using the DNS
 protocol [RFC1035]. This can be done by having a system
 administrator manually configure service information in the DNS, but

Cheshire & Lemon Expires January 15, 2019 [Page 2]

Internet-Draft Service Registration Protocol July 2018

 manually populating DNS authoritative server databases is costly and
 potentially error-prone, and requires a knowledgable network
 administrator. Consequently, although all DNS-SD client
 implementations of which we are aware support DNS-SD using DNS
 queries, in practice it is used much less frequently than mDNS. The
 Discovery Proxy [I-D.ietf-dnssd-hybrid] provides one way to
 automatically populate the DNS namespace, but is only appropriate on
 networks where services are already advertised using mDNS. This
 document describes a solution more suitable for networks where
 multicast is inefficient, or undesirable for other reasons, by
 supporting both offering of services, and discovery of services,
 using unicast.

2. Service Registration Protocol

 Services that implement the DNS-SD Service Registration Protocol use
 DNS Update [RFC2136] [RFC3007] to publish service information in the
 DNS. Two variants exist, one for full-featured devices, and one for
 devices designed for "Constrained-Node Networks" [RFC7228].

 Full-featured devices are either configured manually, or use the
 "dr._dns-sd._udp" query [RFC6763] to learn the default registration
 domain from the network. Using the chosen service registration
 domain, full-featured devices construct the names of the SRV, TXT,
 and PTR records describing their service(s). For these names they
 then discover the zone apex of the closest enclosing DNS zone using
 SOA queries [I-D.ietf-dnssd-push]. Having discovered the enclosing
 DNS zone, they query for the "_dns-update._udp<zone>" SRV record to
 discover the server to which they should send DNS updates.

 For devices designed for "Constrained-Node Networks" [RFC7228] some
 simplifications are used. Instead of being configured with (or
 discovering) the service registration domain, the (proposed) special
 use domain name [RFC6761] "services.arpa" is used. Instead of
 learning the server to which they should send DNS updates, a fixed
 IPv6 anycast address is used (value TBD). It is the responsibility
 of a "Constrained-Node Network" supporting DNS-SD Service
 Registration Protocol to provide appropriate anycast routing to
 deliver the DNS updates to the appropriate server. It is the
 responsibility of the DNS-SD Service Registration server on a
 "Constrained-Node Network" to handle the updates appropriately. In
 some network environments, updates may be accepted directly into a
 local "services.arpa" zone, which has only local visibility. In
 other network environments, updates for names ending in
 "services.arpa" may be rewritten internally to names with broader
 visibility.

Cheshire & Lemon Expires January 15, 2019 [Page 3]

Internet-Draft Service Registration Protocol July 2018

 The reason for these different assumptions is that "Constrained-Node
 Networks" generally require special egress support, and Anycast
 packets captured at the "Constrained-Node Network" egress can be
 assumed to have originated locally. Low-power devices that typically
 use "Constrained-Node Networks" may have very limited battery power.
 The additional DNS lookups required to discover a registration server
 and then communicate with it will increase the power required to
 advertise a service; for low-power devices, the additional
 flexibility this provides does not justify the additional use of
 power.

 General networks have the potential to have more complicated
 topologies at the Internet layer, which makes anycast routing more
 difficult. Such networks may or may not have the infrastructure
 required to route anycast to a server that can process it. However,
 they can be assumed to be able to provide registration domain
 discovery and routing. By requiring the use of TCP, the possibility
 of off-network spoofing is eliminated.

 We will discuss several parts to this process: how to know what to
 publish, how to know where to publish it (under what name), how to
 publish it, how to secure its publication, and how to maintain the
 information once published.

2.1. What to publish

 We refer to the message that services using the DNSSD Registration
 Protocol send as a Registration. Three types of updates appear in a
 Registration: Service Discovery records, Service Description records,
 and Host Description records.

 o Service Discovery records are one or more PTR RRs, mapping from
 the generic service type (or subtype) to the specific Service
 Instance Name.

 o Service Description records are exactly one SRV RR, and one or
 more TXT RRs, both with the same name, the Service Instance Name
 ([RFC6763] section 4.1). In principle Service Description records
 can include other record types, with the same Service Instance
 Name, though in practice they rarely do. The Service Instance
 Name MUST be referenced by one or more Service Discovery PTR
 records, unless it is a placeholder service registration for an
 intentionally non-discoverable service name.

 o The Host Description records for a service are a KEY RR, used to
 claim exclusive ownership of the service registration, and one or
 more RRs of type A or AAAA, giving the IPv4 or IPv6 address(es) of
 the host where the service resides.

Cheshire & Lemon Expires January 15, 2019 [Page 4]

Internet-Draft Service Registration Protocol July 2018

 RFC 6763 describes the details of what each of these types of updates
 contains and is the definitive source for information about what to
 publish; the reason for mentioning it here is to provide the reader
 with enough information about what will be published that the service
 registration process can be understood at a high level without first
 learning the full details of DNS-SD. Also, the "Service Instance
 Name" is an important aspect of first-come, first-serve naming, which
 we describe later on in this document.

2.2. Where to publish it

 Multicast DNS uses a single namespace, ".local", which is valid on
 the local link. This convenience is not available for DNS-SD using
 the DNS protocol: services must exist in some specific unicast
 namespace.

 As described above, full-featured devices are responsible for knowing
 in what domain they should register their services. Devices made for
 "Constrained-Node Networks" register in the (proposed) special use
 domain name [RFC6761] "services.arpa", and let the DNS-SD Service
 Registration server handle rewriting that to a different domain if
 necessary.

2.3. How to publish it

 It is possible to issue a DNS Update that does several things at
 once; this means that it’s possible to do all the work of adding a
 PTR resource record to the PTR RRset on the Service Name if it
 already exists, or creating one if it doesn’t, and creating or
 updating the Service Instance Name and Host Description in a single
 transaction.

 A Registration is therefore implemented as a single DNS Update
 message that contains a service’s Service Discovery records, Service
 Description records, and Host Description records.

 Updates done according to this specification are somewhat different
 than regular DNS Updates as defined in RFC2136. RFC2136 assumes that
 updating is a fairly heavyweight process, so you might first attempt
 to add a name if it doesn’t exist, and then in a second message
 update the name if it does exist but matches certain preconditions.
 Because the registration protocol uses a single transaction, some of
 this adaptability is lost.

 In order to allow updates to happen in a single transaction,
 Registrations do not include update constraints. The constraints
 specified in Section 2.4.2 are implicit in the processing of

Cheshire & Lemon Expires January 15, 2019 [Page 5]

Internet-Draft Service Registration Protocol July 2018

 Registrations, and so there is no need for the service sending the
 Registration to put in any explicit constraints.

2.3.1. How DNS-SD Service Registration differs from standard RFC2136
 DNS Update

 DNS-SD Service Registration is based on standard RFC2136 DNS Update,
 with some differences:

 o It implements first-come first-served name allocation, protected
 using SIG(0).

 o It enforces policy about what updates are allowed.

 o It optionally performs rewriting of "services.arpa" to some other
 domain.

 o It optionally performs automatic population of the address-to-name
 reverse mapping domains.

 o A DNS-SD Service Registration server is not required to implement
 general DNS Update prerequsite processing.

 o Simplified clients are allowed to send updates to an anycast
 address, for names ending in "services.arpa"

2.3.2. Testing using standard RFC2136-compliant servers

 It may be useful to set up a DNS server for testing that does not
 implement the Registration protocol. This can be done by configuring
 the server to listen on the anycast address, or advertising it in the
 _dns-update._udp SRV record. It must be configured to be
 authoritative for "services.arpa", and to accept updates from hosts
 on local networks for names under "services.arpa" without
 authentication.

 A server configured in this way will be able to successfully accept
 and process Registrations from services that send Registrations.
 However, no constraints will be applied, and this means that the test
 server will accept internally inconsistent Registrations, and will
 not stop two Registrations, sent by different services, that claim
 the same name(s), from overwriting each other.

Cheshire & Lemon Expires January 15, 2019 [Page 6]

Internet-Draft Service Registration Protocol July 2018

2.3.3. How to allow services to update standard RFC2136-compliant
 servers

 Ordinarily Registrations will fail when sent to any non-Registration
 Protocol server because the zone being updated is "services.arpa",
 and no DNS server that is not a Registration Protocol server should
 normally be configured to be authoritative for "services.arpa".
 Therefore, a service that sends a Registration can tell that the
 receiving server does not support the Registration Protocol, but does
 support RFC2136, because the RCODE will either be NOTZONE, NOTAUTH or
 REFUSED, or because there is no response to the update request (when
 using the anycast address)

 In this case a service MAY attempt to register itself using regular
 RFC2136 DNS updates. To do so, it must discover default registration
 zone and the DNS server designated to receive updates for that zone,
 as described earlier using the _dns-update._udp SRV record. It can
 then make the update using the port and host pointed to by the SRV
 record, and should use appropriate constraints to avoid overwriting
 competing records. Such updates are out of scope for the DNSSD
 Registration Protocol, and a service that implements the DNSSD
 Registration Protocol MUST first attempt to use the Registration
 Protocol to register itself, and should only attempt to use RFC2136
 backwards compatibility if that fails.

2.4. How to secure it

 Traditional DNS update is secured using the TSIG protocol, which uses
 a secret key shared between the client (which issues the update) and
 the server (which authenticates it). This model does not work for
 automatic service registration.

 The goal of securing the DNS-SD Registration Protocol is to provide
 the best possible security given the constraint that service
 registration has to be automatic. It is possible to layer more
 operational security on top of what we describe here, but what we
 describe here improves upon the security of mDNS. The goal is not to
 provide the level of security of a network managed by a skilled
 operator.

2.4.1. First-Come First-Served Naming

 First-Come First-Serve naming provides a limited degree of security:
 a service that registers its service using DNS-SD Registration
 protocol is given ownership of a name for an extended period of time
 based on the key used to authenticate the DNS Update. As long as the
 registration service remembers the Service Instance Name and the key

Cheshire & Lemon Expires January 15, 2019 [Page 7]

Internet-Draft Service Registration Protocol July 2018

 used to register that Service Instance Name, no other service can add
 or update the information associated with that Service Instance Name.

2.4.1.1. Service Behavior

 The service generates a public/private key pair. This key pair MUST
 be stored in stable storage; if there is no writable stable storage
 on the client, the client MUST be pre-configured with a public/
 private key pair that can be used.

 When sending DNS updates, the service includes a KEY record
 containing the public portion of the key in each Host Description
 update. The update is signed using SIG(0), using the private key
 that corresponds to the public key in the KEY record. The lifetimes
 of the records in the update is set using the EDNS(0) Update Lease
 option.

 The lifetime of the DNS-SD PTR, SRV, A, AAAA and TXT records
 [RFC6763] is typically set to two hours. This means that if a device
 is disconnected from the network, it does not appear in the user
 interfaces of devices looking for services of that type for too long.

 However, the lifetime of its KEY record should be set to a much
 longer time, typically 14 days. The result of this is that even
 though a device may be temporarily unplugged, disappearing from the
 network for a few days, it makes a claim on its name that lasts much
 longer.

 This way, even if a device is unplugged from the network for a few
 days, and its services are not available for that time, no other
 rogue device can come along and immediately claim its name the moment
 it disappears from the network. In the event that a device is
 unplugged from the network and permanently discarded, then its name
 is eventually cleaned up and made available for re-use.

2.4.2. Registration Server Behavior

 The Registration server checks each update in the Registration to see
 that it contains a Service Discovery update, a Service Description
 update, and a Host Description update.

 An update is a Service Discovery update if it contains

 o exactly one RRset update,
 o which is for a PTR RR,
 o which points to a Service Instance Name
 o for which an update is present in the Registration.

Cheshire & Lemon Expires January 15, 2019 [Page 8]

Internet-Draft Service Registration Protocol July 2018

 An update is a Service Description update if, for the appropriate
 Service Instance Name, it contains

 o exactly one "Delete all RRsets from a name" update,
 o exactly one SRV RRset update,
 o one or more TXT RRset updates,
 o and the target of the SRV record update references a hostname for
 which there is a Host Description update in the Registration.

 An update is a Host Description update if, for the appropriate
 hostname, it contains

 o exactly one "Delete all RRsets from a name" update,
 o A or AAAA RR update(s)
 o a KEY RR update that adds a KEY RR that contains the public key
 corresponding to the private key that was used to sign the
 message,
 o there is a Service Instance Name update in the Registration that
 updates an SRV RR so that it points to the hostname being updated
 by this update.

 A Registration MUST include at least one Service Name update, at
 least one Service Description update, and exactly one Host
 Description update. An update message that does not is not a
 Registration. An update message that contains any other updates, or
 any update constraints, is not a Registration. Such messages should
 either be processed as regular RFC2136 updates, including access
 control checks and constraint checks, if supported, or else rejected
 with RCODE=REFUSED.

 Note that if the definitions of each of these update types are
 followed carefully, this means that many things that look very much
 like Registrations nevertheless are not. For example, a Registration
 that contains an update to a Service Name and an update to a Service
 Instance Name, where the Service Name does not reference the Service
 Instance Name, is not a valid Registration message, but may be a
 valid RFC2136 update.

 Assuming that an update message has been validated with these
 conditions and is a valid Registration, the server checks that the
 name in the Host Description update exists. If so, then the server
 checks to see if the KEY record on the name is the same as the KEY
 record in the update. If it is not, then the server MUST reject the
 Registration with the YXDOMAIN RCODE.

 Otherwise, the server validates the update using SIG(0) on the public
 key in the KEY record of the Host Description update. If the
 validation fails, the server MUST reject the rejectration rejected

Cheshire & Lemon Expires January 15, 2019 [Page 9]

Internet-Draft Service Registration Protocol July 2018

 with the REFUSED RCODE. Otherwise, the update is considered valid
 and authentic, and is processed according to the method described in
 RFC2136. The status that is returned depends on the result of
 processing the update.

 The server MAY add a Reverse Mapping that corresponds to the Host
 Description. This is not required because the Reverse Mapping serves
 no protocol function, but it may be useful for debugging, e.g. in
 annotating network packet traces or logs.

 The server MAY apply additional criteria when accepting updates. In
 some networks, it may be possible to do out-of-band registration of
 keys, and only accept updates from pre-registered keys. In this
 case, an update for a key that has not been registered should be
 rejected with the REFUSED RCODE.

 There are at least two benefits to doing this rather than simply
 using normal SIG(0) DNS updates. First, the same registration
 protocol can be used in both cases, so both use cases can be
 addressed by the same service implementation. Second, the
 registration protocol includes maintenance functionality not present
 with normal DNS updates.

 Note that the semantics of using the Registration Protocol in this
 way are different than for typical RFC2136 implementations: the KEY
 used to sign the update in the Registration Protocol only allows the
 client to update records that refer to its Host Description. RFC2136
 implementations do not normally provide a way to enforce a constraint
 of this type.

 The server may also have a dictionary of names or name patterns that
 are not permitted. If such a list is used, updates for Service
 Instance Names that match entries in the dictionary are rejected with
 YXDOMAIN.

2.5. TTL Consistency

 All RRs within an RRset are required to have the same TTL
 (Clarifications to the DNS Specification [RFC2181], Section 5.2). In
 order to avoid inconsistencies, the Registration Protocol places
 restrictions on TTLs sent by services and requires that Registration
 Protocol Servers enforce consistency.

 Services sending Registrations MUST use consistent TTLs in all RRs
 within the Registration.

Cheshire & Lemon Expires January 15, 2019 [Page 10]

Internet-Draft Service Registration Protocol July 2018

 Registration Protocol servers MUST check that the TTLs for all RRs
 within the Registration are the same. If they are not, the
 Registration MUST be rejected with a REFUSED RCODE.

 Additionally, when adding RRs to an RRset, for example when
 processing Service Discovery records, the server MUST use the same
 TTL on all RRs in the RRset. How this consistency is enforced is up
 to the implementation.

2.6. Maintenance

2.6.1. Cleaning up stale data

 Because the DNS-SD registration protocol is automatic, and not
 managed by humans, some additional bookkeeping is required. When an
 update is constructed by the client, it MUST include include an
 EDNS(0) Update Lease Option [I-D.sekar-dns-ul]. The Update Lease
 Option contains two lease times: the Update Lease Time and the
 Instance Lease Time.

 These leases are promises, similar to DHCP leases [RFC2131], from the
 client that it will send a new update for the service registration
 before the lease time expires. The Update Lease time is chosen to
 represent the time after the update during which the registered
 records other than the KEY record should be assumed to be valid. The
 Instance Lease time represents the time after the update during which
 the KEY record should be assumed to be valid.

 The reasoning behind the different lease times is discussed in the
 section on first-come, first-served naming Section 2.4.1. DNS-SD
 Registration Protocol servers may be configured with limits for these
 values. A default limit of two hours for the Update Lease and 14
 days for the SIG(0) KEY are currently thought to be good choices.
 Clients that are going to continue to use names on which they hold
 leases should update well before the lease ends, in case the
 registration service is unavailable or under heavy load.

 The Registration Protocol server MUST include an EDNS(0) Update Lease
 option in the response if the lease time proposed by the service has
 been shortened. The service MUST check for the EDNS(0) Update Lease
 option in the response and MUST use the lease times from that option
 in place of the options that it sent to the server when deciding when
 to update its registration.

 Clients should assume that each lease ends N seconds after the update
 was first transmitted, where N is the lease duration. Servers should
 assume that each lease ends N seconds after the update that was
 successfully processed was received. Because the server will always

Cheshire & Lemon Expires January 15, 2019 [Page 11]

Internet-Draft Service Registration Protocol July 2018

 receive the update after the client sent it, this avoids the
 possibility of misunderstandings.

 DNS-SD Registration Protocol servers MUST reject updates that do not
 include an EDNS(0) Update Lease option. Dual-use servers MAY accept
 updates that don’t include leases, but SHOULD differentiate between
 DNS-SD registration protocol updates and other updates, and MUST
 reject updates that are known to be DNS-SD Registration Protocol
 updates if they do not include leases.

2.6.2. Sleep Proxy

 Another use of Service Registration Protocol is for devices that
 sleep to reduce power consumption.

 In this case, in addition to the DNS Update Lease option
 [I-D.sekar-dns-ul] described above, the device includes an EDNS(0)
 OWNER Option [I-D.cheshire-edns0-owner-option].

 The EDNS(0) Update Lease option constitutes a promise by the device
 that it will wake up before this time elapses, to renew its
 registration and thereby demonstrate that it is still attached to the
 network. If it fails to renew the registration by this time, that
 indicates that it is no longer attached to the network, and its
 registration (except for the KEY in the Host Description) should be
 deleted.

 The EDNS(0) OWNER Option indicates that the device will be asleep,
 and will not be receptive to normal network traffic. When a DNS
 server receives a DNS Update with an EDNS(0) OWNER Option, that
 signifies that the Registration Protocol server should set up a proxy
 for any IPv4 or IPv6 address records in the DNS Update message. This
 proxy should send ARP or ND messages claiming ownership of the IPv4
 and/or IPv6 addresses in the records in question. In addition, proxy
 should answer future ARP or ND requests for those IPv4 and/or IPv6
 addresses, claiming ownership of them. When the DNS server receives
 a TCP SYN or UDP packet addressed to one of the IPv4 or IPv6
 addresses for which it proxying, it should then wake up the sleeping
 device using the information in the EDNS(0) OWNER Option. At present
 version 0 of the OWNER Option specifies the "Wake-on-LAN Magic
 Packet" that needs to be sent; future versions could be extended to
 specify other wakeup mechanisms.

 Note that although the authoritative DNS server that implements the
 DNSSD Service Registration Protocol function need not be on the same
 link as the sleeping host, the Sleep Proxy must be on the same link.

Cheshire & Lemon Expires January 15, 2019 [Page 12]

Internet-Draft Service Registration Protocol July 2018

3. Security Considerations

 DNS-SD Service Registration Protocol updates have no authorization
 semantics other than first-come, first-served. This means that if an
 attacker from outside of the administrative domain of the server
 knows the server’s IP address, it can in principle send updates to
 the server that will be processed successfully. Servers should
 therefore be configured to reject updates from source addresses
 outside of the administrative domain of the server.

 For Anycast updates, this validation must be enforced by every router
 that connects the CDN to the unconstrained portion of the network.
 For TCP updates, the initial SYN-SYN+ACK handshake prevents updates
 being forged from off-network. In order to ensure that this
 handshake happens, Service Discovery Protocol servers MUST NOT accept
 0-RTT TCP payloads.

 Note that these rules only apply to the validation of DNS-SD
 registration protocol updates. A server that accepts updates from
 DNS-SD registration protocol clients may also accept other DNS
 updates, and those DNS updates may be validated using different
 rules. However, in the case of a DNS service that accepts automatic
 updates, the intersection of the DNS-SD service registration update
 rules and whatever other update rules are present must be considered
 very carefully.

 For example, a normal, authenticated RFC2136 update to any RR that
 was added using the Registration protocol, but that is authenticated
 using a different key, could be used to override a promise made by
 the registration protocol, by replacing all or part of the service
 registration information with information provided by a different
 client. An implementation that allows both kinds of updates should
 not allow updates to records added by Registrations using different
 authentication and authorization credentials.

4. Privacy Considerations

5. Acknowledgments

 Thanks to Toke Hoeiland-Joergensen for a thorough technical review,
 to Tamara Kemper for doing a nice developmental edit, Tim Wattenberg
 for doing a service implementation at the Montreal Hackathon at IETF
 102, and [...] more reviewers to come, hopefully.

Cheshire & Lemon Expires January 15, 2019 [Page 13]

Internet-Draft Service Registration Protocol July 2018

6. References

6.1. Normative References

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [I-D.sekar-dns-ul]
 Sekar, K., "Dynamic DNS Update Leases", draft-sekar-dns-
 ul-01 (work in progress), August 2006.

6.2. Informative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
 RFC 2131, DOI 10.17487/RFC2131, March 1997,
 <https://www.rfc-editor.org/info/rfc2131>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",
 RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

 [RFC2931] Eastlake 3rd, D., "DNS Request and Transaction Signatures
 (SIG(0)s)", RFC 2931, DOI 10.17487/RFC2931, September
 2000, <https://www.rfc-editor.org/info/rfc2931>.

 [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic
 Update", RFC 3007, DOI 10.17487/RFC3007, November 2000,
 <https://www.rfc-editor.org/info/rfc3007>.

 [RFC3152] Bush, R., "Delegation of IP6.ARPA", BCP 49, RFC 3152,
 DOI 10.17487/RFC3152, August 2001,
 <https://www.rfc-editor.org/info/rfc3152>.

Cheshire & Lemon Expires January 15, 2019 [Page 14]

Internet-Draft Service Registration Protocol July 2018

 [RFC6760] Cheshire, S. and M. Krochmal, "Requirements for a Protocol
 to Replace the AppleTalk Name Binding Protocol (NBP)",
 RFC 6760, DOI 10.17487/RFC6760, February 2013,
 <https://www.rfc-editor.org/info/rfc6760>.

 [RFC6761] Cheshire, S. and M. Krochmal, "Special-Use Domain Names",
 RFC 6761, DOI 10.17487/RFC6761, February 2013,
 <https://www.rfc-editor.org/info/rfc6761>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [I-D.ietf-dnssd-hybrid]
 Cheshire, S., "Discovery Proxy for Multicast DNS-Based
 Service Discovery", draft-ietf-dnssd-hybrid-08 (work in
 progress), March 2018.

 [I-D.ietf-dnssd-push]
 Pusateri, T. and S. Cheshire, "DNS Push Notifications",
 draft-ietf-dnssd-push-14 (work in progress), March 2018.

 [I-D.cheshire-dnssd-roadmap]
 Cheshire, S., "Service Discovery Road Map", draft-
 cheshire-dnssd-roadmap-01 (work in progress), March 2018.

 [I-D.cheshire-edns0-owner-option]
 Cheshire, S. and M. Krochmal, "EDNS0 OWNER Option", draft-
 cheshire-edns0-owner-option-01 (work in progress), July
 2017.

 [ZC] Cheshire, S. and D. Steinberg, "Zero Configuration
 Networking: The Definitive Guide", O’Reilly Media, Inc. ,
 ISBN 0-596-10100-7, December 2005.

Authors’ Addresses

Cheshire & Lemon Expires January 15, 2019 [Page 15]

Internet-Draft Service Registration Protocol July 2018

 Stuart Cheshire
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 USA

 Phone: +1 408 974 3207
 Email: cheshire@apple.com

 Ted Lemon
 Nibbhaya Consulting
 P.O. Box 958
 Brattleboro, Vermont 05302
 United States of America

 Email: mellon@fugue.com

Cheshire & Lemon Expires January 15, 2019 [Page 16]

	draft-huitema-dnssd-prireq-00
	draft-huitema-dnssd-privacyscaling-01
	draft-ietf-core-rd-dns-sd-05
	draft-ietf-dnsop-session-signal-20
	draft-ietf-dnssd-hybrid-10
	draft-ietf-dnssd-mdns-relay-04
	draft-ietf-dnssd-pairing-05
	draft-ietf-dnssd-pairing-info-02
	draft-ietf-dnssd-privacy-05
	draft-ietf-dnssd-push-25
	draft-sctl-service-registration-02

