
Network Working Group D. Kaiser
Internet-Draft
Intended status: Informational C. Huitema
Expires: April 26, 2019 Private Octopus Inc.
 October 23, 2018

 Device Pairing Design Issues
 draft-ietf-dnssd-pairing-info-02

Abstract

 This document discusses issues and problems occuring in the design of
 device pairing mechanism. It presents experience with existing
 pairing systems and general user interaction requirements to make the
 case for "short authentication strings". It then reviews the design
 of cryptographic algorithms designed to maximise the robustness of
 the short authentication string mechanisms, as well as implementation
 considerations such as integration with TLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Kaiser & Huitema Expires April 26, 2019 [Page 1]

Internet-Draft Device Pairing Issues October 2018

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Document Organization 3
 2. Protocol Independent Secure Pairing 3
 3. Identity Assurance . 4
 4. Manual Authentication . 4
 4.1. Short PIN Proved Inadequate 4
 4.2. Push Buttons Just Work, But Are Insecure 5
 4.3. Short Range Communication 6
 4.4. Short Authentication Strings 6
 4.5. Revisiting the PIN versus SAS discussion 7
 5. Resist Cryptographic Attacks 8
 6. Privacy Requirements . 11
 7. Using TLS . 11
 8. QR codes . 12
 9. Intra User Pairing and Transitive Pairing 14
 10. Security Considerations 15
 11. IANA Considerations . 15
 12. Acknowledgments . 15
 13. Informative References 15
 Authors’ Addresses . 17

1. Introduction

 To engage in secure and privacy preserving communication, hosts need
 to differentiate between authorized peers, which must both know about
 the host’s presence and be able to decrypt messages sent by the host,
 and other peers, which must not be able to decrypt the host’s
 messages and ideally should not be aware of the host’s presence. The
 necessary relationship between host and peer can be established by a
 centralized service, e.g. a certificate authority, by a web of trust,
 e.g. PGP, or -- without using global identities -- by device
 pairing.

 The general pairing requirement is easy to state: establish a trust
 relation between two entities in a secure manner. But details
 matter, and in this section we explore the detailed requirements that
 will guide the design of a pairing protocol.

 This document does not specify an actual pairing protocol, but it
 served as the basis for the design of the pairing protocol developed
 for DNS-SD privacy [I-D.ietf-dnssd-pairing]. The requirement of a

Kaiser & Huitema Expires April 26, 2019 [Page 2]

Internet-Draft Device Pairing Issues October 2018

 pairing system for private discovery are analyzed in part in
 [I-D.ietf-dnssd-prireq].

1.1. Document Organization

 NOTE TO RFC EDITOR: remove or rewrite this section before
 publication.

 This document results from a split of an earlier pairing draft that
 contained two parts. The first part, presented the pairing need, and
 the list of requirements that shall be met. The second part
 presented the design is the actual specification of the protocol.

 In his early review, Steve Kent observed that the style of the first
 part seems inappropriate for a standards track document, and
 suggested that the two parts should be split into two documents, the
 first part becoming an informational document, and the second
 focusing on standard track specification of the protocol, making
 reference to the informational document as appropriate.

 The working group approved this split.

2. Protocol Independent Secure Pairing

 Many pairing protocols have already been developed, in particular for
 the pairing of devices over specific wireless networks. For example,
 the current Bluetooth specifications include a pairing protocol that
 has evolved over several revisions towards better security and
 usability [BTLEPairing]. The Wi-Fi Alliance defined the Wi-Fi
 Protected Setup process to ease the setup of security-enabled Wi-Fi
 networks in home and small office environments [WPS]. Other wireless
 standards have defined or are defining similar protocols, tailored to
 specific technologies.

 In this document we provide background and discuss the design of a
 manually authenticated pairing protocol that is independent of the
 underlying network protocol stack. We discuss (1) means allowing the
 two parties engaged in the pairing to discover each other in an
 existing unsecured network -- e.g. means for learning about the
 network parameters of the respective other device -- which allows
 them to establish a connection; (2) agreeing on a shared secret via
 this connection; and (3) manually authenticating this secret. For
 our discussion and our secure pairing protocol specification
 [I-D.ietf-dnssd-pairing], we assume an IP based unsecured network.
 With little adaption, this pairing mechanism can be used on other
 protocol stacks as well.

Kaiser & Huitema Expires April 26, 2019 [Page 3]

Internet-Draft Device Pairing Issues October 2018

 We limit the goal of the protocol to the establishment of a shared
 secret between two parties. Once that secret has been established,
 it can trivially be used to secure the exchange of other
 informations, such as for example public keys and certificates.

3. Identity Assurance

 The parties in the pairing must be able to identify each other. To
 put it simply, if Alice believes that she is establishing a pairing
 with Bob, she must somehow ensure that the pairing is actually
 established with Bob, and not with some interloper like Eve or
 Nessie. Providing this assurance requires designing both the
 protocol and the user interface (UI) with care.

 Consider for example an attack in which Eve tricks Alice into
 engaging in a pairing process while pretending to be Bob. Alice must
 be able to discover that something is wrong, and refuse to establish
 the pairing. The parties engaged in the pairing must at least be
 able to verify their identities, respectively.

4. Manual Authentication

 Because the pairing protocol is executed without prior knowledge, it
 is typically vulnerable to "Man-in-the-Middle" attacks. While Alice
 is trying to establish a pairing with Bob, Eve positions herself in
 the middle. Instead of getting a pairing between Alice and Bob, both
 Alice and Bob get paired with Eve. Because of this, the protocol
 requires specific features to detect Man-in-the-Middle attacks, and
 if possible resist them.

 This section discusses existing techniques that are used in practice
 for manually authenticating a Diffie-Hellman key exchange, and
 Section 5 provides a layman description of the MiTM problem and
 countermeasures. A more in depth exploration of manually
 authenticated pairing protocols may be found in [NR11] and [K17].

4.1. Short PIN Proved Inadequate

 The initial Bluetooth pairing protocol relied on a four digit PIN,
 displayed by one of the devices to be paired. The user read that PIN
 and provided it to the other device. The PIN was then used in a
 Password Authenticated Key Exchange. Wi-Fi Protected Setup [WPS]
 offered a similar option. There were various attacks against the
 actual protocol; some of the problems were caused by issues in the
 protocol, but most were tied to the usage of short PINs.

 In the reference implementation, the PIN is picked at random by the
 paired device before the beginning of the exchange. But this

Kaiser & Huitema Expires April 26, 2019 [Page 4]

Internet-Draft Device Pairing Issues October 2018

 requires that the paired device is capable of generating and
 displaying a four digit number. It turns out that many devices
 cannot do that. For example, an audio headset does not have any
 display capability. These limited devices ended up using static
 PINs, with fixed values like "0000" or "0001".

 Even when the paired device could display a random PIN, that PIN had
 to be copied by the user on the pairing device. It turns out that
 users do not like copying long series of numbers, and the usability
 thus dictated that the PINs be short -- four digits in practice. But
 there is only so much assurance as can be derived from a four digit
 key.

 The latest revisions of the Bluetooth Pairing protocol [BTLEPairing]
 do not include the short PIN option anymore. The PIN entry methods
 have been superseded by the simple "just works" method for devices
 without displays, and by a procedure based on an SAS (short
 authentication string) when displays are available.

 A further problem with these PIN based approaches is that -- in
 contrast to SASes -- the PIN is a secret instrumental in the security
 algorithm. To guarantee security, this PIN would have to be
 transmitted via a secure out-of-band channel.

4.2. Push Buttons Just Work, But Are Insecure

 Some devices are unable to input or display any code. The industry
 more or less converged on a "push button" solution. When the button
 is pushed, devices enter a "pairing" mode, during which they will
 accept a pairing request from whatever other device connects to them.

 The Bluetooth Pairing protocol [BTLEPairing] denotes that as the
 "just works" method. It does indeed work, and if the pairing
 succeeds the devices will later be able to use the pairing keys to
 authenticate connections. However, the procedure does not provide
 any protection against MitM attacks during the pairing process. The
 only protection is that pushing the button will only allow pairing
 for a limited time, thus limiting the opportunities of attacks.

 As we set up to define a pairing protocol with a broad set of
 applications, we cannot limit ourselves to an insecure "push button"
 method. But we probably need to allow for a mode of operation that
 works for input-limited and display limited devices.

Kaiser & Huitema Expires April 26, 2019 [Page 5]

Internet-Draft Device Pairing Issues October 2018

4.3. Short Range Communication

 Many pairing protocols that use out-of-band channels have been
 defined. Most of them are based on short range communication
 systems, where the short range limits the feasibility for attackers
 to access the channels. Example of such limited systems include for
 example:

 o QR codes, displayed on the screen of one device, and read by the
 camera of the other device.

 o Near Field Communication (NFC) systems, which provides wireless
 communication with a very short range.

 o Sound systems, in which one systems emits a sequence of sounds or
 ultrasounds that is picked by the microphone of the other system.

 A common problem with these solutions is that they require special
 capabilities that may not be present in every device. Another
 problem is that they are often one-way channels.

 The pairing protocols should not rely on the secrecy of the out-of-
 band channels; most of these out-of-band channels do not provide
 confidentiality. QR codes could be read by third parties. Powerful
 radio antennas might be able to interfere with NFC. Sensitive
 microphones might pick the sounds. However, a property that all of
 these channels share is authenticity, i.e. an assurance that the data
 obtained over the out-of-band channel actually comes from the other
 party. This is because these out-of-band channels involve the user
 transmitting information from one device to the other. We will
 discuss the specific case of QR codes in Section 8.

4.4. Short Authentication Strings

 The evolving pairing protocols seem to converge towards using Short
 Authentication Strings and verifying them via the "compare and
 confirm" method. This is in line with academic studies, such as
 [KFR09] or [USK11], and, from the users’ perspective, results in a
 very simple interaction:

 1. Alice and Bob compare displayed strings that represent a
 fingerprint of the afore exchanged pairing key.

 2. If the strings match, Alice and Bob accept the pairing.

 Most existing pairing protocols display the fingerprint of the key as
 a 6 or 7 digit number. Usability studies show that this method gives
 good results, with little risk that users mistakenly accept two

Kaiser & Huitema Expires April 26, 2019 [Page 6]

Internet-Draft Device Pairing Issues October 2018

 different numbers as matching. However, the authors of [USK11] found
 that people had more success comparing computer generated sentences
 than comparing numbers. This is in line with the argument in
 [XKCD936] to use sequences of randomly chosen common words as
 passwords. On the other hand, standardizing strings is more
 complicated than standardizing numbers. We would need to specify a
 list of common words, and the process to go from a binary fingerprint
 to a set of words. We would need to be concerned with
 internationalization issues, such as using different lists of words
 in German and in English. This could require the negotiation of word
 lists or languages inside the pairing protocols.

 In contrast, numbers are easy to specify, as in "take a 20 bit number
 and display it as an integer using decimal notation".

4.5. Revisiting the PIN versus SAS discussion

 In section Section 4.1 we presented the drawbacks of using short
 pins. One could object that many of the technical issues could be
 overcome by use of better PAKE algorithms, or by supporting longer
 PIN. And one could also argue that if PIN based pairing algorithms
 suffer from failure modes such as static PIN configuration, SAS based
 protocols are vulnerable to SAS bypass.

 The SAS bypass argument is rooted in the psychology of users. In
 practice, pairing processes can be stressful. The user has to
 discover on each device the proper combination of key entries that
 brings up the required pairing UI, will be anxious and eager to
 complete the procedure, and may well be predisposed to click "OK" in
 the final stage of the algorithm without actually verifying the SAS.
 Some users may bypass the required comparison step, because they just
 want to be done with the pairing.

 An advantage of PIN based processes is that they cannot be bypassed.
 The user must enter the PIN before continuing. Also, once the PIN is
 entered, everything is automatic. The user does not need to input
 more data, or press any additional button. PIN based protocols would
 be a great fit for the QR-code based interaction. One device would
 display a QR code that contains the PIN. Once the QR code is scanned
 by the other device, the process is automated.

 QR based PIN entry may be user friendly, but one of the arguments
 developed in Section 4.1 still holds. Let’s assume that an adversary
 somehow obtains the PIN, maybe by scanning the QR code at a distance.
 That adversary could mount MITM or impersonation attacks, and
 compromise the pairing process. It is thus very important to ensure
 that the PIN is only readable by the user doing the pairing.

Kaiser & Huitema Expires April 26, 2019 [Page 7]

Internet-Draft Device Pairing Issues October 2018

 We could also argue that the SAS bypass failure mode may be mitigated
 by specific user designs. For example, instead of just clicking OK,
 the user could be required to enter the SAS displayed by the other
 device. This requires about the same interactions as a PIN based
 process, and it would be slightly safer because the SAS does not have
 to be kept secret once the keys have been exchanged.

 If we summarize the debate, we see that both SAS and PIN based
 solutions have failure modes depending on implementations. In the
 SAS mode, the failure happens when the UI does not force the user to
 copy the PIN and relies on a simple "OK to continue" dialog. In the
 PIN mode, the failure happens when the device fails to generate a
 random PIN for each session, and comes pre-programmed with a simple
 static PIN of "0000" or "0001".

5. Resist Cryptographic Attacks

 It is tempting to believe that once two peers are connected, they
 could create a secret with a few simple steps, such as for example
 (1) exchange two nonces, (2) hash the concatenation of these nonces
 with the shared secret that is about to be established, (3) display a
 short authentication string composed of a short version of that hash
 on each device, and (4) verify that the two values match. This naive
 approach might yield the following sequence of messages:

 Alice Bob
 g^xA -->
 <-- g^xB
 nA -->
 <-- nB
 Computes Computes
 s = g^xAxB s = g^xAxB
 h = hash(s|nA|nB) h = hash(s|nA|nB)
 Displays short Displays short
 version of h version of h

 If the two short hashes match, Alice and Bob are supposedly assured
 that they have computed the same secret, but there is a problem.
 Let’s redraw the same message flow, this time involving the attacker
 Eve:

Kaiser & Huitema Expires April 26, 2019 [Page 8]

Internet-Draft Device Pairing Issues October 2018

 Alice Eve Bob
 g^xA -->
 g^xA’-->
 <-- g^xB
 <--g^xB’
 nA -->
 nA -->
 <-- nB
 Picks nB’
 smartly
 <--nB’
 Computes Computes
 s’ = g^xAxB’ s" = g^xA’xB
 h’ = hash(s’|nA|nB’) h" = hash(s"|nA|nB)
 Displays short Displays short
 version of h’ version of h"

 In order to pick a nonce nB’ that circumvents this naive security
 measure, Eve runs the following algorithm:

 s’ = g^xAxB’
 s" = g^xA’xB
 repeat
 pick a new version of nB’
 h’ = hash(s’|nA|nB’)
 h" = hash(s"|nA|nB)
 until the short version of h’
 matches the short version of h"

 Running this algorithm will take O(2^b) iterations on average
 (assuming a uniform distribution), where b is the bit length of the
 SAS. Since hash algorithms are fast, it is possible to try millions
 of values in less than a second. If the short string is made up of
 fewer than 6 digits, Eve will find a matching nonce quickly, and
 Alice and Bob will hardly notice the delay. Even if the matching
 string is as long as 8 letters, Eve will probably find a value where
 the short versions of h’ and h" are close enough, e.g. start and end
 with the same two or three letters. Alice and Bob may well be
 fooled.

 Eve could also utilize the fact that she may freely choose the whole
 input for the hash function and thus choose g^xA’ and g^xB’ so that
 an arbitrary collision (birthday attack) instead of a second preimage
 is sufficient for fooling Alice and Bob.

 The classic solution to such problems is to "commit" a possible
 attacker to a nonce before sending it. This commitment can be

Kaiser & Huitema Expires April 26, 2019 [Page 9]

Internet-Draft Device Pairing Issues October 2018

 realized by a hash. In the modified exchange, Alice sends a secure
 hash of her nonce before sending the actual value:

 Alice Bob
 g^xA -->
 <-- g^xB

 Computes Computes
 s = g^xAxB s = g^xAxB
 h_a = hash(s|nA) -->
 <-- nB
 nA -->
 verifies h_a == hash(s|nA)
 Computes Computes
 h = hash(s|nA|nB) h = hash(s|nA|nB)
 Displays short Displays short
 version of h version of h

 Alice will only disclose nA after having confirmation from Bob that
 hash(nA) has been received. At that point, Eve has a problem. She
 can still forge the values of the nonces, but she needs to pick the
 nonce nA’ before the actual value of nA has been disclosed. Eve
 would still have a random chance of fooling Alice and Bob, but it
 will be a very small chance: one in a million if the short
 authentication string is made of 6 digits, even fewer if that string
 is longer.

 Nguyen et al. [NR11] survey these protocols and compare them with
 respect to the amount of necessary user interaction and the
 computation time needed on the devices. The authors state that such
 a protocol is optimal with respect to user interaction if it suffices
 for users to verify a single b-bit SAS while having a one-shot attack
 success probability of 2^-b. Further, n consecutive attacks on the
 protocol must not have a better success probability then n one-shot
 attacks.

 There is still a theoretical problem, if Eve has somehow managed to
 "crack" the hash function. We can build "defense in depth" by some
 simple measures. In the design presented above, the hash "h_a"
 depends on the shared secret "s", which acts as a "salt" and reduces
 the effectiveness of potential attacks based on pre-computed
 catalogs. The simplest design uses a concatenation mechanism, but we
 could instead use a keyed-hash message authentication code (HMAC
 [RFC2104], [RFC6151]), using the shared secret as a key, since the
 HMAC construct has proven very robust over time. Then, we can
 constrain the size of the random numbers to be exactly the same as
 the output of the hash function. Hash attacks often require padding

Kaiser & Huitema Expires April 26, 2019 [Page 10]

Internet-Draft Device Pairing Issues October 2018

 the input string with arbitrary data; restraining the size limits the
 likelyhood of such padding.

6. Privacy Requirements

 Pairing exposes a relation between several devices and their owners.
 Adversaries may attempt to collect this information, for example in
 an attempt to track devices, their owners, or their social graph. It
 is often argued that pairing could be performed in a safe place, from
 which adversaries are assumed absent, but experience shows that such
 assumptions are often misguided. It is much safer to acknowledge the
 privacy issues and design the pairing process accordingly.

 In order to start the pairing process, devices must first discover
 each other. We do not have the option of using the private discovery
 protocol [I-D.ietf-dnssd-privacy] since the privacy of that protocol
 depends on a pre-existing pairing. In the simplest design, one of
 the devices will announce a user-friendly name using DNS-SD.
 Adversaries could monitor the discovery protocol, and record that
 name. An alternative would be for one device to announce a random
 name, and communicate it to the other device via some private
 channel. There is an obvious tradeoff here: friendly names are
 easier to use but less private than random names. We anticipate that
 different users will choose different tradeoffs, for example using
 friendly names if they assume that the environment is safe, and using
 random names in public places.

 During the pairing process, the two devices establish a connection
 and validate a pairing secret. As discussed in Section 4, we have to
 assume that adversaries can mount MitM attacks. The pairing protocol
 can detect such attacks and resist them, but the attackers will have
 access to all messages exchanged before the validation is performed.
 It is important to not exchange any privacy sensitive information
 before that validation. This includes, for example, the identities
 of the parties or their public keys.

7. Using TLS

 The pairing algorithms typically combine the establishment of a
 shared secret through an [EC]DH exchange with the verification of
 that secret through displaying and comparing a "short authentication
 string" (SAS). As explained in Section 5, the secure comparison
 requires a "commit before disclose" mechanism.

 We have three possible designs: (1) create a pairing algorithm from
 scratch, specifying our own cryptographic protocol; (2) use an [EC]DH
 version of TLS to negotiate a shared secret, export the key to the
 application as specified in [RFC5705], and implement the "commit

Kaiser & Huitema Expires April 26, 2019 [Page 11]

Internet-Draft Device Pairing Issues October 2018

 before disclose" and SAS verification as part of the pairing
 application; or, (3) use TLS, integrate the "commit before disclose"
 and SAS verification as TLS extensions, and export the verified key
 to the application as specified in [RFC5705].

 When faced with the same choice, the designers of ZRTP [RFC6189]
 chose to design a new protocol integrated in the general framework of
 real time communications. We don’t want to follow that path, and
 would rather not create yet another protocol. We would need to
 reinvent a lot of the negotiation capabilities that are part of TLS,
 not to mention algorithm agility, post quantum, and all that sort of
 things. It is thus pretty clear that we should use TLS.

 It turns out that there was already an attempt to define SAS
 extensions for TLS ([I-D.miers-tls-sas]). It is a very close match
 to our third design option, full integration of SAS in TLS, but the
 draft has expired, and there does not seem to be any support for the
 SAS options in the common TLS packages.

 In our design, we will choose the middle ground option -- use TLS for
 [EC]DH, and implement the SAS verification as part of the pairing
 application. This minimizes dependencies on TLS packages to the
 availability of a key export API following [RFC5705]. We will need
 to specify the hash algorithm used for the SAS computation and
 validation, which carries some of the issues associated with
 "designing our own crypto". One solution would be to use the same
 hash algorithm negotiated by the TLS connection, but common TLS
 packages do not always make this algorithm identifier available
 through standard APIs. A fallback solution is to specify a state of
 the art keyed MAC algorithm.

8. QR codes

 In Section 4.3, we reviewed a number of short range communication
 systems that can be used to facilitate pairing. Out of these, QR
 codes stand aside because most devices that can display a short
 string can also display the image of a QR code, and because many
 pairing scenarios involve cell phones equipped with cameras capable
 of reading a QR code.

 QR codes are displayed as images. An adversary equipped with
 powerful cameras could read the QR code just as well as the pairing
 parties. If the pairing protocol design embedded passwords or pins
 in the QR code, adversaries could access these data and compromise
 the protocol. On the other hand, there are ways to use QR codes even
 without assuming secrecy.

Kaiser & Huitema Expires April 26, 2019 [Page 12]

Internet-Draft Device Pairing Issues October 2018

 QR codes could be used at two of the three stages of pairing:
 Discovering the peer device, and authenticating the shared secret.
 Using QR codes provides advantages in both phases:

 o Typical network based discovery involves interaction with two
 devices. The device to be discovered is placed in "server" mode,
 and waits for requests from the network. The device performing
 the discovery retrieves a list of candidates from the network.
 When there is more than one such candidate, the device user is
 expected to select the desired target from a list. In QR code
 mode, the discovered device will display a QR code, which the user
 will scan using the second device. The QR code will embed the
 device’s name, its IP address, and the port number of the pairing
 service. The connection will be automatic, without relying on the
 network discovery. This is arguably less error-prone and safer
 than selecting from a network provided list.

 o SAS based agreement involves displaying a short string on each
 device’s display, and asking the user to verify that both devices
 display the same string. In QR code mode, one device could
 display a QR code containing this short string. The other device
 could scan it and compare it to the locally computed version.
 Because the procedure is automated, there is no dependency on the
 user diligence at comparing the short strings.

 Offering QR codes as an alternative to discovery and agreement is
 straightforward. If QR codes are used, the pairing program on the
 server side might display something like:

 Please connect to "Bob’s phone 359"
 or scan the following QR code:

 mmmmmmm m m mmmmmmm
 # mmm # ## "m # mmm #
 # ### # m" #" # ### #
 #mmmmm# # m m #mmmmm#
 mm m mm"## m mmm mm
 " ##"mm m"# ####"m""#
 #"mmm mm# m"# ""m" "m
 mmmmmmm #mmm###mm# m
 # mmm # m "mm " " "
 # ### # " m # "## "#
 #mmmmm# ### m"m m m

 If Alice’s device is capable of reading the QR code, it will just
 scan it, establishes a connection, and run the pairing protocol.
 After the protocol messages have been exchanged, Bob’s device will

Kaiser & Huitema Expires April 26, 2019 [Page 13]

Internet-Draft Device Pairing Issues October 2018

 display a new QR code, encoding the hash code that should be matched.
 The UI might look like this:

 Please scan the following QR code,
 or verify that your device displays
 the number: 388125

 mmmmmmm mmm mmmmmmm
 # mmm # ""#m# # mmm #
 # ### # "# # # ### #
 #mmmmm# # m"m #mmmmm#
 mmmmm mmm" m m m m m
 #"m mmm#"#"#"#m m#m
 ""mmmmm"m#""#""m # m
 mmmmmmm # "m"m "m"#"m
 # mmm # mmmm m "# #"
 # ### # #mm"#"#m "
 #mmmmm# #mm"#""m "m"

 Did the number match (Yes/No)?

 With the use of QR code, the pairing is established with little
 reliance on user judgment, which is arguably safer.

9. Intra User Pairing and Transitive Pairing

 There are two usage modes for pairing: inter-user, and intra-user.
 Users have multiple devices. The simplest design is to not
 distinguish between pairing devices belonging to two users, e.g.,
 Alice’s phone and Bob’s phone, and devices belonging to the same
 user, e.g., Alice’s phone and her laptop. This will most certainly
 work, but it raises the problem of transitivity. If Bob needs to
 interact with Alice, should he install just one pairing for "Alice
 and Bob", or should he install four pairings between Alice phone and
 laptop and Bob phone and laptop? Also, what happens if Alice gets a
 new phone?

 One tempting response is to devise a synchronization mechanism that
 will let devices belonging to the same user share their pairings with
 other users. But it is fairly obvious that such service will have to
 be designed cautiously. The pairing system relies on shared secrets.
 It is much easier to understand how to manage secrets shared between
 exactly two parties than secrets shared with an unspecified set of
 devices.

 Transitive pairing raises similar issues. Suppose that a group of
 users wants to collaborate. Will they need to set up a fully
 connected graph of pairings using the simple peer-to-peer mechanism,

Kaiser & Huitema Expires April 26, 2019 [Page 14]

Internet-Draft Device Pairing Issues October 2018

 or could they use some transitive set, so that if Alice is connected
 with Bob and Bob with Carol, Alice automatically gets connected with
 Carol? Such transitive mechanisms could be designed, e.g. using a
 variation of Needham-Scroeder symmetric key protocol [NS1978], but it
 will require some extensive work. Groups can of course use simpler
 solution, e.g., build some star topology.

 Given the time required, intra-user pairing synchronization
 mechanisms and transitive pairing mechanisms are left for further
 study.

10. Security Considerations

 This document lists a set of security issues that have to be met by
 pairing protocols, but does not specify any protocol.

11. IANA Considerations

 This draft does not require any IANA action.

12. Acknowledgments

 We would like to thank Steve Kent for a detailed early review of an
 early draft of this document. Both him and Ted Lemon were
 influential in the decision to separate the analysis of pairing
 requirements from the specification of pairing protocol in
 [I-D.ietf-dnssd-pairing]

13. Informative References

 [BTLEPairing]
 Bluetooth SIG, "Bluetooth Low Energy Security Overview",
 2016,
 <https://developer.bluetooth.org/TechnologyOverview/Pages/
 LE-Security.aspx>.

 [I-D.ietf-dnssd-pairing]
 Huitema, C. and D. Kaiser, "Device Pairing Using Short
 Authentication Strings", draft-ietf-dnssd-pairing-04 (work
 in progress), April 2018.

 [I-D.ietf-dnssd-prireq]
 Huitema, C., "DNS-SD Privacy and Security Requirements",
 draft-ietf-dnssd-prireq-00 (work in progress), September
 2018.

Kaiser & Huitema Expires April 26, 2019 [Page 15]

Internet-Draft Device Pairing Issues October 2018

 [I-D.ietf-dnssd-privacy]
 Huitema, C. and D. Kaiser, "Privacy Extensions for DNS-
 SD", draft-ietf-dnssd-privacy-04 (work in progress), April
 2018.

 [I-D.miers-tls-sas]
 Miers, I., Green, M., and E. Rescorla, "Short
 Authentication Strings for TLS", draft-miers-tls-sas-00
 (work in progress), February 2014.

 [K17] Kaiser, D., "Efficient Privacy-Preserving
 Configurationless Service Discovery Supporting Multi-Link
 Networks", 2017,
 <http://nbn-resolving.de/urn:nbn:de:bsz:352-0-422757>.

 [KFR09] Kainda, R., Flechais, I., and A. Roscoe, "Usability and
 Security of Out-Of-Band Channels in Secure Device Pairing
 Protocols", DOI: 10.1145/1572532.1572547, SOUPS
 09, Proceedings of the 5th Symposium on Usable Privacy and
 Security, Mountain View, CA, January 2009.

 [NR11] Nguyen, L. and A. Roscoe, "Authentication protocols based
 on low-bandwidth unspoofable channels: a comparative
 survey", DOI: 10.3233/JCS-2010-0403, Journal of Computer
 Security, Volume 19 Issue 1, Pages 139-201, January 2011.

 [NS1978] Needham, R. and M. Schroeder, ". Using encryption for
 authentication in large networks of computers",
 Communications of the ACM 21 (12): 993-999,
 DOI: 10.1145/359657.359659, December 1978.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
 RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <https://www.rfc-editor.org/info/rfc6151>.

Kaiser & Huitema Expires April 26, 2019 [Page 16]

Internet-Draft Device Pairing Issues October 2018

 [RFC6189] Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:
 Media Path Key Agreement for Unicast Secure RTP",
 RFC 6189, DOI 10.17487/RFC6189, April 2011,
 <https://www.rfc-editor.org/info/rfc6189>.

 [USK11] Uzun, E., Saxena, N., and A. Kumar, "Pairing devices for
 social interactions: a comparative usability evaluation",
 DOI: 10.1145/1978942.1979282, Proceedings of the
 International Conference on Human Factors in Computing
 Systems, CHI 2011, Vancouver, BC, Canada, May 2011.

 [WPS] Wi-Fi Alliance, "Wi-Fi Protected Setup", 2016,
 <http://www.wi-fi.org/discover-wi-fi/
 wi-fi-protected-setup>.

 [XKCD936] Munroe, R., "XKCD: Password Strength", 2011,
 <https://www.xkcd.com/936/>.

Authors’ Addresses

 Daniel Kaiser
 Esch-sur-Alzette 4360
 Luxembourg

 Email: daniel@kais3r.de

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net

Kaiser & Huitema Expires April 26, 2019 [Page 17]

