Homenet profile of the Babel routing protocol
draft-ietf-homenet-babel-profile-07

Abstract

This document defines the exact subset of the Babel routing protocol and its extensions that is required by an implementation of the Homenet protocol suite, as well as the interactions between the Home Networking Control Protocol (HNCP) and Babel.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 19, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction .............................................. 2
   1.1. Requirement Language ................................. 2
   1.2. Background ............................................ 2
2. The Homenet profile of Babel ............................. 3
   2.1. Requirements .......................................... 3
   2.2. Optional features .................................... 5
3. Interactions between HNCP and Babel ....................... 5
   3.1. Requirements .......................................... 6
   3.2. Optional features .................................... 6
4. Security Considerations ................................... 7
5. IANA Considerations ....................................... 7
6. Acknowledgments ........................................... 8
7. References ................................................ 8
   7.1. Normative References ................................. 8
   7.2. Informative References ............................... 8
Author’s Address .............................................. 9

1. Introduction

The core of the Homenet protocol suite consists of the Home Networking Control Protocol (HNCP) [RFC7788], a protocol used for flooding configuration information and assigning prefixes to links, combined with the Babel routing protocol [RFC6126bis]. Babel is an extensible, flexible and modular protocol: minimal implementations of Babel have been demonstrated that consist of a few hundred lines of code, while the "large" implementation includes support for a number of extensions and consists of over ten thousand lines of C code.

This document consists of two parts. The first specifies the exact subset of the Babel protocol and its extensions that is required by an implementation of the Homenet protocol suite. The second specifies how HNCP interacts with Babel.

1.1. Requirement Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

1.2. Background

The Babel routing protocol and its extensions are defined in a number of documents:
RFC 6126bis [RFC6126bis] defines the Babel routing protocol. It allows Babel’s control data to be carried either over link-local IPv6 or over IPv4, and in either case allows announcing both IPv4 and IPv6 routes. It leaves link cost estimation, metric computation and route selection to the implementation. Distinct implementations of RFC 6126bis Babel will interoperate, in the sense that they will maintain a set of loop-free forwarding paths. However, if they implement conflicting options, they might not be able to exchange a full set of routes; in the worst case, an implementation that only implements the IPv6 subset of the protocol and an implementation that only implements the IPv4 subset of the protocol will not exchange any routes. In addition, if implementations use conflicting route selection policies, persistent oscillations might occur.

The informative Appendix A of RFC 6126bis suggests a simple and easy to implement algorithm for cost and metric computation that has been found to work satisfactorily in a wide range of topologies.

While RFC 6126bis does not provide an algorithm for route selection, its Section 3.6 suggests selecting the route with smallest metric with some hysteresis applied. An algorithm that has been found to work well in practice is described in Section III.E of [DELAY-BASED].

Five RFCs and Internet-Drafts define optional extensions to Babel: HMAC-based authentication [RFC7298], source-specific routing [BABEL-SS], delay-based routing [BABEL-RTT] and ToS-specific routing [ToS-SPECIFIC]. All of these extensions interoperate with the core protocol as well as with each other.

2. The Homenet profile of Babel

2.1. Requirements

REQ1: a Homenet implementation of Babel MUST encapsulate Babel control traffic in IPv6 packets sent to the IANA-assigned port 6696 and either the IANA-assigned multicast group ff02::1:6 or to a link-local unicast address.

Rationale: since Babel is able to carry both IPv4 and IPv6 routes over either IPv4 or IPv6, choosing the protocol used for carrying control traffic is a matter of preference. Since IPv6 has some features that make implementations somewhat simpler and more reliable (notably properly scoped and reasonably stable link-local addresses), we require carrying control data over IPv6.
REQ2: a Homenet implementation of Babel MUST implement the IPv6 subset of the protocol defined in the body of RFC 6126bis.

Rationale: support for IPv6 routing is an essential component of the Homenet architecture.

REQ3: a Homenet implementation of Babel SHOULD implement the IPv4 subset of the protocol defined in the body of RFC 6126bis. Use of other techniques for acquiring IPv4 connectivity (such as multiple layers of NAT) is strongly discouraged.

Rationale: support for IPv4 will likely remain necessary for years to come, and even in pure IPv6 deployments, including code for supporting IPv4 has very little cost. Since HNCP makes it easy to assign distinct IPv4 prefixes to the links in a network, it is not necessary to resort to multiple layers of NAT, with all of its problems.

REQ4: a Homenet implementation of Babel MUST implement source-specific routing for IPv6, as defined in draft-ietf-babel-source-specific [BABEL-SS].

Rationale: source-specific routing is an essential component of the Homenet architecture. Source-specific routing for IPv4 is not required, since HNCP arranges things so that a single non-specific IPv4 default route is announced (Section 6.5 of [RFC7788]).

REQ5: a Homenet implementation of Babel must use metrics that are of a similar magnitude to the values suggested in Appendix A of RFC 6126bis. In particular, it SHOULD assign costs that are no less than 256 to wireless links, and SHOULD assign costs between 32 and 196 to lossless wired links.

Rationale: if two implementations of Babel choose very different values for link costs, combining routers from different vendors will cause sub-optimal routing.

REQ6: a Homenet implementation of Babel SHOULD distinguish between wired and wireless links; if it is unable to determine whether a link is wired or wireless, it SHOULD make the worst-case hypothesis that the link is wireless. It SHOULD dynamically probe the quality of wireless links and derive a suitable metric from its quality estimation. Appendix A of RFC 6126bis gives an example of a suitable algorithm.

Rationale: support for wireless transit links is a distinguishing feature of Homenet, and one that is requested by our users. In the absence of dynamically computed metrics, the routing protocol
attempts to minimise the number of links crossed by a route, and therefore prefers long, lossy links to shorter, lossless ones. In wireless networks, "hop-count routing is worst-path routing".

While it would be desirable to perform link-quality probing on some wired link technologies, notably power-line networks, these kinds of links tend to be difficult or impossible to detect automatically, and we are not aware of any published link-quality algorithms for them. Hence, we do not require link-quality estimation for wired links of any kind.

2.2. Optional features

OPT1: a Homenet implementation of Babel MAY perform route selection by applying hysteresis to route metrics, as suggested in Section 3.6 of RFC 6126bis and described in detail in Section III.E of [BABEL-RTT]. However, hysteresis is not required, and the implementation may simply pick the route with the smallest metric.

Rationale: hysteresis is only useful in congested and highly dynamic networks. In a typical home network, stable and uncongested, the feedback loop that hysteresis compensates for does not occur.

OPT2: a Homenet implementation of Babel may include support for other extensions to the protocol, as long as they are known to interoperate with both the core protocol and source-specific routing.

Rationale: a number of extensions to the Babel routing protocol have been defined over the years; however, they are useful in fairly specific situations, such as routing over global-scale overlay networks [BABEL-RTT] or multi-hop wireless networks with multiple radio frequencies [BABEL-Z]. Hence, with the exception of source-specific routing, no extensions are required for Homenet.

3. Interactions between HNCP and Babel

The Homenet architecture cleanly separates configuration, which is done by HNCP, from routing, which is done by Babel. While the coupling between the two protocols is deliberately kept to a minimum, some interactions are unavoidable.

All the interactions between HNCP and Babel consist of HNCP causing Babel to perform an announcement on its behalf (under no circumstances does Babel cause HNCP to perform an action). How this is realised is an implementation detail that is outside the scope of this document; while it could conceivably be done using a private
communication channel between HNCP and Babel, in existing implementations HNCP installs a route in the operating system’s kernel which is later picked up by Babel using the existing redistribution mechanisms.

3.1. Requirements

REQ7: if an HNCP node receives a DHCPv6 prefix delegation for prefix P and publishes an External-Connection TLV containing a Delegated-Prefix TLV with prefix P and no Prefix-Policy TLV, then it MUST announce a source-specific default route with source prefix P over Babel.

Rationale: source-specific routes are the main tool that Homenet uses to enable optimal routing in the presence of multiple IPv6 prefixes. External connections with non-trivial prefix policies are explicitly excluded from this requirement, since their exact behaviour is application-specific.

REQ8: if an HNCP node receives a DHCPv4 lease with an IPv4 address and wins the election for NAT gateway, then it MUST act as a NAT gateway and MUST announce a (non-specific) IPv4 default route over Babel.

Rationale: the Homenet stack does not use source-specific routing for IPv4; instead, HNCP elects a single NAT gateway and publishes a single default route towards that gateway ([RFC7788] Section 6.5).

REQ9: if an HNCP node assigns a prefix P to an attached link and announces P in an Assigned-Prefix TLV, then it MUST announce a route towards P over Babel.

Rationale: prefixes assigned to links must be routable within the Homenet.

3.2. Optional features

OPT3: an HNCP node that receives a DHCPv6 prefix delegation MAY announce a non-specific IPv6 default route over Babel in addition to the source-specific default route mandated by requirement REQ7.

Rationale: since the source-specific default route is more specific than the non-specific default route, the former will override the latter if all nodes implement source-specific routing. Announcing an additional non-specific route is allowed, since doing that causes no harm and might simplify operations in
some circumstances, e.g. when interoperating with a routing protocol that does not support source-specific routing.

OPT4: an HNCP node that receives a DHCPv4 lease with an IPv4 address and wins the election for NAT gateway SHOULD NOT announce a source-specific IPv4 default route.

Homenet does not require support for IPv4 source-specific routing. Announcing IPv4 source-specific routes will not cause routing pathologies (blackholes or routing loops), but it might cause packets sourced in different parts of the Homenet to follow different paths, with all the confusion that this entails.

4. Security Considerations

Both HNCP and Babel carry their control data in IPv6 packets with a link-local source address, and implementations are required to drop packets sent from a global address. Hence, they are only susceptible to attacks from a directly connected link on which the HNCP and Babel implementations are listening.

The security of a Homenet network relies on having a set of "Internal", "Ad Hoc" and "Hybrid" interfaces (Section 5.1 of [RFC7788]) that are assumed to be connected to links that are secured at a lower layer. HNCP and Babel packets are only accepted when they originate on these trusted links. "External" and "Guest" interfaces are connected to links that are not trusted, and any HNCP or Babel packets that are received on such interfaces are ignored. ("Leaf" interfaces are a special case, since they are connected to trusted links but HNCP and Babel traffic received on such interfaces is ignored.) This implies that the security of a Homenet network depends on the reliability of the border discovery procedure described in Section 5.3 of [RFC7788].

If untrusted links are used for transit, which is NOT RECOMMENDED, then any HNCP and Babel traffic that is carried over such links MUST be secured using an upper-layer security protocol. While both HNCP and Babel support cryptographic authentication, at the time of writing no protocol for autonomous configuration of HNCP and Babel security has been defined.

5. IANA Considerations

This document requires no actions from IANA.
6. Acknowledgments

A number of people have helped with defining the requirements listed in this document. I am especially indebted to Barbara Stark and Markus Stenberg.

7. References

7.1. Normative References


7.2. Informative References


Available online from http://arxiv.org/abs/1403.3488

[ToS-SPECIFIC]

Author’s Address

Juliusz Chroboczek
IRIF, University of Paris-Diderot
Case 7014
75205 Paris Cedex 13
France

Email: jch@irif.fr
Abstract

Designation of services and devices of a home network is not user friendly, and mechanisms should enable a user to designate services and devices inside a home network using names.

In order to enable internal communications while the home network experiments Internet connectivity shortage, the naming service should be hosted on a device inside the home network. On the other hand, home networks devices have not been designed to handle heavy loads. As a result, hosting the naming service on such home network device, visible on the Internet exposes this device to resource exhaustion and other attacks, which could make the home network unreachable, and most probably would also affect the internal communications of the home network.

As result, home networks may prefer not serving the naming service for the Internet, but instead prefer outsourcing it to a third party. This document describes a mechanisms that enables the Home Network Authority (HNA) to outsource the naming service to the Outsourcing Infrastructure.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
1. Requirements notation ............................................. 3
2. Introduction ......................................................... 3
3. Terminology ............................................................. 4
4. Architecture Description .......................................... 6
   4.1. Architecture Overview ....................................... 6
   4.2. Example: Homenet Zone ......................................... 8
   4.3. Example: HNA necessary parameters for outsourcing .......... 10
5. Synchronization between HNA and the Synchronization Server ... 11
   5.1. Synchronization with a Hidden Primary ...................... 11
   5.2. Securing Synchronization ..................................... 12
   5.3. HNA Security Policies ......................................... 14
6. DNSSEC compliant Homenet Architecture .......................... 14
   6.1. Zone Signing ................................................... 14
   6.2. Secure Delegation ............................................ 16
7. Handling Different Views .......................................... 17
   7.1. Misleading Reasons for Local Scope DNS Zone ............... 17
   7.2. Consequences .................................................. 18
   7.3. Guidance and Recommendations ................................ 18
8. Homenet Reverse Zone ............................................... 19
9. Renumbering .......................................................... 19
   9.1. Hidden Primary ................................................ 20
   9.2. Synchronization Server ....................................... 21
10. Privacy Considerations ............................................ 22
11. Security Considerations .......................................... 22
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

IPv6 provides global end to end IP reachability. End users prefer to use names instead of long and complex IPv6 addresses when accessing services hosted in the home network.

Customer Edge Routers and other Customer Premises Equipment (CPEs) are already providing IPv6 connectivity to the home network, and generally provide IPv6 addresses or prefixes to the nodes of the home network. In addition, [RFC7368] recommends that home networks be resilient to connectivity disruption from the ISP. This could be achieved by a dedicated device inside the home network that builds, serves or manage the Homenet Zone, thus providing bindings between names and IP addresses.

CPEs are of course good candidates to manage the binding between names and IP addresses of nodes. However, this could also be performed by another device in the home network that is not a CPE. In addition, a given home network may have multiple nodes that may implement this functionality. Since management of the Homenet Zone involves DNS specific mechanisms that cannot be distributed (primary server), when multiple nodes can potentially manage the Homenet Zone, a single node needs to be selected. This selected node is designated as the Homenet Naming Authority (HNA).
CPEs, Homenet Naming Authority, as well as home network devices are usually low powered devices not designed not for terminating heavy traffic. As a result, hosting an authoritative DNS service on the Internet may expose the home network to resource exhaustion and other attacks. This may isolate the home network from the Internet and also impact the services hosted by the such an home network device, thus affecting overall home network communication.

In order to avoid resource exhaustion and other attacks, this document describes an architecture that outsources the authoritative naming service of the home network. More specifically, the Homenet Naming Authority builds the Homenet Zone and outsources it to an Outsourcing Infrastructure. The Outsourcing Infrastructure is in charge of publishing the corresponding Public Homenet Zone on the Internet.

Section 4.1 provides an architecture description that describes the relation between the Homenet Naming Authority and the Outsourcing Architecture. In order to keep the Public Homenet Zone up-to-date Section 5 describes how the Homenet Zone and the Public Homenet Zone can be synchronized. The proposed architecture aims at deploying DNSSEC, and the Public Homenet Zone is expected to be signed with a secure delegation. The zone signing and secure delegation may be performed either by the Homenet Naming Authority or by the Outsourcing Infrastructure. Section 6 discusses these two alternatives. Section 7 discusses the consequences of publishing multiple representations of the same zone also commonly designated as views. This section provides guidance to limit the risks associated with multiple views. Section 8 discusses management of the reverse zone. Section 9 discusses how renumbering should be handled. Finally, Section 10 and Section 11 respectively discuss privacy and security considerations when outsourcing the Homenet Zone.

3. Terminology

- Customer Premises Equipment: (CPE) is a router providing connectivity to the home network.

- Homenet Naming Authority: (HNA) is a home network node responsible to manage the Homenet Zone. This includes building the Homenet Zone, as well as managing the distribution of that Homenet Zone through the Outsourcing Infrastructure.

- Registered Homenet Domain: is the Domain Name associated to the home network.

- Homenet Zone: is the DNS zone associated with the home network. It is designated by its Registered Homenet Domain. This zone
is built by the HNA and contains the bindings between names and IP addresses of the nodes in the home network. The HNA synchronizes the Homenet Zone with the Synchronization Server via a hidden primary / secondary architecture. The Outsourcing Infrastructure may process the Homenet Zone - for example providing DNSSEC signing - to generate the Public Homenet Zone. This Public Homenet Zone is then transmitted to the Public Authoritative Server(s) that publish it on the Internet.

- Public Homenet Zone: is the public version of the Homenet Zone. It is expected to be signed with DNSSEC. It is hosted by the Public Authoritative Server(s), which are authoritative for this zone. The Public Homenet Zone and the Homenet Zone might be different. For example some names might not become reachable from the Internet, and thus not be hosted in the Public Homenet Zone. Another example of difference may also occur when the Public Homenet Zone is signed whereas the Homenet Zone is not signed.

- Outsourcing Infrastructure: is the combination of the Synchronization Server and the Public Authoritative Server(s).

- Public Authoritative Servers: are the authoritative name servers hosting the Public Homenet Zone. Name resolution requests for the Homenet Domain are sent to these servers. For resiliency the Public Homenet Zone SHOULD be hosted on multiple servers.

- Synchronization Server: is the server with which the HNA synchronizes the Homenet Zone. The Synchronization Server is configured as a secondary and the HNA acts as primary. There MAY be multiple Synchronization Servers, but the text assumes a single server. In addition, the text assumes the Synchronization Server is a separate entity. This is not a requirement, and when the HNA signs the zone, the synchronization function might also be operated by the Public Authoritative Servers.

- Homenet Reverse Zone: The reverse zone file associated with the Homenet Zone.

- Reverse Public Authoritative Servers: are the authoritative name server(s) hosting the Public Homenet Reverse Zone. Queries for reverse resolution of the Homenet Domain are sent to this server. Similarly to Public Authoritative Servers, for resiliency, the Homenet Reverse Zone SHOULD be hosted on multiple servers.
- Reverse Synchronization Server: is the server with which the HNA synchronizes the Homenet Reverse Zone. It is configured as a secondary and the HNA acts as primary. There MAY be multiple Reverse Synchronization Servers, but the text assumes a single server. In addition, the text assumes the Reverse Synchronization Server is a separate entity. This is not a requirement, and when the HNA signs the zone, the synchronization function might also be operated by the Reverse Public Authoritative Servers.

- Hidden Primary: designates the primary server of the HNA, that synchronizes the Homenet Zone with the Synchronization Server. A primary / secondary architecture is used between the HNA and the Synchronization Server. The hidden primary is not expected to serve end user queries for the Homenet Zone as a regular primary server would. The hidden primary is only known to its associated Synchronization Server.

4. Architecture Description

This section describes the architecture for outsourcing the authoritative naming service from the HNA to the Outsourcing Infrastructure. Section 4.1 describes the architecture, Section 4.2 and Section 4.3 illustrates this architecture and shows how the Homenet Zone should be built by the HNA. It also lists the necessary parameters the HNA needs to be able to outsource the authoritative naming service. These two sections are informational and non-normative.

4.1. Architecture Overview

Figure 1 provides an overview of the architecture.

The home network is designated by the Registered Homenet Domain Name -- example.com in Figure 1. The HNA builds the Homenet Zone associated with the home network. How the Homenet Zone is built is out of the scope of this document. The HNA may host or interact with multiple services to determine name-to-address mappings, such as a web GUI, DHCP [RFC6644] or mDNS [RFC6762]. These services may coexist and may be used to populate the Homenet Zone. This document assumes the Homenet Zone has been populated with domain names that are intended to be publicly published and that are publicly reachable. More specifically, names associated with services or devices that are not expected to be reachable from outside the home network or names bound to non-globally reachable IP addresses MUST NOT be part of the Homenet Zone.
Once the Homenet Zone has been built, the HNA does not host an authoritative naming service, but instead outsources it to the Outsourcing Infrastructure. The Outsourcing Infrastructure takes the Homenet Zone as an input and publishes the Public Homenet Zone. If the HNA does not sign the Homenet Zone, the Outsourcing Infrastructure may instead sign it on behalf of the HNA. Figure 1 provides a more detailed description of the Outsourcing Infrastructure, but overall, it is expected that the HNA provides the Homenet Zone. Then the Public Homenet Zone is derived from the Homenet Zone and published on the Internet.

As a result, DNS queries from the DNS resolvers on the Internet are answered by the Outsourcing Infrastructure and do not reach the HNA. Figure 1 illustrates the case of the resolution of node1.example.com.

Figure 1: Homenet Naming Architecture Description

The Outsourcing Infrastructure is described in Figure 2. The Synchronization Server receives the Homenet Zone as an input. The received zone may be transformed to output the Public Homenet Zone. Various operations may be performed here, however this document only considers zone signing as a potential operation. This should occur only when the HNA outsources this operation to the Synchronization Server. On the other hand, if the HNA signs the Homenet Zone itself, the zone would be collected by the Synchronization Server and
directly transferred to the Public Authoritative Server(s). These policies are discussed and detailed in Section 6 and Section 7.

Figure 2: Outsourcing Infrastructure Description

4.2. Example: Homenet Zone

This section is not normative and intends to illustrate how the HNA builds the Homenet Zone.

As depicted in Figure 1 and Figure 2, the Public Homenet Zone is hosted on the Public Authoritative Server(s), whereas the Homenet Zone is hosted on the HNA. Motivations for keeping these two zones identical are detailed in Section 7, and this section considers that the HNA builds the zone that will be effectively published on the Public Authoritative Server(s). In other words "Homenet to Public Zone transformation" is the identity also commonly designated as "no operation" (NOP).

In that case, the Homenet Zone should configure its Name Server RRset (NS) and Start of Authority (SOA) with the values associated with the Public Authoritative Server(s). This is illustrated in Figure 3. public.primary.example.net is the FQDN of the Public Authoritative Server(s), and IP1, IP2, IP3, IP4 are the associated IP addresses. Then the HNA should add the additional new nodes that enter the home
network, remove those that should be removed, and sign the Homenet Zone.

$ORIGIN example.com
$TTL 1h

@ IN SOA public.primary.example.net
    hostmaster.example.com. (2013120710 ; serial number of this zone file
    1d ; secondary refresh
    2h ; secondary retry time in case of a problem
    4w ; secondary expiration time
    1h ; maximum caching time in case of failed
    ; lookups)

@ NS public.authoritative.servers.example.net

public.primary.example.net A @IP1
public.primary.example.example.net A @IP2
public.primary.example.net AAAA @IP3
public.primary.example.net AAAA @IP4

Figure 3: Homenet Zone

The SOA RRset is defined in [RFC1033], [RFC1035] and [RFC2308]. This
SOA is specific, as it is used for the synchronization between the
Hidden Primary and the Synchronization Server and published on the
DNS Public Authoritative Server(s).

- MNAME: indicates the primary. In our case the zone is published
  on the Public Authoritative Server(s), and its name MUST be
  included. If multiple Public Authoritative Server(s) are
  involved, one of them MUST be chosen. More specifically, the
  HNA MUST NOT include the name of the Hidden Primary.

- RNAME: indicates the email address to reach the administrator.
  [RFC2142] recommends using hostmaster@domain and replacing the
  ‘@’ sign by ‘.’.

- REFRESH and RETRY: indicate respectively in seconds how often
  secondaries need to check the primary, and the time between two
  refresh when a refresh has failed. Default values indicated by
  [RFC1033] are 3600 (1 hour) for refresh and 600 (10 minutes)
  for retry. This value might be too long for highly dynamic
  content. However, the Public Authoritative Server(s) and the
  HNA are expected to implement NOTIFY [RFC1996]. So whilst
  shorter refresh timers might increase the bandwidth usage for
secondaries hosting large number of zones, it will have little practical impact on the elapsed time required to achieve synchronization between the Outsourcing Infrastructure and the Hidden Master. As a result, the default values are acceptable.

EXPIRE: is the upper limit data SHOULD be kept in absence of refresh. The default value indicated by [RFC1033] is 3600000 (approx. 42 days). In home network architectures, the HNA provides both the DNS synchronization and the access to the home network. This device may be plugged and unplugged by the end user without notification, thus we recommend a long expiry timer.

MINIMUM: indicates the minimum TTL. The default value indicated by [RFC1033] is 86400 (1 day). For home network, this value MAY be reduced, and 3600 (1 hour) seems more appropriate.

4.3. Example: HNA necessary parameters for outsourcing

This section specifies the various parameters required by the HNA to configure the naming architecture of this document. This section is informational, and is intended to clarify the information handled by the HNA and the various settings to be done.

Synchronization Server may be configured with the following parameters. These parameters are necessary to establish a secure channel between the HNA and the Synchronization Server as well as to specify the DNS zone that is in the scope of the communication:

- Synchronization Server: The associated FQDNs or IP addresses of the Synchronization Server. IP addresses are optional and the FQDN is sufficient. To secure the binding name and IP addresses, a DNSSEC exchange is required. Otherwise, the IP addresses should be entered manually.

- Authentication Method: How the HNA authenticates itself to the Synchronization Server. This MAY depend on the implementation but this should cover at least IPsec, DTLS and TSIG

- Authentication data: Associated Data. PSK only requires a single argument. If other authentication mechanisms based on certificates are used, then HNA private keys, certificates and certification authority should be specified.

- Public Authoritative Server(s): The FQDN or IP addresses of the Public Authoritative Server(s). It MAY correspond to the data that will be set in the NS RRsets and SOA of the Homenet Zone. IP addresses are optional and the FQDN is sufficient. To
secure the binding between name and IP addresses, a DNSSEC exchange is required. Otherwise, the IP addresses should be entered manually.

- Registered Homenet Domain: The domain name used to establish the secure channel. This name is used by the Synchronization Server and the HNA for the primary / secondary configuration as well as to index the NOTIFY queries of the HNA when the HNA has been renumbered.

Setting the Homenet Zone requires the following information.

- Registered Homenet Domain: The Domain Name of the zone. Multiple Registered Homenet Domains may be provided. This will generate the creation of multiple Public Homenet Zones.

- Public Authoritative Server(s): The Public Authoritative Server(s) associated with the Registered Homenet Domain. Multiple Public Authoritative Server(s) may be provided.

5. Synchronization between HNA and the Synchronization Server

The Homenet Reverse Zone and the Homenet Zone MAY be updated either with DNS UPDATE [RFC2136] or using a primary / secondary synchronization. The primary / secondary mechanism is preferred as it scales better and avoids DoS attacks: First the primary notifies the secondary that the zone must be updated and leaves the secondary to proceed with the update when possible. Then, a NOTIFY message is sent by the primary, which is a small packet that is less likely to load the secondary. Finally, the AXFR query performed by the secondary is a small packet sent over TCP (section 4.2 [RFC5936]), which mitigates reflection attacks using a forged NOTIFY. On the other hand, DNS UPDATE (which can be transported over UDP), requires more processing than a NOTIFY, and does not allow the server to perform asynchronous updates.

This document RECOMMENDS use of a primary / secondary mechanism instead of the use of DNS UPDATE. This section details the primary / secondary mechanism.

5.1. Synchronization with a Hidden Primary

Uploading and dynamically updating the zone file on the Synchronization Server can be seen as zone provisioning between the HNA (Hidden Primary) and the Synchronization Server (Secondary Server). This can be handled either in band or out of band.
Note that there is no standard way to distribute a DNS primary between multiple devices. As a result, if multiple devices are candidate for hosting the Hidden Primary, some specific mechanisms should be designed so the home network only selects a single HNA for the Hidden Primary. Selection mechanisms based on HNCP [RFC7788] are good candidates.

The Synchronization Server is configured as a secondary for the Homenet Domain Name. This secondary configuration has been previously agreed between the end user and the provider of the Synchronization Server. In order to set the primary / secondary architecture, the HNA acts as a Hidden Primary Server, which is a regular authoritative DNS Server listening on the WAN interface.

The Hidden Primary Server SHOULD accept SOA [RFC1033], AXFR [RFC1034], and IXFR [RFC1995] queries from its configured secondary DNS server(s). The Hidden Primary Server SHOULD send NOTIFY messages [RFC1996] in order to update Public DNS server zones as updates occur. Because, the Homenet Zones are likely to be small, the HNA MUST implement AXFR and SHOULD implement IXFR.

Hidden Primary Server differs from a regular authoritative server for the home network by:

- Interface Binding: the Hidden Primary Server listens on the WAN Interface, whereas a regular authoritative server for the home network would listen on the home network interface.

- Limited exchanges: the purpose of the Hidden Primary Server is to synchronize with the Synchronization Server, not to serve any zones to end users. As a result, exchanges are performed with specific nodes (the Synchronization Server). Further, exchange types are limited. The only legitimate exchanges are: NOTIFY initiated by the Hidden Primary and IXFR or AXFR exchanges initiated by the Synchronization Server. On the other hand, regular authoritative servers would respond to any hosts, and any DNS query would be processed. The HNA SHOULD filter IXFR/AXFR traffic and drop traffic not initiated by the Synchronization Server. The HNA MUST listen for DNS on TCP and UDP and MUST at least allow SOA lookups of the Homenet Zone.

5.2. Securing Synchronization

Exchange between the Synchronization Server and the HNA MUST be secured, at least for integrity protection and for authentication.

TSIG [RFC2845] or SIG(0) [RFC2931] MAY be used to secure the DNS communications between the HNA and the Synchronization Server. TSIG
uses a symmetric key which can be managed by TKEY [RFC2930]. Management of the key involved in SIG(0) is performed through zone updates. How keys are rolled over with SIG(0) is out-of-scope of this document. The advantage of these mechanisms is that they are only associated with the DNS application. Not relying on shared libraries eases testing and integration. On the other hand, using TSIG, TKEY or SIG(0) requires these mechanisms to be implemented on the HNA, which adds code and complexity. Another disadvantage is that TKEY does not provide authentication mechanisms.

Protocols like TLS [RFC5246] / DTLS [RFC6347] MAY be used to secure the transactions between the Synchronization Server and the HNA. The advantage of TLS/DTLS is that this technology is widely deployed, and most of the devices already embed TLS/DTLS libraries, possibly also taking advantage of hardware acceleration. Further, TLS/DTLS provides authentication facilities and can use certificates to authenticate the Synchronization Server and the HNA. On the other hand, using TLS/DTLS requires implementing DNS exchanges over TLS/DTLS, as well as a new service port. This document therefore does NOT RECOMMEND this option.

IPsec [RFC4301] IKEv2 [RFC7296] MAY also be used to secure transactions between the HNA and the Synchronization Server. Similarly to TLS/DTLS, most HNAs already embed an IPsec stack, and IKEv2 supports multiple authentication mechanisms via the EAP framework. In addition, IPsec can be used to protect DNS exchanges between the HNA and the Synchronization Server without any modifications of the DNS server or client. DNS integration over IPsec only requires an additional security policy in the Security Policy Database (SPD). One disadvantage of IPsec is that NATs and firewall traversal may be problematic. However, in our case, the HNA is connected to the Internet, and IPsec communication between the HNA and the Synchronization Server should not be impacted by middle boxes.

How the PSK can be used by any of the TSIG, TLS/DTLS or IPsec protocols: Authentication based on certificates implies a mutual authentication and thus requires the HNA to manage a private key, a public key, or certificates, as well as Certificate Authorities. This adds complexity to the configuration especially on the HNA side. For this reason, we RECOMMEND that the HNA MAY use PSK or certificate base authentication, and that the Synchronization Server MUST support PSK and certificate base authentication.

Note also that authentication of message exchanges between the HNA and the Synchronization Server SHOULD NOT use the external IP address of the HNA to index the appropriate keys. As detailed in Section 9, the IP addresses of the Synchronization Server and the Hidden Primary...
are subject to change, for example while the network is being renumbered. This means that the necessary keys to authenticate transaction SHOULD NOT be indexed using the IP address, and SHOULD be resilient to IP address changes.

5.3. HNA Security Policies

This section details security policies related to the Hidden Primary / Secondary synchronization.

The Hidden Primary, as described in this document SHOULD drop any queries from the home network. This could be implemented via port binding and/or firewall rules. The precise mechanism deployed is out of scope of this document.

The Hidden Primary SHOULD drop any DNS queries arriving on the WAN interface that are not issued from the Synchronization Server.

The Hidden Primary SHOULD drop any outgoing packets other than DNS NOTIFY query, SOA response, IXFR response or AXFR responses.

The Hidden Primary SHOULD drop any incoming packets other than DNS NOTIFY response, SOA query, IXFR query or AXFR query.

The Hidden Primary SHOULD drop any non protected IXFR or AXFR exchange, depending on how the synchronization is secured.

6. DNSSEC compliant Homenet Architecture

[RFC7368] in Section 3.7.3 recommends DNSSEC to be deployed on both the authoritative server and the resolver. The resolver side is out of scope of this document, and only the authoritative part of the server is considered.

Deploying DNSSEC requires signing the zone and configuring a secure delegation. As described in Section 4.1, signing can be performed either by the HNA or by the Outsourcing Infrastructure. Section 6.1 details the implications of these two alternatives. Similarly, the secure delegation can be performed by the HNA or by the Outsourcing Infrastructure. Section 6.2 discusses these two alternatives.

6.1. Zone Signing

This section discusses the pros and cons when zone signing is performed by the HNA or by the Outsourcing Infrastructure. It is RECOMMENDED that the HNA signs the zone unless there is a strong argument against this, such as a HNA that is not capable of signing
the zone. In that case zone signing MAY be performed by the Outsourcing Infrastructure on behalf of the HNA.

Reasons for signing the zone by the HNA are:

- 1: Keeping the Homenet Zone and the Public Homenet Zone equal to securely optimize DNS resolution. As the Public Zone is signed with DNSSEC, RRsets are authenticated, and thus DNS responses can be validated even though they are not provided by the authoritative server. This provides the HNA the ability to respond on behalf of the Public Authoritative Server(s). This could be useful for example if, in the future, the HNA announces to the home network that the HNA can act as a local authoritative primary or equivalent for the Homenet Zone. Currently the HNA is not expected to receive authoritative DNS queries, as its IP address is not mentioned in the Public Homenet Zone. On the other hand most HNAs host a resolving function, and could be configured to perform a local lookup to the Homenet Zone instead of initiating a DNS exchange with the Public Authoritative Server(s). Note that outsourcing the zone signing operation means that all DNSSEC queries SHOULD be cached to perform a local lookup, otherwise a resolution with the Public Authoritative Server(s) would be performed.

- 2: Keeping the Homenet Zone and the Public Homenet Zone equal to address the connectivity disruption independence detailed in [RFC7368] section 4.4.1 and 3.7.5. As local lookups are possible in case of network disruption, communications within the home network can still rely on the DNSSEC service. Note that outsourcing the zone signing operation does not address connectivity disruption independence with DNSSEC. Instead local lookup would provide DNS as opposed to DNSSEC responses provided by the Public Authoritative Server(s).

- 3: Keeping the Homenet Zone and the Public Homenet Zone equal to guarantee coherence between DNS responses. Using a unique zone is one way to guarantee uniqueness of the responses among servers and places. Issues generated by different views are discussed in more details in Section 7.

- 2: Privacy and Integrity of the DNSSEC Homenet Zone are better guaranteed. When the Zone is signed by the HNA, it makes modification of the DNS data -- for example for flow redirection -- impossible. As a result, signing the Homenet Zone by the HNA provides better protection for end user privacy.
Reasons for signing the zone by the Outsourcing Infrastructure are:

- 1: The HNA may not be capable of signing the zone, most likely because its firmware does not support this function. However this reason is expected to become less and less valid over time.

- 2: Outsourcing DNSSEC management operations. Management operations involve key roll-over, which can be performed automatically by the HNA and transparently for the end user. Avoiding DNSSEC management is mostly motivated by bad software implementations.

- 3: Reducing the impact of HNA replacement on the Public Homenet Zone. Unless the HNA private keys can be extracted and stored off-device, HNA hardware replacement will result in an emergency key roll-over. This can be mitigated by using relatively small TTLs.

- 4: Reducing configuration impact on the end user. Unless there are zero configuration mechanisms in place to provide credentials between the new HNA and the Synchronization Server, authentication associations between the HNA and the Synchronization Server would need to be re-configured. As HNA replacement is not expected to happen regularly, end users may not be at ease with such configuration settings. However, mechanisms as described in [I-D.ietf-homenet-naming-architecture-dhc-options] use DHCP Options to outsource the configuration and avoid this issue.

- 5: The Outsourcing Infrastructure is more likely to handle private keys more securely than the HNA. However, having all private keys in one place may also nullify that benefit.

6.2. Secure Delegation

Secure delegation is achieved only if the DS RRset is properly set in the parent zone. Secure delegation can be performed by the HNA or the Outsourcing Infrastructures (that is the Synchronization Server or the Public Authoritative Server(s)).

The DS RRset can be updated manually with nsupdate for example. This requires the HNA or the Outsourcing Infrastructure to be authenticated by the DNS server hosting the parent of the Public Homenet Zone. Such a trust channel between the HNA and the parent DNS server may be hard to maintain with HNAs, and thus may be easier to establish with the Outsourcing Infrastructure. In fact, the
Public Authoritative Server(s) may use Automating DNSSEC Delegation Trust Maintenance [RFC7344].

7. Handling Different Views

The Homenet Zone provides information about the home network. Some users may be tempted to have provide responses dependent on the origin of the DNS query. More specifically, some users may be tempted to provide a different view for DNS queries originating from the home network and for DNS queries coming from the Internet. Each view could then be associated with a dedicated Homenet Zone. Note that this document does not specify how DNS queries originating from the home network are addressed to the Homenet Zone. This could be done via hosting the DNS resolver on the HNA for example.

This section is not normative. Section 7.1 details why some nodes may only be reachable from the home network and not from the global Internet. Section 7.2 briefly describes the consequences of having distinct views such as a "home network view" and an "Internet view". Finally, Section 7.3 provides guidance on how to resolve names that are only significant in the home network, without creating different views.

7.1. Misleading Reasons for Local Scope DNS Zone

The motivation for supporting different views is to provide different answers dependent on the origin of the DNS query, for reasons such as:

- 1: An end user may want to have services not published on the Internet. Services like the HNA administration interface that provides the GUI to administer your HNA might not seem advisable to publish on the Internet. Similarly, services like the mapper that registers the devices of your home network may also not be desirable to be published on the Internet. In both cases, these services should only be known or used by the network administrator. To restrict the access of such services, the home network administrator may choose to publish these pieces of information only within the home network, where it might be assumed that the users are more trusted than on the Internet. Even though this assumption may not be valid, at least this may reduce the surface of any attack.

- 2: Services within the home network may be reachable using non global IP addresses. IPv4 and NAT may be one reason. On the other hand IPv6 may favor link-local or site-local IP addresses. These IP addresses are not significant outside the boundaries of the home network. As a result, they MAY be
published in the home network view, and SHOULD NOT be published in the Public Homenet Zone.

7.2. Consequences

Enabling different views leads to a non-coherent naming system. Depending on where resolution is performed, some services will not be available. This may be especially inconvenient with devices with multiple interfaces that are attached both to the Internet via a 3G/4G interface and to the home network via a WLAN interface. Devices may also cache the results of name resolution, and these cached entries may no longer be valid if a mobile device moves between a homenet connection and an internet connection e.g. a device temporarily loses wifi signal and switches to 3G.

Regarding local-scope IP addresses, such devices may end up with poor connectivity. Suppose, for example, that DNS resolution is performed via the WLAN interface attached to the HNA, and the response provides local-scope IP addresses, but the communication is initiated on the 3G/4G interface. Communications with local-scope addresses will be unreachable on the Internet, thus aborting the communication. The same situation occurs if a device is flip / flopping between various WLAN networks.

Regarding DNSSEC, if the HNA does not sign the Homenet Zone and outsources the signing process, the two views are different, because one is protected with DNSSEC whereas the other is not. Devices with multiple interfaces will have difficulty securing the naming resolution, as responses originating from the home network may not be signed.

For devices with all its interfaces attached to a single administrative domain, that is to say the home network, or the Internet. Incoherence between DNS responses may still also occur if the device is able to perform DNS resolutions both using the DNS resolving server of the home network, or one of the ISP. DNS resolution performed via the HNA or the ISP resolver may be different than those performed over the Internet.

7.3. Guidance and Recommendations

As documented in Section 7.2, it is RECOMMENDED to avoid different views. If network administrators choose to implement multiple views, impacts on devices’ resolution SHOULD be evaluated.

As a consequence, the Homenet Zone is expected to be an exact copy of the Public Homenet Zone. As a result, services that are not expected to be published on the Internet SHOULD NOT be part of the Homenet
Zone, local-scope addresses SHOULD NOT be part of the Homenet Zone, and when possible, the HNA SHOULD sign the Homenet Zone.

The Homenet Zone is expected to host public information only. It is not the scope of the DNS service to define local home network boundaries. Instead, local scope information is expected to be provided to the home network using local scope naming services. mDNS [RFC6762] DNS-SD [RFC6763] are two examples of these services. Currently mDNS is limited to a single link network. However, future protocols are expected to leverage this constraint as pointed out in [RFC7558].

8. Homenet Reverse Zone

This section is focused on the Homenet Reverse Zone.

Firstly, all considerations for the Homenet Zone apply to the Homenet Reverse Zone. The main difference between the Homenet Reverse Zone and the Homenet Zone is that the parent zone of the Homenet Reverse Zone is most likely managed by the ISP. As the ISP also provides the IP prefix to the HNA, it may be able to authenticate the HNA using mechanisms outside the scope of this document e.g. the physical attachment point to the ISP network. If the Reverse Synchronization Server is managed by the ISP, credentials to authenticate the HNA for the zone synchronization may be set automatically and transparently to the end user. [I-D.ietf-homenet-naming-architecture-dhc-options] describes how automatic configuration may be performed.

With IPv6, the domain space for IP addresses is so large that reverse zone may be confronted with scalability issues. How the reverse zone is generated is out of scope of this document. [I-D.howard-dnsop-ip6rdns] provides guidance on how to address scalability issues.

9. Renumbering

This section details how renumbering is handled by the Hidden Primary server or the Synchronization Server. Both types of renumbering are discussed i.e. "make-before-break" and "break-before-make".

In the make-before-break renumbering scenario, the new prefix is advertised, the network is configured to prepare the transition to the new prefix. During a period of time, the two prefixes old and new coexist, before the old prefix is completely removed. In the break-before-make renumbering scenario, the new prefix is advertised making the old prefix obsolete.
Renumbering has been extensively described in [RFC4192] and analyzed in [RFC7010] and the reader is expected to be familiar with them before reading this section.

9.1. Hidden Primary

In a renumbering scenario, the Hidden Primary is informed it is being renumbered. In most cases, this occurs because the whole home network is being renumbered. As a result, the Homenet Zone will also be updated. Although the new and old IP addresses may be stored in the Homenet Zone, we recommend that only the newly reachable IP addresses be published.

To avoid reachability disruption, IP connectivity information provided by the DNS SHOULD be coherent with the IP plane. In our case, this means the old IP address SHOULD NOT be provided via the DNS when it is not reachable anymore. Let for example TTL be the TTL associated with a RRset of the Homenet Zone, it may be cached for TTL seconds. Let T_NEW be the time the new IP address replaces the old IP address in the Homenet Zone, and T_OLD_UNREACHABLE the time the old IP is not reachable anymore. In the case of the make-before-break, seamless reachability is provided as long as T_OLD_UNREACHABLE - T_NEW > 2 * TTL. If this is not satisfied, then devices associated with the old IP address in the home network may become unreachable for 2 * TTL - (T_OLD_UNREACHABLE - T_NEW). In the case of a break-before-make, T_OLD_UNREACHABLE = T_NEW, and the device may become unreachable up to 2 * TTL.

Once the Homenet Zone file has been updated on the Hidden Primary, the Hidden Primary needs to inform the Outsourcing Infrastructure that the Homenet Zone has been updated and that the IP address to use to retrieve the updated zone has also been updated. Both notifications are performed using regular DNS exchanges. Mechanisms to update an IP address provided by lower layers with protocols like SCTP [RFC4960], MOBIKE [RFC4555] are not considered in this document.

The Hidden Primary SHOULD inform the Synchronization Server that the Homenet Zone has been updated by sending a NOTIFY payload with the new IP address. In addition, this NOTIFY payload SHOULD be authenticated using SIG(0) or TSIG. When the Synchronization Server receives the NOTIFY payload, it MUST authenticate it. Note that the cryptographic key used for the authentication SHOULD be indexed by the Registered Homenet Domain contained in the NOTIFY payload as well as the RRSIG. In other words, the IP address SHOULD NOT be used as an index. If authentication succeeds, the Synchronization Server MUST also notice the IP address has been modified and perform a reachability check before updating its primary configuration. The routability check MAY performed by sending a SOA request to the
Hidden Primary using the source IP address of the NOTIFY. This exchange is also secured, and if an authenticated response is received from the Hidden Primary with the new IP address, the Synchronization Server SHOULD update its configuration file and retrieve the Homenet Zone using an AXFR or a IXFR exchange.

Note that the primary reason for providing the IP address is that the Hidden Primary is not publicly announced in the DNS. If the Hidden Primary were publicly announced in the DNS, then the IP address update could have been performed using the DNS as described in Section 9.2.

9.2. Synchronization Server

Renumbering of the Synchronization Server results in the Synchronization Server changing its IP address. The Synchronization Server is a secondary, so its renumbering does not impact the Homenet Zone. In fact, exchanges to the Synchronization Server are restricted to the Homenet Zone synchronization. In our case, the Hidden Primary MUST be able to send NOTIFY payloads to the Synchronization Server.

If the Synchronization Server is configured in the Hidden Primary configuration file using a FQDN, then the update of the IP address is performed by DNS. More specifically, before sending the NOTIFY, the Hidden Primary performs a DNS resolution to retrieve the IP address of the secondary.

As described in Section 9.1, the Synchronization Server DNS information SHOULD be coherent with the IP plane. Let TTL be the TTL associated with the Synchronization Server FQDN, T_NEW the time the new IP address replaces the old one and T_OLD_UNREACHABLE the time the Synchronization Server is not reachable anymore with its old IP address. Seamless reachability is provided as long as T_OLD_UNREACHABLE - T_NEW > 2 * TTL. If this condition is not met, the Synchronization Server may be unreachable during 2 * TTL - (T_OLD_UNREACHABLE - T_NEW). In the case of a break-before-make, T_OLD_UNREACHABLE = T_NEW, and it may become unreachable up to 2 * TTL.

Some DNS infrastructure uses the IP address to designate the secondary, in which case, other mechanisms must be found. The reason for using IP addresses instead of names is generally to reach an internal interface that is not designated by a FQDN, and to avoid potential bootstrap problems. Such scenarios are considered as out of scope in the case of home networks.
10. Privacy Considerations

Outsourcing the DNS Authoritative service from the HNA to a third party raises a few privacy related concerns.

The Homenet Zone contains a full description of the services hosted in the network. These services may not be expected to be publicly shared although their names remain accessible through the Internet. Even though DNS makes information public, the DNS does not expect to make the complete list of services public. In fact, making information public still requires the key (or FQDN) of each service to be known by the resolver in order to retrieve information about the services. More specifically, making mywebsite.example.com public in the DNS, is not sufficient to make resolvers aware of the existence web site. However, an attacker may walk the reverse DNS zone, or use other reconnaissance techniques to learn this information as described in [RFC7707].

In order to prevent the complete Homenet Zone being published on the Internet, AXFR queries SHOULD be blocked on the Public Authoritative Server(s). Similarly, to avoid zone-walking NSEC3 [RFC5155] SHOULD be preferred over NSEC [RFC4034].

When the Homenet Zone is outsourced, the end user should be aware that it provides a complete description of the services available on the home network. More specifically, names usually provides a clear indication of the service and possibly even the device type, and as the Homenet Zone contains the IP addresses associated with the service, they also limit the scope of the scan space.

In addition to the Homenet Zone, the third party can also monitor the traffic associated with the Homenet Zone. This traffic may provide an indication of the services an end user accesses, plus how and when they use these services. Although, caching may obfuscate this information inside the home network, it is likely that outside your home network this information will not be cached.

11. Security Considerations

The Homenet Naming Architecture described in this document solves exposing the HNA’s DNS service as a DoS attack vector.

11.1. Names are less secure than IP addresses

This document describes how an end user can make their services and devices from his home network reachable on the Internet by using names rather than IP addresses. This exposes the home network to attackers, since names are expected to include less entropy than IP
addresses. In fact, with IP addresses, the Interface Identifier is 64 bits long leading to up to $2^{64}$ possibilities for a given subnetwork. This is not to mention that the subnet prefix is also of 64 bits long, thus providing up to $2^{64}$ possibilities. On the other hand, names used either for the home network domain or for the devices present less entropy (livebox, router, printer, nicolas, jennifer, ...) and thus potentially exposes the devices to dictionary attacks.

11.2. Names are less volatile than IP addresses

IP addresses may be used to locate a device, a host or a service. However, home networks are not expected to be assigned a time invariant prefix by ISPs. As a result, observing IP addresses only provides some ephemeral information about who is accessing the service. On the other hand, names are not expected to be as volatile as IP addresses. As a result, logging names over time may be more valuable than logging IP addresses, especially to profile an end user’s characteristics.

PTR provides a way to bind an IP address to a name. In that sense, responding to PTR DNS queries may affect the end user’s privacy. For that reason end users may choose not to respond to PTR DNS queries and MAY instead return a NXDOMAIN response.

11.3. DNS Reflection Attacks

An attacker performs a reflection attack when it sends traffic to one or more intermediary nodes (reflectors), that in turn send back response traffic to the victim. Motivations for using an intermediary node might be anonymity of the attacker, as well as amplification of the traffic. Typically, when the intermediary node is a DNSSEC server, the attacker sends a DNSSEC query and the victim is likely to receive a DNSSEC response. This section analyzes how the different components may be involved as a reflector in a reflection attack. Section 11.3.1 considers the Hidden Primary, Section 11.3.2 the Synchronization Server, and Section 11.3.3 the Public Authoritative Server(s).

11.3.1. Reflection Attack involving the Hidden Primary

With the specified architecture, the Hidden Primary is only expected to receive DNS queries of type SOA, AXFR or IXFR. This section analyzes how these DNS queries may be used by an attacker to perform a reflection attack.

DNS queries of type AXFR and IXFR use TCP and as such are less subject to reflection attacks. This makes SOA queries the only
remaining practical vector of attacks for reflection attacks, based on UDP.

SOA queries are not associated with a large amplification factor compared to queries of type "ANY" or to query of non existing FQDNs. This reduces the probability a DNS query of type SOA will be involved in a DDoS attack.

SOA queries are expected to follow a very specific pattern, which makes rate limiting techniques an efficient way to limit such attacks, and associated impact on the naming service of the home network.

Motivations for such a flood might be a reflection attack, but could also be a resource exhaustion attack performed against the Hidden Primary. The Hidden Primary only expects to exchange traffic with the Synchronization Server, that is its associated secondary. Even though secondary servers may be renumbered as mentioned in Section 9, the Hidden Primary is likely to perform a DNSSEC resolution and find out the associated secondary’s IP addresses in use. As a result, the Hidden Primary is likely to limit the origin of its incoming traffic based on the origin IP address.

With filtering rules based on IP address, SOA flooding attacks are limited to forged packets with the IP address of the secondary server. In other words, the only victims are the Hidden Primary itself or the secondary. There is a need for the Hidden Primary to limit that flood to limit the impact of the reflection attack on the secondary, and to limit the resource needed to carry on the traffic by the HNA hosting the Hidden Primary. On the other hand, mitigation should be performed appropriately, so as to limit the impact on the legitimate SOA sent by the secondary.

The main reason for the Synchronization Server sending a SOA query is to update the SOA RRsSet after the TTL expires, to check the serial number upon the receipt of a NOTIFY query from the Hidden Primary, or to re-send the SOA request when the response has not been received. When a flood of SOA queries is received by the Hidden Primary, the Hidden Primary may assume it is involved in an attack.

There are few legitimate time slots when the secondary is expected to send a SOA query. Suppose T_NOTIFY is the time a NOTIFY is sent by the Hidden Primary, T_SOA the last time the SOA has been queried, TTL the TTL associated to the SOA, and T_REFRESH the refresh time defined in the SOA RRset. The specific time SOA queries are expected can be for example T_NOTIFY, T_SOA + 2/3 TTL, T_SOA + TTL, T_SOA + T_REFRESH., and. Outside a few minutes following these specific time slots, the probability that the HNA discards a legitimate SOA query
is very low. Within these time slots, the probability the secondary may have its legitimate query rejected is higher. If a legitimate SOA is discarded, the secondary will re-send SOA query every "retry time" second until "expire time" seconds occurs, where "retry time" and "expire time" have been defined in the SOA.

As a result, it is RECOMMENDED to set rate limiting policies to protect HNA resources. If a flood lasts more than the expired time defined by the SOA, it is RECOMMENDED to re-initiate a synchronization between the Hidden Primary and the secondaries.

11.3.2. Reflection Attacks involving the Synchronization Server

The Synchronization Server acts as a secondary coupled with the Hidden Primary. The secondary expects to receive NOTIFY query, SOA responses, AXFR and IXFR responses from the Hidden Primary.

Sending a NOTIFY query to the secondary generates a NOTIFY response as well as initiating an SOA query exchange from the secondary to the Hidden Primary. As mentioned in [RFC1996], this is a known "benign denial of service attack". As a result, the Synchronization Server SHOULD enforce rate limiting on sending SOA queries and NOTIFY responses to the Hidden Primary. Most likely, when the secondary is flooded with valid and signed NOTIFY queries, it is under a replay attack which is discussed in Section 11.5. The key thing here is that the secondary is likely to be designed to be able to process much more traffic than the Hidden Primary hosted on a HNA.

This paragraph details how the secondary may limit the NOTIFY queries. Because the Hidden Primary may be renumbered, the secondary SHOULD NOT perform permanent IP filtering based on IP addresses. In addition, a given secondary may be shared among multiple Hidden Primaries which make filtering rules based on IP harder to set. The time at which a NOTIFY is sent by the Hidden Primary is not predictable. However, a flood of NOTIFY messages may be easily detected, as a NOTIFY originated from a given Homenet Zone is expected to have a very limited number of unique source IP addresses, even when renumbering is occurring. As a result, the secondary, MAY rate limit incoming NOTIFY queries.

On the Hidden Primary side, it is recommended that the Hidden Primary sends a NOTIFY as long as the zone has not been updated by the secondary. Multiple SOA queries may indicate the secondary is under attack.
11.3.3. Reflection Attacks involving the Public Authoritative Servers

Reflection attacks involving the Public Authoritative Server(s) are similar to attacks on any Outsourcing Infrastructure. This is not specific to the architecture described in this document, and thus are considered as out of scope.

In fact, one motivation of the architecture described in this document is to expose the Public Authoritative Server(s) to attacks instead of the HNA, as it is believed that the Public Authoritative Server(s) will be better able to defend itself.

11.4. Flooding Attack

The purpose of flooding attacks is mostly resource exhaustion, where the resource can be bandwidth, memory, or CPU for example.

One goal of the architecture described in this document is to limit the surface of attack on the HNA. This is done by outsourcing the DNS service to the Public Authoritative Server(s). By doing so, the HNA limits its DNS interactions between the Hidden Primary and the Synchronization Server. This limits the number of entities the HNA interacts with as well as the scope of DNS exchanges – NOTIFY, SOA, AXFR, IXFR.

The use of an authenticated channel with SIG(0) or TSIG between the HNA and the Synchronization Server, enables detection of illegitimate DNS queries, so appropriate action may be taken – like dropping the queries. If signatures are validated, then most likely, the HNA is under a replay attack, as detailed in Section 11.5.

In order to limit the resource required for authentication, it is recommended to use TSIG that uses symmetric cryptography over SIG(0) that uses asymmetric cryptography.

11.5. Replay Attack

Replay attacks consist of an attacker either resending or delaying a legitimate message that has been sent by an authorized user or process. As the Hidden Primary and the Synchronization Server use an authenticated channel, replay attacks are mostly expected to use forged DNS queries in order to provide valid traffic.

From the perspective of an attacker, using a correctly authenticated DNS query may not be detected as an attack and thus may generate a response. Generating and sending a response consumes more resources than either dropping the query by the defender, or generating the query by the attacker, and thus could be used for resource exhaustion.
attacks. In addition, as the authentication is performed at the DNS layer, the source IP address could be impersonated in order to perform a reflection attack.

Section 11.3 details how to mitigate reflection attacks and Section 11.4 details how to mitigate resource exhaustion. Both sections assume a context of DoS with a flood of DNS queries. This section suggests a way to limit the attack surface of replay attacks.

As SIG(0) and TSIG use inception and expiration time, the time frame for replay attack is limited. SIG(0) and TSIG recommends a fudge value of 5 minutes. This value has been set as a compromise between possibly loose time synchronization between devices and the valid lifetime of the message. As a result, better time synchronization policies could reduce the time window of the attack.

12. IANA Considerations

This document has no actions for IANA.

13. Acknowledgment

The authors wish to thank Philippe Lemordant for its contributions on the early versions of the draft; Ole Troan for pointing out issues with the IPv6 routed home concept and placing the scope of this document in a wider picture; Mark Townsley for encouragement and injecting a healthy debate on the merits of the idea; Ulrik de Bie for providing alternative solutions; Paul Mockapetris, Christian Jacquenet, Francis Dupont and Ludovic Eschard for their remarks on HNA and low power devices; Olafur Gudmundsson for clarifying DNSSEC capabilities of small devices; Simon Kelley for its feedback as dnsmasq implementer; Andrew Sullivan, Mark Andrew, Ted Lemon, Mikael Abrahamson, Michael Richardson and Ray Bellis for their feedback on handling different views as well as clarifying the impact of outsourcing the zone signing operation outside the HNA; Mark Andrew and Peter Koch for clarifying the renumbering.

14. References

14.1. Normative References


14.2. Informational References

[I-D.howard-dnsop-ip6rdns]
Howard, L., "Reverse DNS in IPv6 for Internet Service Providers", draft-howard-dnsop-ip6rdns-00 (work in progress), June 2014.

[I-D.ietf-homenet-naming-architecture-dhc-options]


Appendix A. Document Change Log

[RFC Editor: This section is to be removed before publication]

-08
- 1: Clarification of the meaning of CPE. The architecture does not consider a single CPE. The CPE represents multiple functions.

-07:
- 1: Ray Hunter is added as a co-author.

-06:
- 2: Ray Hunter is added in acknowledgment.

- 3: Adding Renumbering section with comments from Dallas meeting
- 4: Replacing Master / Primary - Slave / Secondary

Security Consideration has been updated with Reflection attacks, flooding attacks, and replay attacks.

-05:
*Clarifying on handling different views:
- 1: How the CPE may be involved in the resolution and responds without necessarily requesting the Public Authoritative Server(s) (and eventually the Hidden Primary)

- 2: How to handle local scope resolution that is link-local, site-local and NAT IP addresses as well as Private domain names that the administrator does not want to publish outside the home network.

Adding a Privacy Considerations Section
Clarification on pro/cons outsourcing zone-signing
Documenting how to handle reverse zones
Adding reference to RFC 2308

-04:
*Clarifications on zone signing
Rewording

*Adding section on different views

*architecture clarifications

-03:

*Simon's comments taken into consideration

*Adding SOA, PTR considerations

*Removing DNSSEC performance paragraphs on low power devices

*Adding SIG(0) as a mechanism for authenticating the servers

*Goals clarification: the architecture described in the document 1) does not describe new protocols, and 2) can be adapted to specific cases for advance users.

-02:

*remove interfaces: "Public Authoritative Server Naming Interface" is replaced by "Public Authoritative Server(s)y(ies)". "Public Authoritative Server Management Interface" is replaced by "Synchronization Server".

-01.3:

*remove the authoritative / resolver services of the CPE. Implementation dependent

*remove interactions with mdns and dhcp. Implementation dependent.

*remove considerations on low powered devices

*remove position toward homenet arch

*remove problem statement section

-01.2:

* add a CPE description to show that the architecture can fit CPEs

* specification of the architecture for very low powered devices.

* integrate mDNS and DHCP interactions with the Homenet Naming Architecture.
* Restructuring the draft. 1) We start from the homenet-arch draft to
derive a Naming Architecture, then 2) we show why CPE need mechanisms
that do not expose them to the Internet, 3) we describe the
mechanisms.

* I remove the terminology and expose it in the figures A and B.

* remove the Front End Homenet Naming Architecture to Homenet Naming

-01:

* Added C. Griffiths as co-author.

* Updated section 5.4 and other sections of draft to update section
on Hidden Primary / Slave functions with CPE as Hidden Primary/
Homenet Server.

* For next version, address functions of MDNS within Homenet Lan and
publishing details northbound via Hidden Primary.

-00: First version published.

Authors’ Addresses

Daniel Migault
Ericsson
8400 Boulevard Decarie
Montreal, QC H4P 2N2
Canada

Phone: +1 (514) 452-2160
Email: daniel.migault@ericsson.com

Ralf Weber
Nominum
2000 Seaport Blvd #400
Redwood City, CA  94063
US

Email: ralf.weber@nominum.com
URI:   http://www.nominum.com
Ray Hunter
Globis Consulting BV
Weegschaalstraat 3
5632CW Eindhoven
The Netherlands
Email: v6ops@globis.net
URI: http://www.globis.net

Chris Griffiths
Email: cgriffiths@gmail.com

Wouter Cloetens
SoftAtHome
vaartdijk 3 701
3018 Wijnegem
Belgium
Email: wouter.cloetens@softathome.com
Simple Provisioning of Public Names for Residential Networks
draft-ietf-homenet-front-end-naming-delegation-16

Abstract

Home network owners often have devices that they wish to access outside their home network - i.e., from the Internet using their names. To do so, these names needs to be made publicly available in the DNS.

This document describes how a Homenet Naming Authority (HNA) can instruct a DNS Outsourcing Infrastructure (DOI) to publish a Public Homenet Zone on its behalf.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
Table of Contents

1. Introduction .................................................. 3
   1.1. Selecting Names to Publish ................................... 4
   1.2. Dynamic DNS Alternative solutions ............................... 5
2. Terminology .................................................. 6
3. Architecture Description ......................................... 7
   3.1. Architecture Overview ........................................ 8
   3.2. Distribution Manager Communication Channels ................. 10
4. Control Channel ................................................ 11
   4.1. Information to Build the Public Homenet Zone ................. 11
   4.2. Information to build the DNSSEC chain of trust ................ 12
   4.3. Information to set the Synchronization Channel ............... 12
   4.4. Deleting the delegation ..................................... 12
   4.5. Messages Exchange Description ............................... 13
       4.5.1. Retrieving information for the Public Homenet Zone ....... 13
       4.5.2. Providing information for the DNSSEC chain of trust ....... 14
       4.5.3. Providing information for the Synchronization Channel .... 15
       4.5.4. HNA instructing deleting the delegation .................. 16
   4.6. Securing the Control Channel ................................ 16
   4.7. Implementation Concerns .................................... 17
5. Synchronization Channel ......................................... 17
   5.1. Securing the Synchronization Channel .......................... 18
6. DM Distribution Channel ......................................... 19
7. HNA Security Policies ........................................... 19
8. DNSSEC compliant Homenet Architecture .......................... 20
9. Renumbering .................................................... 20
10. Privacy Considerations ......................................... 21
11. Security Considerations ........................................ 22
   11.1. HNA DM channels .......................................... 23
   11.2. Names are less secure than IP addresses ....................... 23
   11.3. Names are less volatile than IP addresses .................... 24
   11.4. Operational Considerations ................................ 24
12. IANA Considerations ............................................ 24
13. Acknowledgment ................................................. 25
14. Contributors .................................................. 25
1. Introduction

Home network owners often have devices that they wish to access outside their home network – i.e., from the Internet using their names. To do so, these names need to be made publicly available in the DNS.

This document describes how a Homenet Naming Authority (HNA) can instruct a DNS Outsourcing Infrastructure (DOI) to publish a Public Homenet Zone on its behalf.

The document introduces the Synchronization Channel and the Control Channel between the HNA and the Distribution Manager (DM) that belongs to the DOI.

The Synchronization Channel (see Section 5) is used to synchronize the Public Homenet Zone. The HNA is configured as a primary, while the DM is configured as a secondary.

The Control Channel (see Section 4) is used to set the Synchronization Channel. For example, to build the Public Homenet Zone, the HNA needs the authoritative servers (and associated IP addresses) of the servers of the DOI actually serving the zone. Similarly, the DOI needs to know the IP address of the primary (HNA) as well as potentially the hash of the KSK (DS RRset) to secure the DNSSEC delegation with the parent zone.

The remaining of the document is as follows. Section 3 provides an architectural view of the HNA, DM and DOI as well as its different communication channels (Control Channel, Synchronization Channel, DM Distribution Channel) respectively described in Section 4, Section 5 and Section 6. Section 7 and Section 8 respectively details HNA security policies as well as DNSSEC compliance within the home.
network. Section 9 discusses how renumbering should be handled. Finally, Section 10 and Section 11 respectively discuss privacy and security considerations when outsourcing the Public Homenet Zone.

The appendices discuss several management (see Appendix A.1) provisioning (see Appendix A.1), configurations (see Appendix B) and deployment (see Appendix C and Appendix D) aspects.

1.1. Selecting Names to Publish

While this document does not create any normative mechanism by which the selection of names to publish, this document anticipates that the home network administrator (a human), will be presented with a list of current names and addresses present on the inside of the home network.

The administrator would mark which devices (by name), are to be published. The HNA would then collect the IPv6 address(es) associated with that device, and put the name into the Public Homenet Zone. The address of the device can be collected from a number of places: mDNS [RFC6762], DHCP [RFC6644], UPnP, PCP [RFC6887], or manual configuration.

A device may have a Global Unicast Address (GUA), a Unique Local IPv6 Address (ULA), as well IPv6-Link-Local addresses, IPv4-Link-Local Addresses, and RFC1918 addresses. Of these the link-local are never useful for the Public Zone, and should be omitted. The IPv6 ULA and the RFC1918 addresses may be useful to publish, if the home network environment features a VPN that would allow the home owner to reach the network.

The IPv6 ULA addresses are safer to publish with a significantly lower probability of collision than RFC1918 addresses.

In general, one expects the GUA to be the default address to be published. However, publishing the ULA and RFC1918 may enable local communications within the home network. Since the communication has been initiated with a name which remains a global identifier, the communication can be protected by TLS the same way it is protected on the global Internet. A direct advantage of enabling local communication is to prevent communications even in case of Internet disruption.
1.2. Dynamic DNS Alternative solutions

An alternative existing solution is to have a single zone, where a host uses a RESTful HTTP service to register a single name into a common public zone. This is often called "Dynamic DNS" [DDNS], and there are a number of commercial providers. While the IETF has defined Dynamic Update [RFC3007], in many - as far as the co-authors know in all cases - case commercial "Dynamic Update" solutions are implemented via a HTTPS RESTful API.

These solutions were typically used by a host behind the CPE and since the CPE implements some NAT, the host can only be reached from the global Internet via its CPE IPv4 address. This is the most common scenario considered in this section, while some variant may also consider the client being hosted in the CPE.

For a very few number (one to three) of hosts, the use of such a system provides an alternative to the architecture described in this document. Dynamic DNS - even adapted to IPv6 and ignoring those associated to an IPv4 development - does suffer from some severe limitations:

* the CPE/HNA router is unaware of the process, and cannot respond to queries for these names and communications to these names require an Internet connectivity in order to perform the DNS resolution. Such dependence does not meet the requirement for internal communications to be resilient to ISP connectivity disruptions.

* the CPE/HNA router cannot control the process. Any host can do this regardless of whether or not the home network administrator wants the name published or not. There is therefore no possible audit trail.

* the credentials for the dynamic DNS server need to be securely transferred to all hosts that wish to use it. This is not a problem for a technical user to do with one or two hosts, but it does not scale to multiple hosts and becomes a problem for non-technical users.
"all the good names are taken" - current services provide a small set of zones shared by all hosts across all home networks. More especially, there is no notion of a domain specific home network. As there are some commonalities provided by individual home networks, there are often conflicts. This makes the home user or application dependent on having to resolve different names in the event of outages or disruptions. Distinguishing similar names by delegation of zones was among the primary design goals of the DNS system.

The RESTful services do not always support all RR types. The homenet user is dependent on the service provider supporting new types. By providing full DNS delegation, this document enables all RR types and also future extensions.

Dynamic Updates solution are not interoperable and each provider has its own way to implement it. [RFC3007] is the standard solution to update a DNS RRset, but most Dynamic Update providers use HTTPS RESTful API.

There is no technical reason why a RESTful service could not provide solutions to many of these problems, but this document describes a DNS-based solution.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Customer Premises Equipment: (CPE) is a router providing connectivity to the home network.

Homenet Zone: is the DNS zone for use within the boundaries of the home network: 'home.arpa' (see [RFC8375]). This zone is not considered public and is out of scope for this document.

Registered Homenet Domain: is the domain name that is associated with the home network.

Public Homenet Zone: contains the names in the home network that are expected to be publicly resolvable on the Internet. A home network can have multiple Public Homenet Zones.
Homenet Naming Authority (HNA): is a function responsible for managing the Public Homenet Zone. This includes populating the Public Homenet Zone, signing the zone for DNSSEC, as well as managing the distribution of that Homenet Zone to the DNS Outsourcing Infrastructure (DOI).

DNS Outsourcing Infrastructure (DOI): is the infrastructure responsible for receiving the Public Homenet Zone and publishing it on the Internet. It is mainly composed of a Distribution Manager and Public Authoritative Servers.

Public Authoritative Servers: are the authoritative name servers for the Public Homenet Zone. Name resolution requests for the Homenet Domain are sent to these servers. For resiliency the Public Homenet Zone SHOULD be hosted on multiple servers.

Homenet Authoritative Servers: are authoritative name servers within the Homenet network.

Distribution Manager (DM): is the (set of) server(s) to which the HNA synchronizes the Public Homenet Zone, and which then distributes the relevant information to the Public Authoritative Servers.

Homenet Reverse Zone: The reverse zone file associated with the Public Homenet Zone.

Reverse Public Authoritative Servers: equivalent to Public Authoritative Servers specifically for reverse resolution.

Reverse Distribution Manager: equivalent to Distribution Manager specifically for reverse resolution.

Homenet DNSSEC Resolver: a resolver that performs a DNSSEC resolution on the home network for the Public Homenet Zone. The resolution is performed requesting the Homenet Authoritative Servers.

DNSSEC Resolver: a resolver that performs a DNSSEC resolution on the Internet for the Public Homenet Zone. The resolution is performed requesting the Public Authoritative Servers.

3. Architecture Description

This section provides an overview of the architecture for outsourcing the authoritative naming service from the HNA to the DOI. Note that Appendix B defines necessary parameter to configure the HNA.
3.1. Architecture Overview

Figure 1: Homenet Naming Architecture

Figure 1 illustrates the architecture where the HNA outsources the publication of the Public Homenet Zone to the DOI. The DOI will serve every DNSSEC request of the Public Homenet Zone coming from outside the home network. When the request is coming within the network, the resolution is expected to be handled by the Homenet Resolver as detailed in further details below.

The Public Homenet Zone is identified by the Registered Homenet Domain Name - myhome.example. The ".local" as well as ".home.arpa" are explicitly not considered as Public Homenet zones and represented as Homenet Zone in Figure 1.
The HNA SHOULD build the Public Homenet Zone in a single view populated with all resource records that are expected to be published on the Internet. The HNA also signs the Public Homenet Zone. The HNA handles all operations and keying material required for DNSSEC, so there is no provision made in this architecture for transferring private DNSSEC related keying material between the HNA and the DM.

Once the Public Homenet Zone has been built, the HNA communicates and synchronizes it with the DOI using a primary/secondary setting as described in Figure 1. The HNA acts as a hidden primary [RFC8499] while the DM behaves as a secondary responsible to distribute the Public Homenet Zone to the multiple Public Authoritative Servers that DOI is responsible for. The DM has three communication channels:

* DM Control Channel (Section 4) to configure the HNA and the DOI. This includes necessary parameters to configure the primary/secondary relation as well as some information provided by the DOI that needs to be included by the HNA in the Public Homenet Zone.

* DM Synchronization Channel (Section 5) to synchronize the Public Homenet Zone on the HNA and on the DM with the appropriately configured primary/secondary.

* one or more Distribution Channels (Section 6 that distribute the Public Homenet Zone from the DM to the Public Authoritative Server serving the Public Homenet Zone on the Internet.

There might be multiple DM’s, and multiple servers per DM. This document assumes a single DM server for simplicity, but there is no reason why each channel needs to be implemented on the same server or use the same code base.

It is important to note that while the HNA is configured as an authoritative server, it is not expected to answer to DNS requests from the public Internet for the Public Homenet Zone. More specifically, the addresses associated with the HNA SHOULD NOT be mentioned in the NS records of the Public Homenet zone, unless additional security provisions necessary to protect the HNA from external attack have been taken.

The DOI is also responsible for ensuring the DS record has been updated in the parent zone.

Resolution is performed by the DNSSEC resolvers. When the resolution is performed outside the home network, the DNSSEC Resolver resolves the DS record on the Global DNS and the name associated to the Public Homenet Zone (myhome.example) on the Public Authoritative Servers.
When the resolution is performed from within the home network, the Homenet DNSSEC Resolver MAY proceed similarly. On the other hand, to provide resilience to the Public Homenet Zone in case of WAN connectivity disruption, the Homenet DNSSEC Resolver SHOULD be able to perform the resolution on the Homenet Authoritative Servers. These servers are not expected to be mentioned in the Public Homenet Zone, nor to be accessible from the Internet. As such their information as well as the corresponding signed DS record MAY be provided by the HNA to the Homenet DNSSEC Resolvers, e.g., using HNCP [RFC7788] or a by configuring a trust anchor [I-D.ietf-dnsop-dnssec-validator-requirements]. Such configuration is outside the scope of this document. Since the scope of the Homenet Authoritative Servers is limited to the home network, these servers are expected to serve the Homenet Zone as represented in Figure 1. How the Homenet Authoritative Servers are provisioned is also out of scope of this specification. It could be implemented using primary and secondary servers, or via rsync. In some cases, the HNA and Homenet Authoritative Servers may be combined together which would result in a common instantiation of an authoritative server on the WAN and inner homenet interface. Note that [RFC6092] REC-8 states this must not be the default configuration. Other mechanisms may also be used.

3.2. Distribution Manager Communication Channels

This section details the DM channels, that is the Control Channel, the Synchronization Channel and the Distribution Channel.

The Control Channel and the Synchronization Channel are the interfaces used between the HNA and the DOI. The entity within the DOI responsible to handle these communications is the DM and communications between the HNA and the DM MUST be protected and mutually authenticated. While Section 4.6 discusses in more depth the different security protocols that could be used to secure, it is RECOMMENDED to use TLS with mutually authentication based on certificates to secure the channel between the HNA and the DM.

The information exchanged between the HNA and the DM uses DNS messages protected by DNS over TLS (DoT) [RFC7858]. Other specifications may consider protecting DNS messages with other transport layers, among others, DNS over DTLS [RFC8094], or DNS over HTTPS (DoH) [RFC8484] or DNS over QUIC [I-D.ietf-dprive-dnsoquic].

The main issue is that the Dynamic DNS update would also update the parent zone’s (NS, DS and associated A or AAAA records) while the goal is to update the DM configuration files. The visible NS records
SHOULD remain pointing at the cloud provider’s anycast addresses. Revealing the address of the HNA in the DNS is not desirable. Refer to Section 4.2 for more details.

This specification assumes:

* the DM serves both the Control Channel and Synchronization Channel on a single IP address, single port and using a single transport protocol.

* By default, the HNA uses a single IP address for both the Control and Synchronization channel. However, the HNA MAY use distinct IP addresses for the Control Channel and the Synchronization Channel - see Section 5 and Section 4.3 for more details.

The Distribution Channel is internal to the DOI and as such is not the primary concern of this specification.

4. Control Channel

The DM Control Channel is used by the HNA and the DOI to exchange information related to the configuration of the delegation which includes information to build the Public Homenet Zone (Section 4.1), information to build the DNSSEC chain of trust (Section 4.2) and information to set the Synchronization Channel (Section 4.3). While information is carried from the DOI to the HNA and from the HNA to the DOI, the HNA is always initiating the exchange in both directions.

As such the HNA has a prior knowledge of the DM identity (X509 certificate), the IP address and port number to use and protocol to set secure session. The DM acquires knowledge of the identity of the HNA (X509 certificate) as well as the Registered Homenet Domain. For more detail to see how this can be achieved, please see Appendix A.2.

4.1. Information to Build the Public Homenet Zone

The HNA builds the Public Homenet Zone based on information retrieved from the DM.

The information includes at least names and IP addresses of the Public Authoritative Name Servers. In term of RRset information this includes:

* the MNAME of the SOA,

* the NS and associated A and AAA RRsets of the name servers.
The DM MAY also provide operational parameters such as other fields of SOA (SERIAL, RNAME, REFRESH, RETRY, EXPIRE and MINIMUM). As the information is necessary for the HNA to proceed and the information is associated to the DM, this information exchange is mandatory.

4.2. Information to build the DNSSEC chain of trust

The HNA SHOULD provide the hash of the KSK (DS RRset), so the that DOI provides this value to the parent zone. A common deployment use case is that the DOI is the registrar of the Registered Homenet Domain, and as such, its relationship with the registry of the parent zone enables it to update the parent zone. When such relation exists, the HNA should be able to request the DOI to update the DS RRset in the parent zone. A direct update is especially necessary to initialize the chain of trust.

Though the HNA may also later directly update the values of the DS via the Control Channel, it is RECOMMENDED to use other mechanisms such as CDS and CDNSKEY [RFC7344] for transparent updates during key roll overs.

As some deployments may not provide a DOI that will be able to update the DS in the parent zone, this information exchange is OPTIONAL.

By accepting the DS RR, the DM commits in taking care of advertising the DS to the parent zone. Upon refusal, the DM clearly indicates it does not have the capacity to proceed to the update.

4.3. Information to set the Synchronization Channel

The HNA works as a primary authoritative DNS server, while the DM works like a secondary. As a result, the HNA must provide the IP address the DM is using to reach the HNA. The synchronization Channel will be set between that IP address and the IP address of the DM. By default, the IP address used by the HNA in the Control Channel is considered by the DM and the specification of the IP by the HNA is only OPTIONAL. The transport channel (including port number) is the same as the one used between the HNA and the DM for the Control Channel.

4.4. Deleting the delegation

The purpose of the previous sections were to exchange information in order to set a delegation. The HNA MUST also be able to delete a delegation with a specific DM. Upon an instruction of deleting the delegation, the DM MUST stop serving the Public Homenet Zone.
The decision to delete an inactive HNA by the DM is part of the commercial agreement between DOI and HNA.

4.5. Messages Exchange Description

There are multiple ways this information could be exchanged between the HNA and the DM. This specification defines a mechanism that re-use the DNS exchanges format, while the exchange in itself is not a DNS exchange involved in any any DNS operations such as DNS resolution. Note that while information is provided using DNS exchanges, the exchanged information is not expected to be set in any zone file, instead this information is used as commands between the HNA and the DM.

The Control Channel is not expected to be a long term session. After a predefined timer - similar to those used for TCP - the Control Channel is expected to be terminated - by closing the transport channel. The Control Channel MAY be re-opened at any time later.

The provisioning process SHOULD provide a method of securing the Control Channel, so that the content of messages can be authenticated. This authentication MAY be based on certificates for both the DM and each HNA. The DM may also create the initial configuration for the delegation zone in the parent zone during the provisioning process.

4.5.1. Retrieving information for the Public Homenet Zone.

The information provided by the DM to the HNA is retrieved by the HNA with an AXFR exchange [RFC1034]. AXFR enables the response to contain any type of RRsets. The response might be extended in the future if additional information will be needed. Alternatively, the information provided by the HNA to the DM is pushed by the HNA via a DNS update exchange [RFC2136].

To retrieve the necessary information to build the Public Homenet Zone, the HNA MUST send a DNS request of type AXFR associated to the Registered Homenet Domain. The DM MUST respond with a zone template. The zone template MUST contain a RRset of type SOA, one or multiple RRset of type NS and zero or more RRset of type A or AAAA.

* The SOA RR indicates to the HNA the value of the MNAME of the Public Homenet Zone.

* The NAME of the SOA RR MUST be the Registered Homenet Domain.

* The MNAME value of the SOA RDATA is the value provided by the DOI to the HNA.
* Other RDATA values (RNAME, REFRESH, RETRY, EXPIRE and MINIMUM) are provided by the DOI as suggestions.

The NS RRsets carry the Public Authoritative Servers of the DOI. Their associated NAME MUST be the Registered Homenet Domain.

The TTL and RDATA are those expected to be published on the Public Homenet Zone. The RRsets of Type A and AAAA MUST have their NAME matching the NSDNAME of one of the NS RRsets.

Upon receiving the response, the HNA MUST validate format and properties of the SOA, NS and A or AAAA RRsets. If an error occurs, the HNA MUST stop proceeding and MUST log an error. Otherwise, the HNA builds the Public Homenet Zone by setting the MNAME value of the SOA as indicated by the SOA provided by the AXFR response. The HNA SHOULD set the value of NAME, REFRESH, RETRY, EXPIRE and MINIMUM of the SOA to those provided by the AXFR response. The HNA MUST insert the NS and corresponding A or AAAA RRset in its Public Homenet Zone. The HNA MUST ignore other RRsets. If an error message is returned by the DM, the HNA MUST proceed as a regular DNS resolution. Error messages SHOULD be logged for further analysis. If the resolution does not succeed, the outsourcing operation is aborted and the HNA MUST close the Control Channel.

4.5.2. Providing information for the DNSSEC chain of trust

To provide the DS RRset to initialize the DNSSEC chain of trust the HNA MAY send a DNS update [RFC2136] message.

The DNS update message is composed of a Header section, a Zone section, a Pre-requisite section, and Update section and an additional section. The Zone section MUST set the ZNAME to the parent zone of the Registered Homenet Domain— that is where the DS records should be inserted. As described [RFC2136], ZTYPE is set to SOA and ZCLASS is set to the zone’s class. The Pre-requisite section MUST be empty. The Update section is a DS RRset with its NAME set to the Registered Homenet Domain and the associated RDATA corresponds to the value of the DS. The Additional Data section MUST be empty.

Though the pre-requisite section MAY be ignored by the DM, this value is fixed to remain coherent with a standard DNS update.
Upon receiving the DNS update request, the DM reads the DS RRset in the Update section. The DM checks ZNAME corresponds to the parent zone. The DM SHOULD ignore non empty the Pre-requisite and Additional Data section. The DM MAY update the TTL value before updating the DS RRset in the parent zone. Upon a successful update, the DM should return a NOERROR response as a commitment to update the parent zone with the provided DS. An error indicates the MD does not update the DS, and other method should be used by the HNA.

The regular DNS error message SHOULD be returned to the HNA when an error occurs. In particular a FORMERR is returned when a format error is found, this includes when unexpected RRsSets are added or when RRsets are missing. A SERVFAIL error is returned when a internal error is encountered. A NOTZONE error is returned when update and Zone sections are not coherent, a NOTAUTH error is returned when the DM is not authoritative for the Zone section. A REFUSED error is returned when the DM refuses to proceed to the configuration and the requested action.

4.5.3. Providing information for the Synchronization Channel

The default IP address used by the HNA for the Synchronization Channel is the IP address of the Control Channel. To provide a different IP address, the HNA MAY send a DNS Update message.

Similarly to the Section 4.5.2, the HNA MAY specify the IP address using a DNS update message. The Zone section sets its ZNAME to the parent zone of the Registered Homenet Domain, ZTYPE is set to SOA and ZCLASS is set to the zone’s type. Pre-requisite is empty. The Update section is a RRset of type NS. The Additional Data section contains the RRsets of type A or AAAA that designates the IP addresses associated to the primary (or the HNA).

The reason to provide these IP addresses is to keep them unpublished and prevent them to be resolved.

Upon receiving the DNS update request, the DM reads the IP addresses and checks the ZNAME corresponds to the parent zone. The DM SHOULD ignore a non empty Pre-requisite section. The DM configures the secondary with the IP addresses and returns a NOERROR response to indicate it is committed to serve as a secondary.

Similarly to Section 4.5.2, DNS errors are used and an error indicates the DM is not configured as a secondary.
4.5.4. HNA instructing deleting the delegation

To instruct to delete the delegation the HNA SHOULD send a DNS UPDATE Delete message.

The Zone section sets its ZNAME to the Registered Homenet Domain, the ZTYPE to SOA and the ZCLASS to zone’s type. The Pre-requisite section is empty. The Update section is a RRset of type NS with the NAME set to the Registered Domain Name. As indicated by [RFC2136] Section 2.5.2 the delete instruction is set by setting the TTL to 0, the Class to ANY, the RDLENGTH to 0 and the RDATA MUST be empty. The Additional Data section is empty.

Upon receiving the DNS update request, the DM checks the request and removes the delegation. The DM returns a NOERROR response to indicate the delegation has been deleted. Similarly to Section 4.5.2, DNS errors are used and an error indicates the delegation has not been deleted.

4.6. Securing the Control Channel

The control channel between the HNA and the DM MUST be secured at both the HNA and the DM.

Secure protocols (like TLS [RFC8446] SHOULD be used to secure the transactions between the DM and the HNA.

The advantage of TLS is that this technology is widely deployed, and most of the devices already embed TLS libraries, possibly also taking advantage of hardware acceleration. Further, TLS provides authentication facilities and can use certificates to mutually authenticate the DM and HNA at the application layer, including available API. On the other hand, using TLS requires implementing DNS exchanges over TLS, as well as a new service port.

The HNA SHOULD authenticate inbound connections from the DM using standard mechanisms, such as a public certificate with baked-in root certificates on the HNA, or via DANE [RFC6698]. The HNA is expected to be provisioned with a connection to the DM by the manufacturer, or during some user-initiated onboarding process, see Appendix A.2.

The DM SHOULD authenticate the HNA and check that inbound messages are from the appropriate client. The DM MAY use a self-signed CA certificate mechanism per HNA, or public certificates for this purpose.
IPsec [RFC4301] and IKEv2 [RFC7296] were considered. They would need to operate in transport mode, and the authenticated end points would need to be visible to the applications, and this is not commonly available at the time of this writing.

A pure DNS solution using TSIG and/or SIG(0) to authenticate message was also considered. Appendix A.2 envisions one mechanism would involve the end user, with a browser, signing up to a service provider, with a resulting OAuth2 token to be provided to the HNA. A way to translate this OAuth2 token from HTTPS web space to DNS SIG(0) space seems overly problematic, and so the enrollment protocol using web APIs was determined to be easier to implement at scale.

Note also that authentication of message exchanges between the HNA and the DM SHOULD NOT use the external IP address of the HNA to index the appropriate keys. As detailed in Section 9, the IP addresses of the DM and the hidden primary are subject to change, for example while the network is being renumbered. This means that the necessary keys to authenticate transaction SHOULD NOT be indexed using the IP address, and SHOULD be resilient to IP address changes.

4.7. Implementation Concerns

The Hidden Primary Server on the HNA differs from a regular authoritative server for the home network due to:

Interface Binding: the Hidden Primary Server will almost certainly listen on the WAN Interface, whereas a regular Homenet Authoritative Servers would listen on the internal home network interface.

Limited exchanges: the purpose of the Hidden Primary Server is to synchronize with the DM, not to serve any zones to end users, or the public Internet. This results in a limited exchanges (AXFR/IXFR) with a small number of IP address and such limitations SHOULD be enforced by policies described in Section 7.

5. Synchronization Channel

The DM Synchronization Channel is used for communication between the HNA and the DM for synchronizing the Public Homenet Zone. Note that the Control Channel and the Synchronization Channel are by construction different channels even though there they may use the same IP address. Suppose the HNA and the DM are using a single IP address and let designate by XX, YYYY and ZZZZ the various ports involved in the communications. In fact the Control Channel is set between the HNA working as a client using port number YYYY (a high range port) toward a service provided by the DM at port number XX
(well known port such as 853 for DoT).

On the other hand, the Synchronization Channel is set between the DM working as a client using port ZZZZ (a high range port) toward a service a service provided by the HNA at port XX.

As a result, even though the same pair of IP addresses may be involved the Control Channel and the Synchronization Channel are always distinct channels.

Uploading and dynamically updating the zone file on the DM can be seen as zone provisioning between the HNA (Hidden Primary) and the DM (Secondary Server). This can be handled via AXFR + DNS Update.

The use of a primary / secondary mechanism is RECOMMENDED instead of the use of DNS Update. The primary / secondary mechanism is RECOMMENDED as it scales better and avoids DoS attacks. Note that even when UPDATE messages are used, these messages are using a distinct channel as those used to set the configuration.

Note that there is no standard way to distribute a DNS primary between multiple devices. As a result, if multiple devices are candidate for hosting the Hidden Primary, some specific mechanisms should be designed so the home network only selects a single HNA for the Hidden Primary. Selection mechanisms based on HNCP [RFC7788] are good candidates.

The HNA acts as a Hidden Primary Server, which is a regular authoritative DNS Server listening on the WAN interface.

The DM is configured as a secondary for the Registered Homenet Domain Name. This secondary configuration has been previously agreed between the end user and the provider of the DOI as part of either the provisioning or due to receipt of DNS Update messages on the DM Control Channel.

The Homenet Reverse Zone MAY also be updated either with DNS UPDATE [RFC2136] or using a primary / secondary synchronization.

5.1. Securing the Synchronization Channel

The Synchronization Channel uses standard DNS requests.

First the primary notifies the secondary that the zone must be updated and eaves the secondary to proceed with the update when possible/convenient.
Then, a NOTIFY message is sent by the primary, which is a small packet that is less likely to load the secondary.

Finally, the AXFR [RFC1034] or IXFR [RFC1995] query performed by the secondary is a small packet sent over TCP (Section 4.2 [RFC5936]), which mitigates reflection attacks using a forged NOTIFY.

The AXFR request from the DM to the HNA SHOULD be secured and the use of TLS is RECOMMENDED [RFC9103]. While [RFC9103] does not consider the protection by TLS of NOTIFY and SOA requests, these MAY still be protected by TLS to provide additional privacy.

When using TLS, the HNA MAY authenticate inbound connections from the DM using standard mechanisms, such as a public certificate with baked-in root certificates on the HNA, or via DANE [RFC6698]. In addition, to guarantee the DM remains the same across multiple TLS session, the HNA and DM MAY implement [RFC8672].

The HNA SHOULD apply an ACL on inbound AXFR requests to ensure they only arrive from the DM Synchronization Channel. In this case, the HNA SHOULD regularly check (via DNS resolution) that the address of the DM in the filter is still valid.

6. DM Distribution Channel

The DM Distribution Channel is used for communication between the DM and the Public Authoritative Servers. The architecture and communication used for the DM Distribution Channels is outside the scope of this document, and there are many existing solutions available e.g. rsynch, DNS AXFR, REST, DB copy.

7. HNA Security Policies

The HNA as hidden primary processes only a limited message exchanges. This should be enforced using security policies - to allow only a subset of dns requests to be received by HNA.

The HNA, as Hidden Primary SHOULD drop any DNS queries from the home network. This could be implemented via port binding and/or firewall rules. The precise mechanism deployed is out of scope of this document.

The HNA SHOULD drop any packets arriving on the WAN interface that are not issued from the DM. Depending how the communications between the HNA and the DM are secured, only packets associated to that protocol SHOULD be allowed.
The HNA SHOULD NOT send DNS messages other than DNS NOTIFY query, SOA response, IXFR response or AXFR responses. The HNA SHOULD reject any incoming messages other than DNS NOTIFY response, SOA query, IXFR query or AXFR query.

8. DNSSEC compliant Homenet Architecture

[RFC7368] in Section 3.7.3 recommends DNSSEC to be deployed on both the authoritative server and the resolver. The resolver side is out of scope of this document, and only the authoritative part of the server is considered.

It is RECOMMENDED the HNA signs the Public Homenet Zone.

Secure delegation is achieved only if the DS RRset is properly set in the parent zone. Secure delegation can be performed by the HNA or the DOIs and the choice highly depends on which entity is authorized to perform such updates. Typically, the DS RRset can be updated manually in the parent zone with nsupdate for example. This requires the HNA or the DOI to be authenticated by the DNS server hosting the parent of the Public Homenet Zone. Such a trust channel between the HNA and the parent DNS server may be hard to maintain with HNAs, and thus may be easier to establish with the DOI. In fact, the Public Authoritative Server(s) may use Automating DNSSEC Delegation Trust Maintenance [RFC7344].

9. Renumbering

During a renumbering of the network, the HNA IP address is changed and the Public Homenet Zone is updated potentially by by the HNA. Then, the HNA advertises the DM via a NOTIFY, that the Public Homenet Zone has been updated and that the IP address of the primary has been updated. This corresponds to the standard DNS procedure performed on the Synchronization Channel and no specific actions are expected for the HNA (See Section 4.3).

The remaining of the section provides recommendations regarding the provisioning of the Public Homenet Zone - especially the IP addresses. Renumbering has been extensively described in [RFC4192] and analyzed in [RFC7010] and the reader is expected to be familiar with them before reading this section. In the make-before-break renumbering scenario, the new prefix is advertised, the network is configured to prepare the transition to the new prefix. During a period of time, the two prefixes old and new coexist, before the old prefix is completely removed. In the break-before-make renumbering scenario, the new prefix is advertised making the old prefix obsolete.
In a renumbering scenario, the HNA or Hidden Primary is informed it is being renumbered. In most cases, this occurs because the whole home network is being renumbered. As a result, the Public Homenet Zone will also be updated. Although the new and old IP addresses may be stored in the Public Homenet Zone, it is RECOMMENDED that only the newly reachable IP addresses be published.

To avoid reachability disruption, IP connectivity information provided by the DNS SHOULD be coherent with the IP in use. In our case, this means the old IP address SHOULD NOT be provided via the DNS when it is not reachable anymore. Let for example TTL be the TTL associated with a RRset of the Public Homenet Zone, it may be cached for TTL seconds. Let T\_NEW be the time the new IP address replaces the old IP address in the Homenet Zone, and T\_OLD\_UNREACHABLE the time the old IP is not reachable anymore.

In the case of the make-before-break, seamless reachability is provided as long as T\_OLD\_UNREACHABLE - T\_NEW > 2 * TTL. If this is not satisfied, then devices associated with the old IP address in the home network may become unreachable for 2 * TTL - (T\_OLD\_UNREACHABLE - T\_NEW). In the case of a break-before-make, T\_OLD\_UNREACHABLE = T\_NEW, and the device may become unreachable up to 2 * TTL. Of course if T\_NEW >= T\_OLD\_UNREACHABLE, the disruption is increased.

10. Privacy Considerations

Outsourcing the DNS Authoritative service from the HNA to a third party raises a few privacy related concerns.

The Public Homenet Zone lists the names of services hosted in the home network. Combined with blocking of AXFR queries, the use of NSEC3 [RFC5155] (vs NSEC [RFC4034]) prevents an attacker from being able to walk the zone, to discover all the names. However, recent work [GPUNSEC3] or [ZONEENUM] have shown that the protection provided by NSEC3 against dictionary attacks should be considered cautiously and [I-D.ietf-dnsop-nsec3-guidance] provides guidelines to configure NSEC3 properly. In addition, the attacker may be able to walk the reverse DNS zone, or use other reconnaissance techniques to learn this information as described in [RFC7707].

The zone is also exposed during the synchronization between the primary and the secondary. [RFC9103] only specifies the use of TLS for XFR transfers, which leak the existence of the zone and has been clearly specified as out of scope of the threat model of [RFC9103]. Additional privacy MAY be provide by protecting all exchanges of the Synchronization Channel as well as the Control Channel.
In general a home network owner is expected to publish only names for which there is some need to be able to reference externally. Publication of the name does not imply that the service is necessarily reachable from any or all parts of the Internet. [RFC7084] mandates that the outgoing-only policy [RFC6092] be available, and in many cases it is configured by default. A well designed User Interface would combine a policy for making a service public by a name with a policy on who may access it.

In many cases, the home network owner wishes to publish names for services that only they will be able to access. The access control may consist of an IP source address range, or access may be restricted via some VPN functionality. The purpose of publishing the name is so that the service may be access by the same name both within the home, and outside the home. Sending traffic to the relevant IPv6 address causes the relevant VPN policy to be enacted upon. Typically, a user may configure its device to reach its homenet devices via a VPN while the remaining of the traffic is accessed directly. In such cases, the routing policy is likely to be defined by the destination IP address. This IP address is potentially results from a DNS resolution over the Internet.

While the problem of getting access to internal names has been solved in Enterprise configurations with a split-DNS, and such a thing could be done in the home, many recent improvements to VPN user interfaces make it more likely that an individual might have multiple connections configured. For instance, an adult child checking on the state of a home automation system for a parent.

In addition to the Public Homenet Zone, pervasive DNS monitoring can also monitor the traffic associated with the Public Homenet Zone. This traffic may provide an indication of the services an end user accesses, plus how and when they use these services. Although, caching may obfuscate this information inside the home network, it is likely that outside your home network this information will not be cached.

11. Security Considerations

This document exposes a mechanism that prevents the HNA from being exposed to the Internet and served DNS request from the Internet. These requests are instead served by the DOI. While this limits the level of exposure of the HNA, the HNA remains exposed to the Internet with communications with the DOI. This section analyses the attack surface associated to these communications, the data published by the DOI, as well as operational considerations.
11.1. HNA DM channels

The channels between HNA and DM are mutually authenticated and encrypted with TLS [RFC8446] and its associated security considerations apply. To ensure the multiple TLS session are continuously authenticating the same entity, TLS may take advantage of second factor authentication as described in [RFC8672].

At the time of writing TLS 1.2 or TLS 1.3 can be used and TLS 1.3 (or newer) SHOULD be supported. It is RECOMMENDED that all DNS exchanges between the HNA and the DM be protected by TLS to provide integrity protection as well as confidentiality. As noted in [RFC9103], some level of privacy may be relaxed, by not protecting the existence of the zone. This MAY involved a mix of exchanges protected by TLS and exchanges not protected by TLS. This MAY be handle by a off-line agreement between the DM and HNA as well as with the use of RCODES defined in Section 7.8 of [RFC9103].

The DNS protocol is subject to reflection attacks, however, these attacks are largely applicable when DNS is carried over UDP. The interfaces between the HNA and DM are using TLS over TCP, which prevents such reflection attacks. Note that Public Authoritative servers hosted by the DOI are subject to such attacks, but that is out of scope of our document.

Note that in the case of the Reverse Homenet Zone, the data is less subject to attacks than in the Public Homenet Zone. In addition, the DM and RDM may be provided by the ISP — as described in [I-D.ietf-homenet-naming-architecture-dhc-options], in which case DM and RDM might be less exposed to attacks — as communications within a network.

11.2. Names are less secure than IP addresses

This document describes how an end user can make their services and devices from his home network reachable on the Internet by using names rather than IP addresses. This exposes the home network to attackers, since names are expected to include less entropy than IP addresses. In fact, with IP addresses, the Interface Identifier is 64 bits long leading to up to 2^64 possibilities for a given subnetwork. This is not to mention that the subnet prefix is also of 64 bits long, thus providing up to 2^64 possibilities. On the other hand, names used either for the home network domain or for the devices present less entropy (livebox, router, printer, nicolas, jennifer, ...) and thus potentially exposes the devices to dictionary attacks.
11.3. Names are less volatile than IP addresses

IP addresses may be used to locate a device, a host or a service. However, home networks are not expected to be assigned a time invariant prefix by ISPs. As a result, observing IP addresses only provides some ephemeral information about who is accessing the service. On the other hand, names are not expected to be as volatile as IP addresses. As a result, logging names over time may be more valuable than logging IP addresses, especially to profile an end user’s characteristics.

PTR provides a way to bind an IP address to a name. In that sense, responding to PTR DNS queries may affect the end user’s privacy. For that reason end users may choose not to respond to PTR DNS queries and MAY instead return a NXDOMAIN response.

11.4. Operational Considerations

The HNA is expected to sign the DNSSEC zone and as such hold the private KSK/ZSK. To provide resilience against CPE breaks, it is RECOMMENDED to backup these keys to avoid an emergency key roll over when the CPE breaks.

The HNA enables to handle network disruption as it contains the Public Homenet Zone, which is provisioned to the Homenet Authoritative Servers. However, DNSSEC validation requires to validate the chain of trust with the DS RRset that is stored into the parent zone of the Registered Homenet Domain. As currently defined, the handling of the DS RRset is left to the Homenet DNSSEC resolver which retrieves from the parent zone via a DNS exchange and cache the RRset according to the DNS rules, that is respecting the TTL and RRSIG expiration time. Such constraints do put some limitations to the type of disruption the proposed architecture can handle. In particular, the disruption is expected to start after the DS RRset has been resolved and end before the DS RRset is removed from the cache. One possible way to address such concern is to describe mechanisms to provision the DS RRset to the Homenet DNSSEC resolver for example, via HNCP or by configuring a specific trust anchors [I-D.ietf-dnsop-dnssec-validator-requirements]. Such work is out of the scope of this document.

12. IANA Considerations

This document has no actions for IANA.
13. Acknowledgment

The authors wish to thank Philippe Lemordant for its contributions on the early versions of the draft; Ole Troan for pointing out issues with the IPv6 routed home concept and placing the scope of this document in a wider picture; Mark Townsley for encouragement and injecting a healthy debate on the merits of the idea; Ulrik de Bie for providing alternative solutions; Paul Mockapetris, Christian Jacquenet, Francis Dupont and Ludovic Eschard for their remarks on HNA and low power devices; Olafur Gudmundsson for clarifying DNSSEC capabilities of small devices; Simon Kelley for its feedback as dnsmasq implementer; Andrew Sullivan, Mark Andrew, Ted Lemon, Mikael Abrahamson, and Ray Bellis for their feedback on handling different views as well as clarifying the impact of outsourcing the zone signing operation outside the HNA; Mark Andrew and Peter Koch for clarifying the renumbering.

At last the authors would like to thank Kiran Makhijani for her in-depth review that contributed in shaping the final version.

14. Contributors

The co-authors would like to thank Chris Griffiths and Wouter Cloetens that provided a significant contribution in the early versions of the document.

15. References

15.1. Normative References


15.2. Informative References


Appendix A. HNA Channel Configurations

A.1. Homenet Reverse Zone

Homenet Reverse Zone works similarly to the Public Homenet Zone. The main difference is that ISP that provides the IP connectivity is likely also owning the corresponding reverse zone and act as a default DOI for it. If so, the configuration and the setting of the Synchronization Channel and Control Channel can largely be automated.

The Public Homenet Zone is associated to a Registered Homenet Domain and the ownership of that domain requires a specific registration from the end user as well as the HNA being provisioned with some authentication credentials. Such steps are mandatory unless the DOI has some other means to authenticate the HNA. Such situation may occur, for example, when the ISP provides the Homenet Domain as well as the DOI.

In this case, the HNA may be authenticated by the physical link layer, in which case the authentication of the HNA may be performed without additional provisioning of the HNA. While this may not be so common for the Public Homenet Zone, this situation is expected to be quite common for the Reverse Homenet Zone as the ISP owns the IP address or IP prefix.

More specifically, a common case is that the upstream ISP provides the IPv6 prefix to the Homenet with a IA_PD [RFC8415] option and manages the DOI of the associated reverse zone. This leaves place for setting up automatically the relation between HNA and the DOI as described in [I-D.ietf-homenet-naming-architecture-dhc-options].

In the case of the reverse zone, the DOI authenticates the source of the updates by IPv6 Access Control Lists. In the case of the reverse zone, the ISP knows exactly what addresses have been delegated. The HNA SHOULD therefore always originate Synchronization Channel updates from an IP address within the zone that is being updated.
For example, if the ISP has assigned 2001:db8:f00d::/64 to the WAN interface (by DHCPv6, or PPP/RA), then the HNA should originate Synchronization Channel updates from, for example, 2001:db8:f00d::2.

An ISP that has delegated 2001:db8:aeae::/56 to the HNA via DHCPv6-PD, then HNA should originate Synchronization Channel updates an IP within that subnet, such as 2001:db8:aeae:0001::2.

With this relation automatically configured, the synchronization between the Home network and the DOI happens similarly as for the Public Homenet Zone described earlier in this document.

Note that for home networks connected to by multiple ISPs, each ISP provides only the DOI of the reverse zones associated to the delegated prefix. It is also likely that the DNS exchanges will need to be performed on dedicated interfaces as to be accepted by the ISP. More specifically, the reverse zone associated to prefix 1 will not be possible to be performs by the HNA using an IP address that belongs to prefix 2. Such constraints does not raise major concerns either for hot standby or load sharing configuration.

With IPv6, the domain space for IP addresses is so large that reverse zone may be confronted with scalability issues. How the reverse zone is generated is out of scope of this document. [RFC8501] provides guidance on how to address scalability issues.

A.2. Homenet Public Zone

This document does not deal with how the HNA is provisioned with a trusted relationship to the Distribution Manager for the forward zone.

This section details what needs to be provisioned into the HNA and serves as a requirements statement for mechanisms.

The HNA needs to be provisioned with:

* the Registered Domain (e.g., myhome.example )

* the contact info for the Distribution Manager (DM), including the DNS name (FQDN), possibly including the IP literal, and a certificate (or anchor) to be used to authenticate the service

* the DM transport protocol and port (the default is DNS over TLS, on port 853)

* the HNA credentials used by the DM for its authentication.
The HNA will need to select an IP address for communication for the Synchronization Channel. This is typically the WAN address of the RG router, but could be an IPv6 LAN address in the case of a home with multiple ISPs (and multiple border routers). This is detailed in Section 4.5.3 when the NS and A or AAAA RRsets are communicated.

The above parameters MUST be be provisioned for ISP-specific reverse zones, as per [I-D.ietf-homenet-naming-architecture-dhc-options]. ISP-specific forward zones MAY also be provisioned using [I-D.ietf-homenet-naming-architecture-dhc-options], but zones which are not related to a specific ISP zone (such as with a DNS provider) must be provisioned through other means.

Similarly, if the HNA is provided by a registrar, the HNA may be handed pre-configured to end user.

In the absence of specific pre-established relation, these pieces of information may be entered manually by the end user. In order to ease the configuration from the end user the following scheme may be implemented.

The HNA may present the end user a web interface where it provides the end user the ability to indicate the Registered Homenet Domain or the registrar for example a preselected list. Once the registrar has been selected, the HNA redirects the end user to that registrar in order to receive a access token. The access token will enable the HNA to retrieve the DM parameters associated to the Registered Domain. These parameters will include the credentials used by the HNA to establish the Control and Synchronization Channels.

Such architecture limits the necessary steps to configure the HNA from the end user.

Appendix B. Information Model for Outsourced information

This section is non-normative for the front-end protocol. It specifies an optional format for the set of parameters required by the HNA to configure the naming architecture of this document.

In cases where a home router has not been provisioned by the manufacturer (when forward zones are provided by the manufacturer), or by the ISP (when the ISP provides this service), then a home user/owner will need to configure these settings via an administrative interface.
By defining a standard format (in JSON) for this configuration information, the user/owner may be able to just copy and paste a configuration blob from the service provider into the administrative interface of the HNA.

This format may also provide the basis for a future OAUTH2 [RFC6749] flow that could do the setup automatically.

The HNA needs to be configured with the following parameters as described by this CDDL [RFC8610]. These are the parameters are necessary to establish a secure channel between the HNA and the DM as well as to specify the DNS zone that is in the scope of the communication.

```
hna-configuration = {
    "registered_domain" : tstr,
    "dm" : tstr,
    ? "dm_transport" : "DoT"
    ? "dm_port" : uint,
    ? "dm_acl" : hna-acl / [ +hna-acl ]
    ? "hna_auth_method": hna-auth-method
    ? "hna_certificate": tstr
}
```

```
hna-acl = tstr
hna-auth-method /= "certificate"
```

For example:

```
{
    "registered_domain" : "n8d234f.r.example.net",
    "dm" : "2001:db8:1234:111:222::2",
    "dm_transport" : "DoT",
    "dm_port" : 4433,
    "dm_acl" : "2001:db8:1f15:62e:21c::/64" or [ "2001:db8:1f15:62e:21c::/64", ... ]
    "hna_auth_method" : "certificate",
    "hna_certificate" : "-----BEGIN CERTIFICATE-----
MIIDTjCCFGy....",
}
```

B.1. Outsourced Information Model

Registered Homenet Domain (zone) The Domain Name of the zone. Multiple Registered Homenet Domains may be provided. This will generate the creation of multiple Public Homenet Zones. This parameter is MANDATORY.

Distribution Manager notification address (dm) The associated FQDNs
or IP addresses of the DM to which DNS notifies should be sent. This parameter is MANDATORY. IP addresses are optional and the FQDN is sufficient and preferred. If there are concerns about the security of the name to IP translation, then DNSSEC should be employed.

As the session between the HNA and the DM is authenticated with TLS, the use of names is easier.

As certificates are more commonly emitted for FQDN than for IP addresses, it is preferred to use names and authenticate the name of the DM during the TLS session establishment.

Supported Transport (dm_transport) The transport that carries the DNS exchanges between the HNA and the DM. Typical value is "DoT" but it may be extended in the future with "DoH", "DoQ" for example. This parameter is OPTIONAL and by default the HNA uses DoT.

Distribution Manager Port (dm_port) Indicates the port used by the DM. This parameter is OPTIONAL and the default value is provided by the Supported Transport. In the future, additional transport may not have default port, in which case either a default port needs to be defined or this parameter become MANDATORY.

Note that HNA does not defines ports for the Synchronization Channel. In any case, this is not expected to part of the configuration, but instead negotiated through the Configuration Channel. Currently the Configuration Channel does not provide this, and limits its agility to a dedicated IP address. If such agility is needed in the future, additional exchanges will need to be defined.

Authentication Method ("hna_auth_method"): How the HNA authenticates itself to the DM within the TLS connection(s). The authentication method can typically be "certificate", "psk" or "none". This Parameter is OPTIONAL and by default the Authentication Method is "certificate".

Authentication data ("hna_certificate", "hna_key"): The certificate chain used to authenticate the HNA. This parameter is OPTIONAL and when not specified, a self-signed certificate is used.

Distribution Manager AXFR permission netmask (dm_acl): The subnet
from which the CPE should accept SOA queries and AXFR requests. A subnet is used in the case where the DOI consists of a number of different systems. An array of addresses is permitted. This parameter is OPTIONAL and if unspecified, the CPE uses the IP addresses provided by the dm parameter either directly when dm indicates an IP address or the IP addresses returned by the DNS(SEC) resolution when dm indicates a FQDN.

For forward zones, the relationship between the HNA and the forward zone provider may be the result of a number of transactions:

1. The forward zone outsourcing may be provided by the maker of the Homenet router. In this case, the identity and authorization could be built in the device at manufacturer provisioning time. The device would need to be provisioned with a device-unique credential, and it is likely that the Registered Homenet Domain would be derived from a public attribute of the device, such as a serial number (see Appendix D or [I-D.richardson-homerouter-provisioning] for more details).

2. The forward zone outsourcing may be provided by the Internet Service Provider. In this case, the use of [I-D.ietf-homenet-naming-architecture-dhc-options] to provide the credentials is appropriate.

3. The forward zone may be outsourced to a third party, such as a domain registrar. In this case, the use of the JSON-serialized YANG data model described in this section is appropriate, as it can easily be copy and pasted by the user, or downloaded as part of a web transaction.

For reverse zones, the relationship is always with the upstream ISP (although there may be more than one), and so [I-D.ietf-homenet-naming-architecture-dhc-options] is always the appropriate interface.

The following is an abridged example of a set of data that represents the needed configuration parameters for outsourcing.

Appendix C. Envisioned deployment scenarios

A number of deployment have been envisioned, this section aims at providing a brief description. The use cases are not limitations and this section is not normative.
C.1. CPE Vendor

A specific vendor with specific relations with a registrar or a registry may sell a CPE that is provisioned with provisioned domain name. Such domain name does not need to be necessary human readable.

One possible way is that the vendor also provisions the HNA with a private and public keys as well as a certificate. Note that these keys are not expected to be used for DNSSEC signing. Instead these keys are solely used by the HNA to proceed to the authentication. Normally the keys should be necessary and sufficient to proceed to the authentication. The reason to combine the domain name and the key is that DOI are likely handle names better than keys and that domain names might be used as a login which enables the key to be regenerated.

When the home network owner plugs the CPE at home, the relation between HNA and DM is expected to work out-of-the-box.

C.2. Agnostic CPE

An CPE that is not preconfigured may also take advantage to the protocol defined in this document but some configuration steps will be needed.

1. The owner of the home network buys a domain name to a registrar, and as such creates an account on that registrar

2. Either the registrar is also providing the outsourcing infrastructure or the home network needs to create a specific account on the outsourcing infrastructure. * If the DOI is the registrar, it has by design a proof of ownership of the domain name by the homenet owner. In this case, it is expected the DOI provides the necessary parameters to the home network owner to configure the HNA. A good way to provide the parameters would be the home network be able to copy/paste a JSON object – see Appendix B. What matters at that point is the DOI being able to generate authentication credentials for the HNA to authenticate itself to the DOI. This obviously requires the home network to provide the public key generated by the HNA in a CSR.

* If the DOI is not the registrar, then the proof of ownership needs to be established using protocols like ACME [RFC8555] for example that will end in the generation of a certificate. ACME is used here to the purpose of automating the generation of the certificate, the CA may be a specific CA or the DOI. With that being done, the DOI has a roof of ownership and can proceed as above.
Appendix D. Example: A manufacturer provisioned HNA product flow

This scenario is one where a homenet router device manufacturer decides to offer DNS hosting as a value add.

[I-D.richardson-homerouter-provisioning] describes a process for a home router credential provisioning system. The outline of it is that near the end of the manufacturing process, as part of the firmware loading, the manufacturer provisions a private key and certificate into the device.

In addition to having an asymmetric credential known to the manufacturer, the device also has been provisioned with an agreed upon name. In the example in the above document, the name "n8d234f.r.example.net" has already been allocated and confirmed with the manufacturer.

The HNA can use the above domain for itself. It is not very pretty or personal, but if the owner wishes a better name, they can arrange for it.

The configuration would look like:

```json
{
    "dm" : "2001:db8:1234:111:222::2",
    "dm_acl" : "2001:db8:1234:111:222::/64",
    "dm_ctrl" : "manufacturer.example.net",
    "dm_port" : "4433",
    "ns_list" : [ "ns1.publicdns.example", "ns2.publicdns.example"],
    "zone" : "n8d234f.r.example.net",
    "auth_method" : "certificate",
    "hna_certificate": "-----BEGIN CERTIFICATE-----
MIIDTjCCFGy....",
}
```

The dm_ctrl and dm_port values would be built into the firmware.

Authors’ Addresses

Daniel Migault
Ericsson
8275 Trans Canada Route
Saint Laurent, QC 4S 0B6
Canada
Email: daniel.migault@ericsson.com
Ralf Weber
Nominum
2000 Seaport Blvd
Redwood City,  94063
United States of America
Email: ralf.weber@nominum.com

Michael Richardson
Sandelman Software Works
470 Dawson Avenue
Ottawa, ON  K1Z 5V7
Canada
Email: mcr+ietf@sandelman.ca

Ray Hunter
Globis Consulting BV
Weegschaalstraat 3
5632CW Eindhoven
Netherlands
Email: v6ops@globis.net
Abstract

The Homenet Naming Authority (HNA) is the designated device in charge of outsourcing the service to a third party, which requires setting up an architecture.

Such settings may be inappropriate for most end users. This document defines DHCPv6 options so any agnostic HNA can automatically proceed to the appropriate configuration and outsource the authoritative naming service for the home network. In most cases, the outsourcing mechanism is transparent for the end user.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 27, 2018.
Table of Contents

1. Requirements notation ........................................ 3

2. Terminology .................................................... 3

3. Introduction ................................................... 3

4. Protocol Overview ............................................ 6

4.1. Architecture and DHCPv6 Options Overview ............... 6

4.2. Mechanisms Securing DNS Transactions .................. 9

4.3. Primary / Secondary Synchronization versus DNS Update .. 10

5. HNA Configuration ............................................ 11

5.1. HNA Primary / Secondary Synchronization Configurations . 11

5.1.1. HNA / Synchronization Server ......................... 11

5.1.2. HNA / Reverse Synchronization Server ................. 11

5.2. HNA DNS Data Handling and Update Policies .............. 12

5.2.1. Homenet Zone Template ............................... 12

5.2.2. DNS (Reverse) Homenet Zone ......................... 12

6. Payload Description .......................................... 13

6.1. Supported Authentication Methods Field .................. 13

6.2. Update Field ............................................... 14

6.3. Client Public Key Option ................................... 14

6.4. Zone Template Option ...................................... 14

6.5. Synchronization Server Option ............................ 15

6.6. Reverse Synchronization Server Option ................... 16

7. DHCP Behavior ................................................ 17

7.1. DHCPv6 Server Behavior ................................... 17

7.2. DHCPv6 Client Behavior ................................... 18

7.3. DHCPv6 Relay Agent Behavior ............................. 18

8. IANA Considerations .......................................... 18

9. Security Considerations ...................................... 19

9.1. DNSSEC is recommended to authenticate DNS hosted data .. 19

9.2. Channel between the HNA and ISP DHCP Server MUST be secured ........................................ 19

9.3. HNAs are sensitive to DoS ................................ 19

Migault (Ed), et al. Expires December 27, 2018
1. Requirements notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Terminology

The reader is expected to be familiar with [I-D.ietf-homenet-front-end-naming-delegation] and its terminology section. This section defines terms that have not been defined in [I-D.ietf-homenet-front-end-naming-delegation]:

- Client Public Key: designates a public key generated by the HNA. This key is used as an authentication credential for the HNA.
- Homenet Zone Template: The template used as a basis to generate the Homenet Zone.
- DNS Template Server: The DNS server that hosts the Homenet Zone Template.
- Homenet Reverse Zone: The reverse zone file associated to the Homenet Zone.

3. Introduction

HNAs are usually constrained devices with reduced network and CPU capacities. As such, a HNA hosting on the Internet the authoritative naming service for its home network may become vulnerable to resource exhaustion attacks. Outsourcing the authoritative service to a third party avoids exposing the HNA to such attacks. This third party can be the ISP or any other independent third party.

Outsourcing the authoritative naming service to a third party requires setting up an architecture designated in this document as
the Outsourcing Infrastructure. These settings may be inappropriate for most end users that do not have the sufficient knowledge. To address this issue, this document proposes DHCPv6 options so any agnostic HNA can automatically set the Outsourcing Infrastructure. In most cases, these DHCPv6 options are sufficient and do not require any additional interaction from the end user, thus achieving a zero-config settings. In some other cases, the end user is expected to perform some limited manual configuration.

When the HNA is plugged, the DHCPv6 options described in the document enable:

- 1. To build the Homenet Zone: Building the Homenet Zone requires filling the zone with appropriated bindings such as bindings between the names and the IP addresses of the different devices of the home networks. How the HNA is aware of these binding is out of scope of the document. They may be provided, for example, by the DHCPv6 server hosted on the HNA. On the other hand, building the Homenet Zone also requires configuration parameters like the name of the Registered Domain Name associated to the home network or the Public Authoritative Server(s) the Homenet Zone is outsourced to. These configuration parameters are stored in the Homenet Zone Template. This document describes the Zone Template Option which carries the FQDN associated to the Homenet Zone Template. In order to retrieve the Homenet Zone Template, the HNA sends a query of type AXFR [RFC1034], [RFC5936].

- 2. To upload the Homenet Zone to the Synchronization Server, in charge of publishing the Homenet Zone on the Public Authoritative Server(s). This document describes the Synchronization Server Option that provides the FQDN of the appropriated server. Note that, the document does not consider whether the Homenet Zone is signed or not, and if signed, which entity is responsible to sign it. Such questions are out of the scope of the current document.

- 3. To upload the Homenet Reverse Zone to the Reverse Synchronization Server in charge of publishing the Homenet Reverse Zone on the Reverse Public Authoritative Server(s). This document describes the Reverse Synchronization Server Option that provides the FQDN of the appropriated server. Similarly to item 2., we do not consider in this document if the Homenet Reverse Zone is signed or not, and if signed who signs it.

- 4. To provide authentication credential (a public key) to the DHCP Server: Information stored in the Homenet Zone Template, the
Homenet Zone and Homenet Reverse Zone belongs to the HNA, and only the HNA should be able to update or upload these zones. To authenticate the HNA, this document defines the Client Public Key Option. This option is sent by the HNA to the DHCPv6 server and provides the Client Public Key the HNA uses to authenticate itself. This document does not describe mechanisms used to transmit the Client Public Key from the DHCPv6 server to the appropriate entities. If the DHCPv6 server is not able to provide the Client Public Key to the appropriated entities, then the end user is likely to provide manually the Client Public Key to these entities. This document illustrates two scenarios: one where the DHCPv6 server is responsible for distributing the Client Public Key to the Synchronization Servers and Reverse Synchronization Server. In the other scenarios, the Client Public Key is distributed out of band.

The DHCPv6 options described in this document make possible to configure an Outsourcing Infrastructure with no or little configurations from the end user. A zero-config setting is achieved if the the link between the HNA and the DHCPv6 server and the link between the DHCPv6 server and the various DNS servers (Homenet Zone Server, the Reverse Synchronization Server, Synchronization Server) are trusted. For example, one way to provide a trustworthy connection between the HNA and the DHCPv6 server is defined in [I-D.ietf-dhc-sedhcpv6]. When both links are trusted, the HNA is able to provide its authentication credentials (a Client Public Key) to the DHCPv6 server, that in turn forwards it to the various DNS servers. With the authentication credentials on the DNS servers, the HNA is able to securely update.

If the DHCPv6 server cannot provide the Client Public Key to one of these servers (most likely the Synchronization Server) and the HNA needs to interact with the server, then, the end user is expected to provide the HNA’s Client Public Key to these servers (the Reverse Synchronization Server or the Synchronization Server) either manually or using other mechanisms. Such mechanisms are outside the scope of this document. In that case, the authentication credentials need to be provided every time the key is modified. Appendix A provides more details on how different scenarios impact the end users.

The remaining of this document is structured as follows. Section 4 provides an overview of the DHCPv6 options as well as the expected interactions between the HNA and the various involved entities. This section also provides an overview of available mechanisms to secure DNS transactions and update DNS data. Section 5 describes how the HNA may securely synchronize and update DNS data. Section 6 describes the payload of the DHCPv6 options and Section 7 details how
4. Protocol Overview

This section provides an overview of the HNA’s interactions with the Outsourcing Infrastructure in Section 4.1, and so the necessary for its setting. In this document, the configuration is provided via DHCPv6 options. Once configured, the HNA is expected to be able to update and publish DNS data on the different components of the Outsourcing Infrastructure. As a result, authenticating and updating mechanisms play an important role in the specification. Section 4.2 provides an overview of the different authentication methods and Section 4.3 provides an overview of the different update mechanisms considered to update the DNS data.

4.1. Architecture and DHCPv6 Options Overview

This section illustrates how a HNA receives the necessary information via DHCPv6 options to outsource its authoritative naming service on the Outsourcing Infrastructure. For the sake of simplicity, this section assumes that the DHCPv6 server is able to communicate to the various DNS servers and to provide them the public key associated with the HNA. Once each server got the public key, the HNA can proceed to transactions in an authenticated and secure way.

This scenario has been chosen as it is believed to be the most popular scenario. This document does not ignore that scenarios where the DHCP Server does not have privileged relations with the Synchronization Server must be considered. These cases are discussed latter in Appendix A. Such scenario does not necessarily require configuration for the end user and can also be zero-config.

The scenario is represented in Figure 1.

- 1: The HNA provides its Client Public Key to the DHCP Server using a Client Public Key Option (OPTION_PUBLIC_KEY) and includes the following option codes in its its Option Request Option (ORO): Zone Template Option (OPTION_DNS_ZONE_TEMPLATE), the Synchronization Server Option (OPTION_SYNC_SERVER) and the Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER).

- 2: The DHCP Server makes the Client Public Key available to the DNS servers, so the HNA can secure its DNS transactions. How the Client Public Key is transmitted to the various DNS servers

Migault (Ed), et al. Expires December 27, 2018
is out of scope of this document. Note that the Client Public Key alone is not sufficient to perform the authentication and the key should be, for example, associated with an identifier, or the concerned domain name. How the binding is performed is out of scope of the document. It can be a centralized database or various bindings may be sent to the different servers. Figure 1 represents the specific case where the DHCP Server forwards the set (Client Public Key, Zone Template FQDN) to the DNS Template Server, the set (Client Public Key, IPv6 subnet) to the Reverse Synchronization Server and the set (Client Public Key, Registered Homenet Domain) to the Synchronization Server.

3: The DHCP Server responds to the HNA with the requested DHCPv6 options, i.e. the Client Public Key Option (OPTION_PUBLIC_KEY), Zone Template Option OPTION_DNS_ZONE_TEMPLATE, Synchronization Server Option (OPTION_SYNC_SERVER), Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER). Note that this step may be performed in parallel to step 2, or even before. In other words, there is no requirements that step 3 is conducted after step 2.

4: Upon receiving the Zone Template Option (OPTION_DNS_ZONE_TEMPLATE), the HNA performs an AXFR DNS query for the Zone Template FQDN. The exchange is authenticated according to the authentication methods defined in the Supported Authentication Methods field of the DHCP option. Once the HNA has retrieved the DNS Zone Template, the HNA can build the Homenet Zone and the Homenet Reverse Zone. Eventually the HNA signs these zones.

5: Once the Homenet Reverse Zone has been set, the HNA uploads the zone to the Reverse Synchronization Server. The Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER) provides the Reverse Synchronization Server FQDN as well as the upload method, and the Supported Authentication Methods protocol to secure the upload.

6: Once the Homenet Zone has been set, the HNA uploads the zone to the Synchronization Server. The Synchronization Server Option (OPTION_SYNC_SERVER) provides the Synchronization Server FQDN as well as the upload method and the authentication method to secure the upload.
As described above, the HNA is likely to interact with various DNS content. More specifically, the HNA is likely to update the:

- **Homenet Zone Template**: if the configuration of the zone may be changed. This may include additional Public Authoritative Server(s), a different Registered Homenet Domain as the one initially proposed, or a redirection to another domain.

- **Homenet Reverse Zone**: every time a new device is connected or dis-connected.

- **Homenet Zone**: every time a new device is connected or dis-connected.

Step 2 and step 3 should be considered as independent steps and could be re-ordered. In fact, the DHCPv6 server does not have to wait for a confirmation from the DNS servers the Client Public Key has been properly received, and is operational by the DNS servers. The DHCP Server is expected to reply upon receiving the Client Public Key Option. The reply to the message with a Client Public Key Option from the DHCP Server is interpreted by the DHCPv6 client as a confirmation of the reception of the option by the DHCP Server only. It does not indicate whether the server had processed the option or
not. Debugging configurations errors or transmission error with one of the DNS servers is let to the HNA and thus is outside of the scope of the DHCPv6. First, it is unlikely a DNS server can validate that the Client Public Key will be operational for the HNA, as multiple causes of errors could occur. For example, the Client Public Key may have been changed during the transmission or by the DHCP Server, or the DNS server may be misconfigured. Second, the number of error codes would be too complex. In addition to multiple causes of errors, multiple architectures and multiple DNS servers may be involved. Third, this may cause significant DHCP Server performance degradation.

In fact, the HNA performs these updates in a secure manner. There are multiple ways to secure a DNS transaction and this document considers two mechanisms: nsupdate and primary/secondary synchronization. Section 4.2 describes the authentication method that may be used to secure the DNS transactions of the HNA. The appropriate authentication methods may, for example, be chosen according to the level of confidentiality or the level of authentication requested by the HNA transactions. Section 4.3 positions the nsupdate and primary/secondary synchronization mechanisms. The update appropriate update mechanism may depend on the for example on the update frequency or the size of the DNS data to update.

4.2. Mechanisms Securing DNS Transactions

Multiple protocols like IPsec [RFC4301] or TLS / DTLS [RFC5246] / [RFC6347] may be used to secure DNS transactions between the HNA and the DNS servers. This document limits its scope to authentication method that have been designed specifically for DNS. This includes DNSSEC [RFC4033], [RFC4034], [RFC4035] that authenticates and provides integrity protection of DNS data, TSIG [RFC2845], [RFC2930] that use a shared secret to secure a transaction between two end points and SIG(0) [RFC2931] authenticates the DNS packet exchanged.

The key issue with TSIG is that a shared secret must be negotiated between the HNA and the server. On the other hand, TSIG performs symmetric cryptography which is light in comparison with asymmetric cryptography used by SIG(0). As a result, over large zone transfer, TSIG may be preferred to SIG(0).

This document does not provide means to distribute shared secret for example using a specific DHCPv6 option. The only assumption made is that the HNA generates or is assigned a public key.

As a result, when the document specifies the transaction is secured with TSIG, it means that either the HNA and the DNS server have been
manually configured with a shared secret, or the shared secret has been negotiated using TKEY [RFC2930], and the TKEY exchanged are secured with SIG(0).

Exchanges with the DNS Template Server to retrieve the Homenet Zone Template may be protected by SIG(0), TSIG or DNSSEC. When DNSSEC is used, it means the DNS Template Server only provides integrity protection, and does not necessarily prevent someone else to query the Homenet Zone Template. In addition, DNSSEC is only a way to protect the AXFR queries transaction, in other words, DNSSEC cannot be used to secure updates. If DNSSEC is used to provide integrity protection for the AXFR response, the HNA should proceed to the DNSSEC signature checks. If signature check fails, it MUST reject the response. If the signature check succeeds, the HNA removes all DNSSEC related RRsets (DNSKEY, RRSIG, NSEC* ...) before building the Homenet Zone. In fact, these DNSSEC related fields are associated to the Homenet Zone Template and not the Homenet Zone.

Any update exchange should use SIG(0) or TSIG to authenticate the exchange.

4.3. Primary / Secondary Synchronization versus DNS Update

As updates only concern DNS zones, this document only considers DNS update mechanisms such as DNS update [RFC2136] [RFC3007] or a primary / secondary synchronization.

The Homenet Zone Template SHOULd be updated with DNS update as it contains static configuration data that is not expected to evolve over time.

The Homenet Reverse Zone and the Homenet Zone can be updated either with DNS update or using a primary / secondary synchronization. As these zones may be large, with frequent updates, we recommend to use the primary / secondary architecture as described in [I-D.ietf-homenet-front-end-naming-delegation]. The primary / secondary mechanism is preferred as it better scales and avoids DoS attacks: First the primary notifies the secondary the zone must be updated, and leaves the secondary to proceed to the update when possible. Then, the NOTIFY message sent by the primary is a small packet that is less likely to load the secondary. At last, the AXFR query performed by the secondary is a small packet sent over TCP (section 4.2 [RFC5936]) which makes unlikely the secondary to perform reflection attacks with a forged NOTIFY. On the other hand, DNS updates can use UDP, packets require more processing than a NOTIFY, and they do not provide the server the opportunity to postpone the update.
5. HNA Configuration

5.1. HNA Primary / Secondary Synchronization Configurations

The primary / secondary architecture is described in [I-D.ietf-homenet-front-end-naming-delegation]. The HNA hosts a Hidden Primary that synchronizes with a Synchronization Server or the Reverse Synchronization Server.

When the HNA is plugged its IP address may be unknown to the secondary. The section details how the HNA or primary communicates the necessary information to set up the secondary.

In order to set the primary / secondary configuration, both primary and secondaries must agree on 1) the zone to be synchronized, 2) the IP address and ports used by both primary and secondary.

5.1.1. HNA / Synchronization Server

The HNA is aware of the zone to be synchronized by reading the Registered Homenet Domain in the Homenet Zone Template provided by the Zone Template Option (OPTION_DNS_ZONE_TEMPLATE). The IP address of the secondary is provided by the Synchronization Server Option (OPTION_SYNC_SERVER).

The Synchronization Server has been configured with the Registered Homenet Domain and the Client Public Key that identifies the HNA. The only missing information is the IP address of the HNA. This IP address is provided by the HNA by sending a NOTIFY [RFC1996].

When the HNA has built its Homenet Zone, it sends a NOTIFY message to the Synchronization Servers. Upon receiving the NOTIFY message, the secondary reads the Registered Homenet Domain and checks the NOTIFY is sent by the authorized primary. This can be done using the shared secret (TSIG) or the public key (SIG(0)). Once the NOTIFY has been authenticated, the Synchronization Servers might consider the source IP address of the NOTIFY query to configure the primaries attributes.

5.1.2. HNA / Reverse Synchronization Server

The HNA is aware of the zone to be synchronized by looking at its assigned prefix. The IP address of the secondary is provided by the Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER).

Configuration of the secondary is performed as illustrated in Section 5.1.1.
5.2. HNA DNS Data Handling and Update Policies

5.2.1. Homenet Zone Template

The Homenet Zone Template contains at least the related fields of the Public Authoritative Server(s) as well as the Homenet Registered Domain, that is SOA, and NS fields. This template might be generated automatically by the owner of the DHCP Server. For example, an ISP might provide a default Homenet Registered Domain as well as default Public Authoritative Server(s). This default settings should provide the HNA the necessary pieces of information to set the homenet naming architecture.

If the Homenet Zone Template is not subject to modifications or updates, the owner of the template might only use DNSSEC to enable integrity check.

On the other hand, the Homenet Zone Template might also be subject to modification by the HNA. The advantage of using the standard DNS zone format is that standard DNS update mechanism can be used to perform updates. These updates might be accepted or rejected by the owner of the Homenet Zone Template. Policies that defines what is accepted or rejected is out of scope of this document. However, this document assumes the Registered Homenet Domain is used as an index by the Synchronization Server, and SIG(0), TSIG are used to authenticate the HNA. As a result, the Registered Homenet Domain should not be modified unless the Synchronization Server can handle with it.

5.2.2. DNS (Reverse) Homenet Zone

The Homenet Zone might be generated from the Homenet Zone Template. How the Homenet Zone is generated is out of scope of this document. In some cases, the Homenet Zone might be the exact copy of the Homenet Zone Template. In other cases, it might be generated from the Homenet Zone Template with additional RRsets. In some other cases, the Homenet Zone might be generated without considering the Homenet Zone Template, but only considering specific configuration rules.

In the current document the HNA only sets a single zone that is associated with one single Homenet Registered Domain. The domain might be assigned by the owner of the Homenet Zone Template. This constraint does not prevent the HNA to use multiple domain names. How additional domains are considered is out of scope of this document. One way to handle these additional zones is to configure static redirections to the Homenet Zone using CNAME [RFC2181], [RFC1034], DNAME [RFC6672] or CNAME+DNAME [I-D.sury-dnsext-cname-dname].
6. Payload Description

This section details the payload of the DHCPv6 options. A few DHCPv6 options are used to advertise a server the HNA may be expected to interact with. Interaction may require to define update and authentication methods. Update fields are shared by multiple DHCPv6 options and are described in separate sections. Section 6.1 describes the Supported Authentication Method field, Section 6.2 describes the Update field, the remaining Section 6.3, Section 6.4, Section 6.5, Section 6.6 describe the DHCPv6 options.

6.1. Supported Authentication Methods Field

The Supported Authentication Methods field of the DHCPv6 option represented in Figure 2 indicates the authentication method supported by the DNS server. One of these mechanism MUST be chosen by the HNA in order to perform a transaction with the DNS server. See Section 4.2 for more details.

```
0                   1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|    Supported Auth. Methods    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```

Figure 2: Supported Authentication Methods Filed

- DNS (Bit 0): indicates, when set to 1, that DNS without any security extension is supported.

- DNSSEC (Bit 1): indicates, when set to 1, that DNSSEC provides integrity protection. This can only be used for read operations like retrieving the Homenet Zone Template.

- SIG(0) (Bit 2): indicates, when set to 1, that transaction protected by SIG(0) are supported.

- TSIG (Bit 3): indicates, when set to 1, that transaction using TSIG is supported. Note that if a shared secret has not been previously negotiated between the two party, it should be negotiated using TKEY. The TKEY exchanges MUST be protected with SIG(0) even though SIG(0) is not supported.

- Remaining Bits (Bit 4-15): MUST be set to 0 by the DHCP Server and MUST be ignored by the DHCPv6 client.

A Supported Authentication Methods field with all bits set to zero indicates the operation is not permitted. The Supported
Internet-Draft DHCPv6 Options for Homenet Naming Architecture    June 2018

Authentication Methods field may be set to zero when updates
operations are not permitted for the DNS Homenet Template. In any
other case this is an error.

6.2.  Update Field

The Update Field of the DHCPv6 option is represented in Figure 3. It
indicates the update mechanism supported by the DNS server. See
Section 4.3 for more details.

0 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|    Update     |
+-+-+-+-+-+-+-+-+

Figure 3: Update Field

- Primary / Secondary (Bit 0): indicates, when set to 1, that DNS
  Server supports data synchronization using a Primary /
  Secondary mechanism.

- DNS Update (Bit 1): indicates, when set to 1, that DNS Server
  supports data synchronization using DNS Updates.

- Remaining Bits (Bit 2-7): MUST be set to 0 by the DHCPv6 server
  and MUST be ignored by the DHCPv6 client.

6.3.  Client Public Key Option

The Client Public Key Option (OPTION_PUBLIC_KEY) indicates the Client
Public Key that is used to authenticate the HNA. This option is
defined in [I-D.ietf-dhc-sedhcpv6].

6.4.  Zone Template Option

The Zone Template Option (OPTION_DNS_ZONE_TEMPLATE) Option indicates
the HNA how to retrieve the Homenet Zone Template. It provides a
FQDN the HNA SHOULD query with a DNS query of type AXFR as well as
the authentication methods associated to the AXFR query or the
nsupdate queries. Homenet Zone Template update, if permitted MUST
use the DNS Update mechanism.
Figure 4: Zone Template Option

- option-code: (16 bits): OPTION_DNS_ZONE_TEMPLATE, the option code for the Zone Template Option (TBD1).

- option-len (16 bits): length in octets of the option-data field as described in [RFC3315].

- Supported Authentication Methods(axfr) (16 bits): defines which authentication methods are supported by the DNS server. This field concerns the AXFR and consultation queries, not the update queries. See Section 6.1 for more details.

- Supported Authentication Methods (16 bits): defines which authentication methods are supported by the DNS server. This field concerns the update. See Section 6.1 for more details.

- Zone Template FQDN FQDN (variable): the FQDN of the DNS server hosting the Homenet Zone Template.

6.5. Synchronization Server Option

The Synchronization Server Option (OPTION_SYNC_SERVER) provides information necessary for the HNA to upload the Homenet Zone to the Synchronization Server. Finally, the option provides the authentication methods that are available to perform the upload. The upload is performed via a DNS primary / secondary architecture or DNS updates.
Figure 5: Synchronization Server Option

- **option-code** (16 bits): OPTION_SYNC_SERVER, the option code for the Synchronization Server Option (TBD2).

- **option-len** (16 bits): length in octets of the option-data field as described in [RFC3315].

- Supported Authentication Methods (16 bits): defines which authentication methods are supported by the DNS server. See Section 6.1 for more details.

- **Update** (8 bits): defines which update mechanisms are supported by the DNS server. See Section 4.3 for more details.

- **Server Port** (16 bits): defines the port the Synchronization Server is listening. When multiple transport layers may be used, a single and unique Server Port value applies to all the transport layers. In the case of DNS for example, Server Port value considers DNS exchanges using UDP and TCP.

- **Synchronization Server FQDN** (variable): the FQDN of the Synchronization Server.

6.6. Reverse Synchronization Server Option

The Reverse Synchronization Server Option (OPTION_REVERSE_SYNC_SERVER) provides information necessary for the HNA to upload the Homenet Zone to the Synchronization Server. The option provides the authentication methods that are available to perform the upload. The upload is performed via a DNS primary/secondary architecture or DNS updates.
Figure 6: Reverse Synchronization Server Option

- option-code (16 bits): OPTION_REVERSE_SYNC_SERVER, the option code for the Reverse Synchronization Server Option (TBD3).

- option-len (16 bits): length in octets of the option-data field as described in [RFC3315].

- Supported Authentication Methods (16 bits): defines which authentication methods are supported by the DNS server. See Section 6.1 for more details.

- Update (8 bits): defines which update mechanisms are supported by the DNS server. See Section 4.3 for more details.

- Server Port (16 bits): defines the port the Synchronization Server is listening.

- Reverse Synchronization Server FQDN (variable): The FQDN of the Reverse Synchronization Server.

7. DHCP Behavior

7.1. DHCPv6 Server Behavior

Sections 17.2.2 and 18.2 of [RFC3315] govern server operation in regards to option assignment. As a convenience to the reader, we mention here that the server will send option foo only if configured with specific values for foo and if the client requested it. In particular, when configured the DHCP Server sends the Zone Template Option, Synchronization Server Option, Reverse Synchronization Server Option when requested by the DHCPv6 client by including necessary option codes in its ORO.
The DHCP Server may receive a Client Public Key Option (OPTION_PUBLIC_KEY) from the HNA. Upon receipt of this DHCPv6 option, the DHCP Server SHOULD acknowledge the reception of the Client Public Key Option as described in Section 4.1 and communicate this credential to the available DNS Servers like the DNS Template Server, the Synchronization Server and the Reverse Synchronization Server, unless not configured to do so.

A HNA may update its Client Public Key by sending a new value in the Client Public Key Option (OPTION_PUBLIC_KEY) as this document assumes the link between the HNA and the DHCP Server is considered authenticated and trusted. The server SHOULD process received Client Public Key Option sent by the client (see step 2 in Section 4.1), unless not configured to do so.

7.2. DHCPv6 Client Behavior

The DHCPv6 client SHOULD send a Client Public Key Option (OPTION_PUBLIC_KEY) to the DHCP Server. This Client Public Key authenticates the HNA.

The DHCPv6 client sends a ORO with the necessary option codes: Zone Template Option, Synchronization Server Option and Reverse Synchronization Server Option.

Upon receiving a DHCP option described in this document in the Reply message, the HNA SHOULD retrieve or update DNS zones using the associated Supported Authentication Methods and update protocols, as described in Section 5.

7.3. DHCPv6 Relay Agent Behavior

There are no additional requirements for the DHCP Relay agents.

8. IANA Considerations

The DHCP options detailed in this document is:

- OPTION_DNS_ZONE_TEMPLATE: TBD1
- OPTION_SYNC_SERVER: TBD2
- OPTION_REVERSE_SYNC_SERVER: TBD3
9. Security Considerations

9.1. DNSSEC is recommended to authenticate DNS hosted data

It is recommended that the (Reverse) Homenet Zone is signed with DNSSEC. The zone may be signed by the HNA or by a third party. We recommend the zone to be signed by the HNA, and that the signed zone is uploaded.

9.2. Channel between the HNA and ISP DHCP Server MUST be secured

The channel MUST be secured because the HNA provides authentication credentials. Unsecured channel may result in HNA impersonation attacks.

The document considers that the channel between the HNA and the ISP DHCP Server is trusted. More specifically, the HNA is authenticated and the exchanged messages are protected. The current document does not specify how to secure the channel. [RFC3315] proposes a DHCP authentication and message exchange protection, [RFC4301], [RFC7296] propose to secure the channel at the IP layer.

9.3. HNAs are sensitive to DoS

HNAs have not been designed for handling heavy load. The HNA are exposed on the Internet, and their IP address is publicly published on the Internet via the DNS. This makes the Home Network sensitive to Deny of Service Attacks. The resulting outsourcing architecture is described in [I-D.ietf-homenet-front-end-naming-delegation]. This document shows how the outsourcing architecture can be automatically set.

10. Acknowledgments

We would like to thank Marcin Siodelski and Bernie Volz for their comments on the design of the DHCPv6 options. We would also like to thank Mark Andrews, Andrew Sullivan and Lorenzo Colliti for their remarks on the architecture design. The designed solution has been largely been inspired by Mark Andrews's document [I-D.andrews-dnsop-pd-reverse] as well as discussions with Mark. We also thank Ray Hunter for its reviews, its comments and for suggesting an appropriated terminology.

11. References
11.1. Normative References


11.2. Informational References

Appendix A. Scenarios and impact on the End User

This section details various scenarios and discuss their impact on the end user.

A.1. Base Scenario

The base scenario is the one described in Section 4. It is typically the one of an ISP that manages the DHCP Server, and all DNS servers.

The end user subscribes to the ISP (foo), and at subscription time registers for example.foo as its Registered Homenet Domain example.foo. Since the ISP knows the Registered Homenet Domain and the Public Authoritative Server(s) the ISP is able to build the Homenet Zone Template.

The ISP manages the DNS Template Server, so it is able to load the Homenet Zone Template on the DNS Template Server.

When the HNA is plugged (at least the first time), it provides its Client Public Key to the DHCP Server. In this scenario, the DHCP Server and the DNS Servers are managed by the ISP so the DHCP Server can provide authentication credentials of the HNA to enable secure authenticated transaction between the HNA and these DNS servers. More specifically, credentials are provided to:

- Synchronization Server
- Reverse Synchronization Server
- DNS Template Server
The HNA can update the zone using DNS update or a primary / secondary configuration in a secure way.

The main advantage of this scenario is that the naming architecture is configured automatically and transparently for the end user.

The drawbacks are that the end user uses a Registered Homenet Domain managed by the ISP and that it relies on the ISP naming infrastructure.

A.2. Third Party Registered Homenet Domain

This section considers the case when the end user wants its home network to use example.com as a Registered Homenet Domain instead of example.foo that has been assigned by the ISP. We also suppose that example.com is not managed by the ISP.

This can also be achieved without any configuration. When the end user buys the domain name example.com, it may request to redirect the name example.com to example.foo using static redirection with CNAME [RFC2181], [RFC1034], DNAME [RFC6672] or CNAME+DNAME [I-D.sury-dnsext-cname-dname].

This configuration is performed once when the domain name example.com is registered. The only information the end user needs to know is the domain name assigned by the ISP. Once this configuration is done no additional configuration is needed anymore. More specifically, the HNA may be changed, the zone can be updated as in Appendix A.1 without any additional configuration from the end user.

The main advantage of this scenario is that the end user benefits from the Zero Configuration of the Base Scenario Appendix A.1. Then, the end user is able to register for its home network an unlimited number of domain names provided by an unlimited number of different third party providers.

The drawback of this scenario may be that the end user still rely on the ISP naming infrastructure. Note that the only case this may be inconvenient is when the DNS Servers provided by the ISPs results in high latency.

A.3. Third Party DNS Infrastructure

This scenario considers that the end user uses example.com as a Registered Homenet Domain, and does not want to rely on the authoritative servers provided by the ISP.
In this section we limit the outsourcing to the Synchronization Server and Public Authoritative Server(s) to a third party. All other DNS Servers DNS Template Server, Reverse Public Authoritative Server(s) and Reverse Synchronization Server remain managed by the ISP. The reason we consider that Reverse Public Authoritative Server(s) and Reverse Synchronization Server remains managed by the ISP are that the prefix is managed by the ISP, so outsourcing these resources requires some redirection agreement with the ISP. More specifically the ISP will need to configure the redirection on one of its Reverse DNS Servers. That said, outsourcing these resources is similar as outsourcing Synchronization Server and Public Authoritative Server(s) to a third party. Similarly, the DNS Template Server can be easily outsourced as detailed in this section.

Outsourcing Synchronization Server and Public Authoritative Server(s) requires:

- 1) Updating the Homenet Zone Template: this can be easily done as detailed in Section 4.3 as the DNS Template Server is still managed by the ISP. Such modification can be performed once by any HNA. Once this modification has been performed, the HNA can be changed, the Client Public Key of the HNA may be changed, this does not need to be done another time. One can imagine a GUI on the HNA asking the end user to fill the field with Registered Homenet Domain, optionally Public Authoritative Server(s), with a button "Configure Homenet Zone Template".

- 2) Updating the DHCP Server Information. In fact the Reverse Synchronization Server returned by the ISP is modified. One can imagine a GUI interface that enables the end user to modify its profile parameters. Again, this configuration update is done once-for-ever.

- 3) Upload the authentication credential of the HNA, that is the Client Public Key of the HNA, to the third party. Unless we use specific mechanisms, like communication between the DHCP Server and the third party, or a specific token that is plugged into the HNA, this operation is likely to be performed every time the HNA is changed, and every time the Client Public Key generated by the HNA is changed.

The main advantage of this scenario is that the DNS infrastructure is completely outsourced to the third party. Most likely the Client Public Key that authenticate the HNA need to be configured for every HNA. Configuration is expected to be HNA live-long.
A.4. Multiple ISPs

This scenario considers a HNA connected to multiple ISPs.

Firstly, suppose the HNA has been configured with the base scenarios exposed in Appendix A.1. The HNA has multiple interfaces, one for each ISP, and each of these interfaces is configured using DHCP. The HNA sends to each ISP its Client Public Key Option as well as a request for a Zone Template Option, a Synchronization Server Option and a Reverse Synchronization Server Option. Each ISP provides the requested DHCP options, with different values. Note that this scenario assumes, the home network has a different Registered Homenet Domain for each ISP as it is managed by the ISP. On the other hand, the HNA Client Public Key may be shared between the HNA and the multiple ISPs. The HNA builds the associated DNS(SEC) Homenet Zone, and proceeds to the various settings as described in Appendix A.1.

The protocol and DHCPv6 options described in this document are fully compatible with a HNA connected to multiple ISPs with multiple Registered Homenet Domains. However, the HNA should be able to handle different Registered Homenet Domains. This is an implementation issue which is outside the scope of the current document. More specifically, multiple Registered Homenet Domains leads to multiple DNS(SEC) Homenet Zones. A basic implementation may erase the DNS(SEC) Homenet Zone that exists when it receives DHCPv6 options, and rebuild everything from scratch. This will work for an initial configuration but comes with a few drawbacks. First, updates to the DNS(SEC) Homenet Zone may only push to one of the multiple Registered Homenet Domains, and this is most likely expected to be almost randomly chosen as it may depend on the latency on each ISP network at the boot time. As a result, this leads to unsynchronized Registered Homenet Domains. Secondly, if the HNA handles in some ways resolution, only the latest Registered Homenet Domain set may be able to provide naming resolution in case of network disruption.

Secondly, suppose the HNA is connected to multiple ISP with a single Registered Homenet Domain. In this case, the one party is chosen to host the Registered Homenet Domain. This entity may be one of the ISP or a third party. Note that having multiple ISPs can be motivated for bandwidth aggregation, or connectivity fail-over. In the case of connectivity fail-over, the fail-over concerns the access network and a failure of the access network may not impact the core network where the Synchronization Server and Public Authoritative Primaries are hosted. In that sense, choosing one of the ISP even in a scenario of multiple ISPs may make sense. However, for sake of simplicity, this scenario assumes that a third party has been chosen to host the Registered Homenet Domain. The DNS settings for each ISP is
described in Appendix A.2 and Appendix A.3. With the configuration described in Appendix A.2, the HNA is expect to be able to handle multiple Homenet Registered Domain, as the third party redirect to one of the ISPs Servers. With the configuration described in Appendix A.3, DNS zone are hosted and maintained by the third party. A single DNS(SEC) Homenet Zone is built and maintained by the HNA. This latter configuration is likely to match most HNA implementations.

The protocol and DHCPv6 options described in this document are fully compatible with a HNA connected to multiple ISPs. To configure or not and how to configure the HNA depends on the HNA facilities. Appendix A.1 and Appendix A.2 require the HNA to handle multiple Registered Homenet Domain, whereas Appendix A.3 does not have such requirement.

Appendix B. Document Change Log

[RFC Editor: This section is to be removed before publication]

-05: changing Master to Primary, Slave to Secondary

-04: Working Version Major modifications are:

- Re-structuring the draft: description and comparison of update and authentication methods have been integrated into the Overview section. a Configuration section has been created to describe both configuration and corresponding behavior of the HNA.

- Adding Ports parameters: Server Set can configure a port. The Port Server parameter have been added in the DHCPv6 option payloads because middle boxes may not be configured to let port 53 packets and it may also be useful to split servers among different ports, assigning each end user a different port.

- Multiple ISP scenario: In order to address comments, the multiple ISPs scenario has been described to explicitly show that the protocol and DHCPv6 options do not prevent a HNA connected to multiple independent ISPs.

-03: Working Version Major modifications are:

- Redesigning options/scope: according to feed backs received from the IETF89 presentation in the dhcp WG.

- Redesigning architecture: according to feed backs received from the IETF89 presentation in the homenet WG, discussion with Mark and Lorenzo.
-02: Working Version Major modifications are:
- Redesigning options/scope: As suggested by Bernie Volz
-01: Working Version Major modifications are:
- Remove the DNS Zone file construction: As suggested by Bernie Volz
- DHCPv6 Client behavior: Following options guide lines
- DHCPv6 Server behavior: Following options guide lines
-00: version published in the homenet WG. Major modifications are:
- Reformattting of DHCPv6 options: Following options guide lines
- DHCPv6 Client behavior: Following options guide lines
- DHCPv6 Server behavior: Following options guide lines
-00: First version published in dhc WG.

Authors’ Addresses

Daniel Migault
Ericsson
8400 boulevard Decarie
Montreal, QC H4P 2N2
Canada
Email: daniel.migault@ericsson.com

Tomek Mrugalski
Internet Systems Consortium, Inc.
950 Charter Street
Redwood City, CA 94063
USA
Email: tomasz.mrugalski@gmail.com
URI: http://www.isc.org

Chris Griffiths
Email: cgriffiths@gmail.com
DHCPv6 Options for Home Network Naming Authority

draft-ietf-homenet-naming-architecture-dhc-options-15

Abstract

This document defines DHCPv6 options so an agnostic Homenet Naming Authority (HNA) can automatically proceed to the appropriate configuration and outsource the authoritative naming service for the home network. In most cases, the outsourcing mechanism is transparent for the end user.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

The reader should be familiar with [I-D.ietf-homenet-front-end-naming-delegation].
2. Introduction

[I-D.ietf-homenet-front-end-naming-delegation] specifies how an entity designated as the Homenet Naming Authority (HNA) outsources a Public Homenet Zone to an Outsourcing DNS Infrastructure (DOI).

This document describes how a network can provision the HNA with a specific DOI. This could be particularly useful for a DOI partly managed by an ISP, or to make home networks resilient to HNA replacement. The ISP delegates an IP prefix to the home network as well as the associated reverse zone. The ISP is thus aware of the owner of that IP prefix, and as such becomes a natural candidate for hosting the Homenet Reverse Zone – that is the Reverse Distribution Manager (RDM) and potentially the Reverse Public Authoritative Servers.

In addition, ISPs often identify the line of the home network with a name. Such name is used for their internal network management operations and is not a name the home network owner has registered to. ISPs may leverage such infrastructure and provide the homenet with a specific domain name designated as per [I-D.ietf-homenet-front-end-naming-delegation] a Homenet Registered Domain. Similarly to the reverse zone, ISPs are aware of who owns that domain name and may become a natural candidate for hosting the Homenet Zone – that is the Distribution Manager (DM) and the Public Authoritative Servers.

This document describes DHCPv6 options that enable an ISP to provide the necessary parameters to the HNA, to proceed. More specifically, the ISP provides the Registered Homenet Domain, necessary information on the DM and the RDM so the HNA can manage and upload the Public Homenet Zone and the Reverse Public Homenet Zone as described in [I-D.ietf-homenet-front-end-naming-delegation].

The use of DHCPv6 options may make the configuration completely transparent to the end user and provides a similar level of trust as the one used to provide the IP prefix – when provisioned via DHCP.

3. Procedure Overview

This section illustrates how a HNA receives the necessary information via DHCPv6 options to outsource its authoritative naming service to the DOI. For the sake of simplicity, and similarly to [I-D.ietf-homenet-front-end-naming-delegation], this section assumes that the HNA and the home network DHCPv6 client are colocated on the Customer Edge (CE) router [RFC7368]. Note also that this is not mandatory and the DHCPv6 client may instruct remotely the HNA and the DHCPv6 either with a proprietary protocol or a protocol that will be
defined in the future. In addition, this section assumes the responsible entity for the DHCPv6 server is configured with the DM and RDM. This means a Registered Homenet Domain can be associated to the DHCPv6 client.

This scenario is believed to be the most popular scenario. This document does not ignore scenarios where the DHCPv6 server does not have privileged relations with the DM or RDM. These cases are discussed in Appendix A. Such scenarios do not necessarily require configuration for the end user and can also be zero-config.

The scenario considered in this section is as follows:

1. The HNA is willing to outsource the Public Homenet Zone or Homenet Reverse Zone. The DHCPv6 client is configured to include in its Option Request Option (ORO) the Registered Homenet Domain Option (OPTION_REGISTERED_DOMAIN), the Distribution Manager Option (OPTION_DIST_MANAGER) and the Reverse Distribution Manager Option (OPTION_REVERSE_DIST_MANAGER) option codes.

2. The DHCPv6 server responds to the HNA with the requested DHCPv6 options based on the identified homenet. The DHCPv6 client passes the information to the HNA.

1. The HNA is authenticated (see Section 4.6 of [I-D.ietf-homenet-front-end-naming-delegation]) by the DM and the RDM. The HNA builds the Homenet Zone (or the Homenet Reverse Zone) and proceed as described in [I-D.ietf-homenet-front-end-naming-delegation]. The DHCPv6 options provide the necessary non optional parameters described in Section 14 of [I-D.ietf-homenet-front-end-naming-delegation]. The HNA may complement the configurations with additional parameters via means not yet defined. Section 14 of [I-D.ietf-homenet-front-end-naming-delegation] describes such parameters that MAY take some specific non default value.

4. DHCPv6 Option

This section details the payload of the DHCPv6 options.

4.1. Registered Homenet Domain Option

The Registered Domain Option (OPTION_REGISTERED_DOMAIN) indicates the FQDN associated to the home network.
4.2. Distribution Manager Option

The Distributed Manager Option (OPTION_DIST_MANAGER) provides the HNA with the FQDN of the DM as well as the transport protocols for the communication between the HNA and the DM.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OPTION_DIST_MANAGER | option-len |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Supported Transport |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Distribution Manager FQDN |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

* option-code (16 bits): OPTION_DIST_MANAGER, the option code for the Distribution Manager Option (TBD2).

* option-len (16 bits): length in octets of the enclosed data as described in [RFC8415].
* Supported Transport (16 bits): defines the supported transport by the DM (see Section 4.2.1). Each bit represents a supported transport, and a DM MAY indicate the support of multiple modes. The bit for DNS over TLS [RFC7858] MUST be set.

* Distribution Manager FQDN (variable): the FQDN of the DM encoded as described in Section 10 of [RFC8415].

4.2.1. Supported Transport

The Supported Transport field of the DHCPv6 option indicates the supported transport protocols. Each bit represents a specific transport mechanism. A bit sets to 1 indicates the associated transport protocol is supported. The corresponding bits are assigned as described in Figure 3 and Section 6.

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Transport Protocol</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DNS over TLS</td>
<td>TBD</td>
</tr>
<tr>
<td>1-15</td>
<td>unallocated</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Supported Transport

DNS over TLS: indicates the support of DNS over TLS as described in [RFC7858].

4.3. Reverse Distribution Manager Server Option

The Reverse Distribution Manager Option (OPTION_REVERSE_DIST_MANAGER) provides the HNA with the FQDN of the DM as well as the transport protocols for the communication between the HNA and the DM.

```
0  1  2  3
+-----+-+-----+-+-----+-+-----+-+-----+-+-----+-+-----+-+-----+-+-----+-+-----+-+-----+-+
<table>
<thead>
<tr>
<th>OPTION_REVERSE_DIST_MANAGER</th>
<th>option-len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Transport</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Reverse Distribution Manager FQDN</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 4: Reverse Distribution Manager Option

* option-code (16 bits): OPTION_REVERSE_DIST_MANAGER, the option code for the Reverse Distribution Manager Option (TBD3).
* option-len (16 bits): length in octets of the option-data field as described in [RFC8415].

* Supported Transport (16 bits): defines the supported transport by the RDM (see Section 4.2.1). Each bit represents a supported transport, and a RDM MAY indicate the support of multiple modes. The bit for DNS over TLS [RFC7858] MUST be set.

* Reverse Distribution Manager FQDN (variable): the FQDN of the RDM encoded as described in section 10 of [RFC8415].

5. DHCPv6 Behavior

5.1. DHCPv6 Server Behavior

Sections 17.2.2 and 18.2 of [RFC8415] govern server operation in regards to option assignment. As a convenience to the reader, we mention here that the server will send option foo only if configured with specific values for foo and if the client requested it. In particular, when configured the DHCPv6 server sends the Registered Homenet Domain Option, Distribution Manager Option, the Reverse Distribution Manager Option when requested by the DHCPv6 client by including necessary option codes in its ORO.

5.2. DHCPv6 Client Behavior

The DHCPv6 client includes Registered Homenet Domain Option, Distribution Manager Option, the Reverse Distribution Manager Option in an ORO as specified in Sections 18.2.1, 18.2.2, 18.2.4, 18.2.5, 18.2.6, and 21.7 of [RFC8415].

Upon receiving a DHCPv6 option described in this document in the Reply message, the HNA SHOULD proceed as described in [I-D.ietf-homenet-front-end-naming-delegation].

5.3. DHCPv6 Relay Agent Behavior

There are no additional requirements for the DHCPv6 Relay agents.

6. IANA Considerations

IANA is requested to assign the following new DHCPv6 Option Codes in the registry maintained in: https://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml#dhcpv6-parameters-2.
IANA is requested to maintain a new number space of Supported Transport parameter in the Distributed Manager Option (OPTION_DIST_MANAGER) or the Reverse Distribution Manager Option (OPTION_REVERSE_DIST_MANAGER). The different parameters are defined in Figure 3 in Section 4.2.1. Future code points are assigned under Specification Required as per [RFC8126].

7. Security Considerations

The security considerations in [RFC8415] are to be considered. The use of DHCPv6 options provides a similar level of trust as the one used to provide the IP prefix. The link between the HNA and the DHCPv6 server may benefit from additional security for example by using [I-D.ietf-dhc-sedhcpv6].

8. Acknowledgments

We would like to thank Marcin Siodelski, Bernie Volz and Ted Lemon for their comments on the design of the DHCPv6 options. We would also like to thank Mark Andrews, Andrew Sullivan and Lorenzo Colliti for their remarks on the architecture design. The designed solution has been largely been inspired by Mark Andrews’s document [I-D.andrews-dnsop-pd-reverse] as well as discussions with Mark. We also thank Ray Hunter and Michael Richardson for its reviews, its comments and for suggesting an appropriated terminology.

9. Contributors

The co-authors would like to thank Chris Griffiths and Wouter Cloetens that provided a significant contribution in the early versions of the document.

10. References

10.1. Normative References

[I-D.ietf-homenet-front-end-naming-delegation]

10.2. Informative References

[I-D.andrews-dnsop-pd-reverse]

[I-D.ietf-dhc-sedhcpv6]

[I-D.sury-dnsext-cname-dname]

Migault, et al. Expires 15 December 2022
Appendix A. Scenarios and impact on the End User

This section details various scenarios and discuss their impact on the end user. This section is not normative and limits the description of a limited scope of scenarios that are assumed to be representative. Many other scenarios may be derived from these.

Appendix B. Base Scenario

The base scenario is the one described in Section 3 in which an ISP manages the DHCPv6 server, the DM and RDM.

The end user subscribes to the ISP (foo), and at subscription time registers for example.foo as its Registered Homenet Domain example.foo.

In this scenario, the DHCPv6 server, DM and RDM are managed by the ISP so the DHCPv6 server and as such can provide authentication credentials of the HNA to enable secure authenticated transaction with the DM and the Reverse DM.

The main advantage of this scenario is that the naming architecture is configured automatically and transparently for the end user. The drawbacks are that the end user uses a Registered Homenet Domain managed by the ISP and that it relies on the ISP naming infrastructure.
B.1. Third Party Registered Homenet Domain

This section considers the case when the end user wants its home network to use example.com not managed by her ISP (foo) as a Registered Homenet Domain. This section still consider the ISP manages the home network and still provides example.foo as a Registered Homenet Domain.

When the end user buys the domain name example.com, it may request to redirect the name example.com to example.foo using static redirection with CNAME [RFC2181], [RFC1034], DNAME [RFC6672] or CNAME+DNAME [I-D.sury-dnsext-cname-dname].

This configuration is performed once when the domain name example.com is registered. The only information the end user needs to know is the domain name assigned by the ISP. Once this configuration is done no additional configuration is needed anymore. More specifically, the HNA may be changed, the zone can be updated as in Appendix B without any additional configuration from the end user.

The main advantage of this scenario is that the end user benefits from the Zero Configuration of the Base Scenario Appendix B. Then, the end user is able to register for its home network an unlimited number of domain names provided by an unlimited number of different third party providers. The drawback of this scenario may be that the end user still rely on the ISP naming infrastructure. Note that the only case this may be inconvenient is when the DNS servers provided by the ISPs results in high latency.

B.2. Third Party DNS Infrastructure

This scenario considers that the end user uses example.com as a Registered Homenet Domain, and does not want to rely on the authoritative servers provided by the ISP.

In this section we limit the outsourcing to the DM and Public Authoritative Server(s) to a third party. The Reverse Public Authoritative Server(s) and the RDM remain managed by the ISP as the IP prefix is managed by the ISP.

Outsourcing to a third party DM can be performed in the following ways:

1. Updating the DHCPv6 server Information. One can imagine a GUI interface that enables the end user to modify its profile parameters. Again, this configuration update is done once-for-ever.
2. Upload the configuration of the DM to the HNA. In some cases, the provider of the CE router hosting the HNA may be the registrar and provide the CE router already configured. In other cases, the CE router may request the end user to log into the registrar to validate the ownership of the Registered Homenet Domain and agree on the necessary credentials to secure the communication between the HNA and the DM. As described in [I-D.ietf-homenet-front-end-naming-delegation], such settings could be performed in an almost automatic way as to limit the necessary interactions with the end user.

B.3. Multiple ISPs

This scenario considers a HNA connected to multiple ISPs.

Suppose the HNA has been configured each of its interfaces independently with each ISP as described in Appendix B. Each ISP provides a different Registered Homenet Domain.

The protocol and DHCPv6 options described in this document are fully compatible with a HNA connected to multiple ISPs with multiple Registered Homenet Domains. However, the HNA should be able to handle different Registered Homenet Domains. This is an implementation issue which is outside the scope of the current document.

If a HNA is not able to handle multiple Registered Homenet Domains, the HNA may remain connected to multiple ISP with a single Registered Homenet Domain. In this case, one entity is chosen to host the Registered Homenet Domain. This entity may be one of the ISP or a third party. Note that having multiple ISPs can be motivated for bandwidth aggregation, or connectivity fail-over. In the case of connectivity fail-over, the fail-over concerns the access network and a failure of the access network may not impact the core network where the DM and Public Authoritative Primaries are hosted. In that sense, choosing one of the ISP even in a scenario of multiple ISPs may make sense. However, for sake of simplicity, this scenario assumes that a third party has been chosen to host the Registered Homenet Domain. Configuration is performed as described in Appendix B.1 and Appendix B.2.

With the configuration described in Appendix B.1, the HNA is expected to be able to handle multiple Homenet Registered Domain, as the third party redirect to one of the ISPs servers. With the configuration described in Appendix B.2, DNS zone are hosted and maintained by the third party. A single DNS(SEC) Homenet Zone is built and maintained by the HNA. This latter configuration is likely to match most HNA implementations.
The protocol and DHCPv6 options described in this document are fully compatible with a HNA connected to multiple ISPs. To configure or not and how to configure the HNA depends on the HNA facilities. Appendix B and Appendix B.1 require the HNA to handle multiple Registered Homenet Domain, whereas Appendix B.2 does not have such requirement.

Authors’ Addresses

Daniel Migault
Ericsson
8275 Trans Canada Route
Saint Laurent, QC 4S 0B6
Canada
Email: daniel.migault@ericsson.com

Ralf Weber
Akamai
Email: ralf.weber@akamai.com

Tomek Mrugalski
Internet Systems Consortium, Inc.
950 Charter Street
Redwood City, 94063
United States of America
Email: tomasz.mrugalski@gmail.com
This document describes how names are published and resolved on homenets, and how hosts are configured to use these names to discover services on homenets. It presents the complete architecture, and describes a simple subset of that architecture that can be used in low-cost homenet routers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 3, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ............................................. 2
2. Requirements ........................................... 3
   2.1. Managed LAN versus Homenet .......................... 4
   2.2. Homenet-specific considerations .................... 4
3. Terminology ............................................. 5
4. Name .................................................... 5
5. Authority ................................................. 6
6. Resolution ............................................... 7
7. Publication ............................................. 7
   7.1. DNS Service Discovery Registration Protocol ......... 7
   7.2. Configuring Service Discovery ....................... 8
8. Host Configuration ........................................ 10
9. Globally Unique Name .................................... 10
10. DNSSEC Validation ........................................ 10
11. Support for Multiple Provisioning Domains ............... 11
12. Using the Local Namespace While Away From Home ....... 11
13. Management Considerations ............................... 11
14. Privacy Considerations .................................. 12
15. Security Considerations ................................ 12
16. IANA considerations .................................... 12
17. Normative References .................................... 12
Appendix A. Existing solutions ............................. 14
Authors’ Addresses .......................................... 15

1. Introduction

This document is a homenet architecture document. The term ‘homenet’ refers to a set of technologies that allow home network users to have a local-area network (LAN) with more than one physical link and, optionally, more than one internet service provider. Home network users are assumed not to be knowledgeable in network operations, so homenets automatically configure themselves, providing connectivity and service discovery within the home with no operator intervention. This document describes the aspect of homenet automatic configuration that has to do with service discovery and name resolution.

The homenet naming architecture consists of two parts: the simple naming architecture, and the advanced naming architecture. The advanced architecture provides approximate parity of features with a managed network, including the ability to publish services on the internet. The simple architecture provides a minimal set of features required to enable seamless service discovery on a multi-link home
network, but does not attempt to provide feature parity with a managed LAN.

This document begins by presenting a motivational list of requirements and considerations, which should give the reader a clear idea of the scope of the problem being solved. It then explains how each requirement is addressed, and provides references for relevant standards documents describing the details of the implementation. Some requirements are not satisfied by the simple architecture; these are discussed in this document, but explained in more detail in the Advanced Homenet Naming Architecture document, which is to follow.

2. Requirements

Name service on a local area network (LAN) requires the following:

- **Name:** a forward domain under which information about local services will be published
- **Authority:** a name server that is authoritative for at least one forward domain and one or two reverse domains that are applicable to that network and is capable of signing and publishing the zones using DNSSEC
- **Resolution:** a full-service caching DNS resolver that fully supports EDNS(0) and queries with the DO bit set
- **Publication:** a mechanism that
  - allows services on the LAN to publish information about the services they provide
  - allows services to publish information on how to reach them
  - manages the lifetime of such information, so that it persists long enough to prevent spoofing, but protects end users from seeing stale information
- **Host configuration:** one or more automatic mechanisms (e.g. DHCP or RA) that provide:
  - caching resolver information to hosts on the LAN
  - information about how services on the LAN can publish information
- **Trust:** some basis for trusting the information that is provided by the service discovery system
2.1. Managed LAN versus Homenet

A managed network is one that has a (human) manager, or operator. The operator has authority over the network, and the authority to publish names in a forward DNS tree, and reverse names in the reverse tree. The operator has the authority to sign the respective trees with DNSSEC, and acquire TLS certificates for hosts/servers within the network.

On a managed LAN, many of these services can be provided by operators. When a new printer is added to the network, it can be added to the service discovery system (the authoritative server) manually. When a printer is taken out of service, it can be removed. In this scenario, the role of "publisher" is filled by the network operator.

In many managed LANs, establishment of trust for service discovery is simply on the basis of a belief that the local resolver will give a correct answer. Once the service has been discovered and chosen, there may be some security (e.g., TLS) that protects the connection to the service, but the trust model is often just "you’re connected to a network you trust, so you can trust the printer that you discovered on this network."

A homenet does not have an operator, so functions that would normally be performed by the operator have to happen automatically. This has implications for trust establishment—since there is no operator controlling what services are published locally, some other mechanism is required for basic trust establishment. Additionally, whereas in a managed LAN with multiple links to the Internet, the network operator can configure the network so that multihoming is handled seamlessly, in a homenet, multihoming must be handled using multiple provisioning domains [RFC7556].

2.2. Homenet-specific considerations

A naming architecture for homenets therefore adds the following considerations:

- All of the operations mentioned here must reliably function automatically, without any user intervention or debugging.

- Because user intervention cannot be required, naming conflicts must be resolved automatically, and, to the extent possible, transparently.

- Devices that provide services must be able to publish those services on the homenet, and those services must be available from
any part of the homenet, not just the link to which the device is attached.

- Homenets must address the problem of multiple provisioning domains, in the sense that the DNS may give a different answer depending on whether caching resolvers at one ISP or another are queried.

An additional requirement from the Homenet Architecture [9] is that hosts are not required to implement any homenet-specific capabilities in order to discover and access services on the homenet. This architecture may define optional homenet-specific features, but hosts that do not implement these features must work on homenets.

3. Terminology

This document uses the following terms and abbreviations:

- HNR  Homenet Router
- SHNR  Homenet Router implementing simple homenet naming architecture
- AHNR  Homenet Router implementing advanced homenet naming architecture
- ISP  Internet Service Provider

4. Name

In order for names to be published on a homenet, it is necessary that there be a set of domain names under which such names are published. These domain names, together, are referred to as the "local domains." By default, homenets use the reserved domain ‘home.arpa.’ for publishing names for forward lookups. So a host called ‘example’ that published its name on the homenet would publish its records on the domain name ‘example.home.arpa.’. Because ‘home.arpa.’ is used by all homenets, it has no global meaning, and names published under the domain ‘home.arpa’ cannot be used outside of the homenet on which they are published.

Homenet routers that implement advanced homenet naming may also be configured with a global domain. How such a domain is configured is out of scope for this document, and is described in the Advanced Homenet Naming Architecture document [advanced].

In addition to the name, which defaults to ‘home.arpa.’, names are needed for reverse lookups. These names are dependent on the IP addressing used on the homenet. If the homenet is addressed with
IPv4, a reverse domain corresponding to the IPv4 subnet [1] section 5.2.1 should be constructed. For example, if the homenet is allocating local IP addresses out of net 10 [3], a domain, ‘10.in-addr.arpa’ would be required. Like ‘home.arpa.’, ‘10.in-addr.arpa’ is a locally-served zone, and has no validity outside of the homenet.

If the homenet is addressed with IPv6, it is expected to have a unique local address prefix; subsets of this prefix will be advertised on every link on the homenet. Every service on the homenet that supports IPv6 is expected to be reachable at an address that is configured using the ULA prefix. Therefore there is no need for any IPv6 reverse zone to be populated other than the ULA zone.

So for example if the homenet’s ULA prefix is fd00:2001:db8::/48, then the reverse domain name for the homenet would end in ‘0.b.d.0.1.0.2.0.0.d.f.ip6.arpa’.

5. Authority

The authority role is provided by a name server that is authoritative for each of the local domains. SHNRs provide authoritative service for the homenet using DNSSD Discovery Broker [17]. SHNRs also provide Discovery Relay service [12]. On a homenet that has only SHNRs, each SHNR individually provides authoritative service for the whole homenet by using Discovery relays to discover services off the local link.

The Discovery Proxy model relies on each link having its own name. However, homenets do not actually have a way to name local links that will make any sense to the end user. Consequently, this mechanism will not work without some tweaks. In order to address this, homenets will use Discovery Brokers [17]. The discovery broker will be configured so that a single query for a particular service will be successful in providing the information required to access that service, regardless of the link it is on.

Artificial link names will be generated using HNCP. These should only be visible to the user in graphical user interfaces in the event that the same name is claimed by a service on two links. Services that are expected to be accessed by users who type in names should use [13] if it is available.

It is possible that local services may offer services available on IP addresses in public as well as ULA prefixes. Homenet hybrid proxies MUST filter out global IP addresses, providing only ULA addresses, similar to the process described in section 5.5.2 of [11].

This filtering applies to queries within the homenet; it is appropriate for non-ULA addresses to be used for offering services,
because in some cases end users may want such services to be reachable outside of the homenet. Configuring this is however out of scope for this document.

6. Resolution

Name resolution is provided by a local DNS cache or proxy on the homenet, henceforth the "local resolver." All host queries are sent to this local resolver. The local resolver may either act as a full-service caching resolver, or as a DNS proxy. Its responsibility with respect to queries on the homenet is to notice queries for names for which the local authoritative server is authoritative. Queries for such names are handled through the local authoritative server. Queries for all other names are resolved either by forwarding them to an ISP-provided full service resolver, or by providing the full service resolver function locally.

7. Publication

7.1. DNS Service Discovery Registration Protocol

The DNSSD Service Registration protocol [13] requires that DNS updates be validated on the basis that they are received on the local link. To ensure that such registrations are actually received on local links in the homenet, updates are sent to the local relay proxy ([12]) (XXX how?).

The relay proxy encapsulates the update and sends it to whatever Discovery Proxy is listening on the link; the Discovery proxy then either consumes the update directly, or forwards it to the authoritative resolver for the local service discovery zone. If the registration protocol is not supported on the homenet, the Discovery Proxy rejects the update with a ??? RCODE.

Homenets are not required to support Service Registration. Service registration requires a stateful authoritative DNS server; this may be beyond the capability of the minimal Homenet router. However, more capable Homenet routers should provide this capability. In order to make this work, minimal Homenet routers MUST implement the split hybrid proxy [12]. This enables a Homenet with one or more Homenet routers that provide a stateful registration cache to allow those routers to take over service, using Discovery Relays to service links that are connected using Homenet routers with more limited functionality.
7.2. Configuring Service Discovery

Clients discovering services using DNS-SD [7] follow a two-step process. The first step is for the client device to determine in which domain(s) to attempt to discover services. The second step is for the client device to then seek desired service(s) in those domain(s). For an example of the second step, given the desired service type "IPP Printing", and the domains "local" and "meeting.ietf.org", the client device forms the queries "_ipp._tcp.local. PTR ?" (resolved using Multicast DNS) and "_ipp._tcp.meeting.ietf.org PTR. ?" (resolved using Unicast DNS) and then presents the combined list of results to the user.

The first step, determining in which domain(s) to attempt to discover services, is performed in a variety of ways, as described in Section 11 of the DNS-Based Service Discovery specification [7].

The domain "local" is generally always in the set of domains in which the client devices attempt to discover services, and other domains for service discovery may be configured manually by the user.

The device also learns additional domains automatically from its network environment. For this automatic configuration discovery, special DNS queries are formulated. To learn additional domain(s) in which to attempt to discover services, the query string "lb._dns_sd._udp" is prepended onto three different kinds of "bootstrap domain" to form DNS queries that allow the device to learn the configuration information.

One of these bootstrap domains is the fixed string "local". The device issues the query "lb._dns_sd._udp.local. PTR ?" (resolved using Multicast DNS), and if any answers are received, then they are added to the set of domains in which the client devices attempt to discover services.

Another kind of these bootstrap domains is name-based, derived from the DHCPv4 "domain name" option (code 15) [4] (for IPv4) or the DNS Search List (DNSSL) Router Advertisement option [10] (for IPv6). If a domain in the DNSSL is "example.com", then the device issues the query "lb._dns_sd._udp.example.com. PTR ?" (resolved using Unicast DNS), and if any answers are received, then they are likewise added to the set of domains in which the client devices attempt to discover services.

Finally, the third kind of bootstrap domain is address-based, derived from the device’s IP address(es) themselves. If the device has IP address 192.168.1.100/24, then the device issues the query "lb._dns_sd._udp.0.1.168.192.in-addr.arpa. PTR ?" (resolved using
Unicast DNS), and if any answers are received, then they are also added to the set of domains in which the client devices attempt to discover services.

Since there is an HNR on every link of a homenet, automatic configuration could be performed by having HNRs answer the "lb._dns_sd._udp.local. PTR ?" (Multicast DNS) queries. However, because multicast is slow and unreliable on many modern network technologies like Wi-Fi, we prefer to avoid using it. Instead we require that a homenet be configured to answer the name-based bootstrap queries. By default the domain in the DNSSL communicated to the client devices will be "home.arpa", and the homenet will be configured to correctly answer queries such as "lb._dns_sd._udp.example.com. PTR ?", though client devices must not assume that the name will always be "home.arpa". A client could be configured with any valid DNSSL, and should construct the appropriate bootstrap queries derived from the name(s) in their configured DNS Search List.

HNRs will answer domain enumeration queries against every IPv4 address prefix advertised on a homenet link, and every IPv6 address prefix advertised on a homenet link, including prefixes derived from the homenet’s ULA(s). Whenever the "<domain>" sequence appears in this section, it references each of the domains mentioned in this paragraph.

Homenets advertise the availability of several browsing zones in the "b._dns_sd._udp.<domain>" subdomain. By default, the ‘home.arpa’ domain is advertised. Similarly, ‘home.arpa’ is advertised as the default browsing and service registration domain under "db._dns_sd._udp.<domain>", "r._dns_sd._udp.<domain>", "dr._dns_sd._udp.<domain>" and "lb._dns_sd._udp.<domain>".

In order for this discovery process to work, the homenet must provide authoritative answers for each of the domains that might be queried. To do this, it provides authoritative name service for the ‘ip6.arpa’ and ‘in-addr.arpa’ subdomains corresponding to each of the prefixes advertised on the homenet. For example, consider a homenet with the 192.168.1.0/24, 2001:db8:1234:5600::/56 and fc01:2345:6789:1000::/56 prefixes. This homenet will have to provide a name server that claims to be authoritative for 1.168.192.in-addr.arpa, 6.5.4.3.2.1.8.b.d.0.1.0.0.2.ip6.arpa and 0.0.9.8.7.6.5.4.3.2.1.0.c.f.ip6.arpa.

An IPv6-only homenet would not have an authoritative server for a subdomain of in-addr.arpa. These public authoritative zones are required for the public prefixes even if the prefixes are not...
delegated. However, they need not be accessible outside of the homenet.

It is out of the scope of this document to specify ISP behavior, but we note that ISPs have the option of securely delegating the zone, or providing an unsigned delegation, or providing no delegation. Any delegation tree that does not include an unsigned delegation at or above the zone cut for the ip6.arpa reverse zone for the assigned prefix will fail to validate.

Ideally, an ISP should provide a secure delegation using a zone-signing key provided by the homenet. However, that too is out of scope for this document. Therefore, an ISP that wishes to support users of the simple homenet naming architecture will have to provide an unsigned delegation. We do not wish, however, to discourage provisioning of signed delegations when that is possible.

8. Host Configuration

Hosts on the homenet receive a set of resolver IP addresses using either DHCP or RA. IPv4-only hosts will receive IPv4 addresses of resolvers, if available, over DHCP. IPv6-only hosts will receive resolver IPv6 addresses using either stateful (if available) or stateless DHCPv6, or through the Recursive DNS Server Option ([10], Section 5.1) in router advertisements.

All Homenet routers provide resolver information using both stateless DHCPv6 and RA; support for stateful DHCPv6 and DHCPv4 is optional, however if either service is offered, resolver addresses will be provided using that mechanism as well.

9. Globally Unique Name

Automatic configuration of a globally unique name for the homenet is out of scope for this document. However, homenet servers MUST allow the user to configure a globally unique name in place of the default name, ‘home.arpa.’ By default, even if configured with a global name, homenet routers MUST NOT answer queries from outside of the homenet for subdomains of that name.

10. DNSSEC Validation

DNSSEC Validation for the ‘home.arpa’ zone and for the locally-served ‘ip6.arpa and ‘in-addr.arpa’ domains is not possible without a trust anchor. Establishment of a trust anchor for such validation is out of scope for this document.
Homenets that have been configured with a globally unique domain MUST support DNSSEC signing of local names, and must provide a way to generate a KSK that can be used in the secure delegation of the globally unique domain assigned to the homenet.

11. Support for Multiple Provisioning Domains

Homenets must support the Multiple Provisioning Domain Architecture [9]. Hosts connected to the homenet may or may not support multiple provisioning domains. For hosts that do not support multiple provisioning domains, the homenet provides one or more resolvers that will answer queries for any provisioning domain. Such hosts may receive answers to queries that either do not work as well if the host chooses a source address from a different provisioning domain, or does not work at all. However, the default source address selection policy, longest-match [CITE], will result in the correct source address being chosen as long as the destination address has a close match to the prefix assigned by the ISP.

Hosts that support multiple provisioning domains will be provisioned with one or more resolvers per provisioning domain. Such hosts can use the IP address of the resolver to determine which provisioning domain is applicable for a particular answer.

Each ISP has its own provisioning domain. Because ISPs connections cannot be assumed to be persistent, the homenet has its own separate provisioning domain.

Configuration from the IPv4 DHCP server are treated as being part of the homenet provisioning domain. The case where a homenet advertises IPv4 addresses from one or more public prefixes is out of scope for this document. Such a configuration is NOT RECOMMENDED for homenets.

Configuration for IPv6 provisioning domains is done using the Multiple Provisioning Domain RA option [CITE].

12. Using the Local Namespace While Away From Home

This architecture does not provide a way for service discovery to be performed on the homenet by devices that are not directly connected to a link that is part of the homenet.

13. Management Considerations

This architecture is intended to be self-healing, and should not require management. That said, a great deal of debugging and management can be done simply using the DNS Service Discovery protocol.
14. Privacy Considerations

Privacy is somewhat protected in the sense that names published on the homenet are only visible to devices connected to the homenet. This may be insufficient privacy in some cases.

The privacy of host information on the homenet is left to hosts. Various mechanisms are available to hosts to ensure that tracking does not occur if it is not desired. However, devices that need to have special permission to manage the homenet will inevitably reveal something about themselves when doing so. It may be possible to use something like HTTP token binding [15] to mitigate this risk.

15. Security Considerations

There are some clear issues with the security model described in this document, which will be documented in a future version of this section. A full analysis of the avenues of attack for the security model presented here have not yet been done, and must be done before the document is published.

16. IANA considerations

No new actions are required by IANA for this document.

Note however that this document is relying on the allocation of ‘home.arpa’ described in Special Use Top Level Domain ‘.home.arpa’ [16]. This document therefore can’t proceed until that allocation is done. [RFC EDITOR PLEASE REMOVE THIS PARAGRAPH PRIOR TO PUBLICATION].

17. Normative References


Appendix A. Existing solutions

Previous attempts to automate naming and service discovery in the context of a home network are able to function with varying degrees of success depending on the topology of the home network. Unfortunately, these solutions do not fully address the requirements of homenets.

For example, Multicast DNS [6] can provide naming and service discovery [7], but only within a single multicast domain.

The Domain Name System provides a hierarchical namespace [1], a mechanism for querying name servers to resolve names [2], a mechanism for updating namespaces by adding and removing names [5], and a mechanism for discovering services [7]. Unfortunately, DNS provides no mechanism for automatically provisioning new namespaces, and secure updates to namespaces require that the host submitting the update have a public or symmetric key that is known to the network and authorized for updates. In an unmanaged network, the publication of and authorization of these keys is an unsolved problem.

Some managed networks get around this problem by having the DHCP server do DNS updates. However, this doesn’t really work, because DHCP doesn’t provide a mechanism for updating service discovery records: it only supports publishing A and AAAA records.

This partially solves the trust problem: DHCP can validate that a device is at least connected to a network link that is actually part of the managed network. This prevents an off-network attacker from registering a name, but provides no mechanism for actually validating the identity of the host registering the name. For example, it would be easy for an attacker on the network to steal a registered name.

Hybrid Multicast DNS [11] proposes a mechanism for extending multicast DNS beyond a single multicast domain. However, in order to use this as a solution, some shortcomings need to be considered.


Most obviously, it requires that every multicast domain have a separate name. This then requires that the homenet generate names for every multicast domain. These names would then be revealed to the end user. But since they would be generated automatically and arbitrarily, they would likely cause confusion rather than clarity, and in degenerate cases requires that the end user have a mental model of the topology of the network in order to guess on which link a given service may appear.

At present, the approach we intend to take with respect to disambiguation is that this will not be solved at a protocol level for devices that do not implement the registration protocol.

Authors’ Addresses

Ted Lemon
Nibbhaya Consulting
P.O. Box 958
Brattleboro, Vermont 05301
United States of America

Email: mellon@fugue.com

Daniel Migault
Ericsson
8400 boulevard Decarie
Montreal, QC H4P 2N2
Canada

Email: daniel.migault@ericsson.com

Stuart Cheshire
Apple Inc.
1 Infinite Loop
Cupertino, California 95014
USA

Phone: +1 408 974 3207
Email: cheshire@apple.com
Abstract

This document describes how names are published and resolved on homenets, and how hosts are configured to use these names to discover services on homenets. It presents the complete architecture, and describes a simple subset of that architecture that can be used in low-cost homenet routers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 26, 2019.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must
Table of Contents

1. Introduction .............................................. 3
2. Requirements .............................................. 3
   2.1. Managed LAN versus Homenet ............................ 4
   2.1.1. Multiple Provisioning Domains .................... 5
   2.2. Homenet-specific considerations ..................... 5
3. Terminology ............................................... 6
4. Name ...................................................... 6
5. Authority ................................................. 8
   5.1. Reachability ........................................ 8
   5.2. Link Names ......................................... 8
   5.3. Authoritative name service for the homenet domain ... 9
   5.4. Authoritative name service for per-link subdomains of the homenet domain ........................................ 10
   5.5. Authoritative name service for the ULA reverse mapping domain ................................................. 10
   5.6. Authoritative name service for the RFC1918 reverse mapping domains ............................................ 10
6. Resolution ................................................ 11
   6.1. Round Robining .................................... 13
   6.2. Retransmission ...................................... 13
   6.3. DNS Stateful Operations and DNS Push ................. 13
   6.4. Multicast DNS ...................................... 14
   6.5. Host behavior ...................................... 14
7. Publication ................................................. 14
   7.1. DNSSD Service Registration Protocol ................. 14
   7.2. Homenet Reverse Mapping Update Protocol ............ 15
   7.2.1. Adding ULA reverse mappings ....................... 15
   7.2.2. Adding RFC1918 reverse mappings ................... 16
8. Host Configuration ........................................ 16
9. Globally Unique Names .................................... 16
10. DNSSEC Validation ....................................... 17
   10.1. How trust is established ............................ 17
11. Homenet Delegation Registration Protocol ................ 18
12. Using the Local Namespace While Away From Home ........ 19
13. Expected Host Behavior .................................. 19
14. Management Considerations ................................ 19
15. Privacy Considerations .................................. 20
16. Security Considerations .................................. 20
17. IANA considerations ..................................... 20
   17.1. Homenet Reverse Registration Protocol ............. 20
   17.2. Homenet Delegation Registration Protocol .......... 20
   17.3. Unique Local Address Reserved Documentation Prefix ... 21
1. Introduction

This document is a homenet architecture document. The term ‘homenet’ refers to a set of technologies that allow home network users to have a local-area network (LAN) with more than one physical link and, optionally, more than one internet service provider. Home network users are assumed not to be knowledgeable in network operations, so homenets automatically configure themselves, providing connectivity and service discovery within the home with no operator intervention. This document describes the aspect of homenet automatic configuration that has to do with service discovery and name resolution.

This architecture provides a minimal set of features required to enable seamless service discovery on a multi-link home network, but does not attempt to provide feature parity with a managed LAN.

This document begins by presenting a motivational list of requirements and considerations, which should give the reader a clear idea of the scope of the problem being solved. It then explains how each requirement is addressed, and provides references for relevant standards documents describing the details of the implementation. Not all requirements are addressed by this architecture document, but the basic requirements are satisfied, and this document serves as a foundation upon which solutions to the remaining problems can be built.

2. Requirements

Name service on a local area network (LAN) requires the following:

- **Name**: a forward domain under which information about local services will be published

- **Authority**: a name server that is authoritative for at least one forward domain and one or two reverse domains that are applicable to that network and is capable of signing and publishing the zones using DNSSEC

- **Resolution**: a full-service caching DNS resolver that fully supports EDNS(0) and queries with the DO bit set

- **Publication**: a mechanism that
* allows services on the LAN to publish information about the services they provide
* allows services to publish information on how to reach them
* manages the lifetime of such information, so that it persists long enough to prevent spoofing, but protects end users from seeing stale information

- Host configuration: one or more automatic mechanisms (e.g. DHCP or RA) that provide:
  * caching resolver information to hosts on the LAN
  * information about how services on the LAN can publish information

- Trust: some basis for trusting the information that is provided by the service discovery system

2.1. Managed LAN versus Homenet

A managed network is one that has a (human) manager, or operator. The operator has authority over the network, and the authority to publish names in a forward DNS tree, and reverse names in the reverse tree. The operator has the authority to sign the respective trees with DNSSEC, and acquire TLS certificates for hosts/servers within the network.

On a managed LAN, many of these services can be provided by operators. When a new printer is added to the network, it can be added to the service discovery system (the authoritative server) manually. When a printer is taken out of service, it can be removed. In this scenario, the role of "publisher" is filled by the network operator.

In many managed LANs, establishment of trust for service discovery is simply on the basis of a belief that the local resolver will give a correct answer. Once the service has been discovered and chosen, there may be some security (e.g., TLS) that protects the connection to the service, but the trust model is often just "you’re connected to a network you trust, so you can trust the printer that you discovered on this network."

A homenet does not have an operator, so functions that would normally be performed by the operator have to happen automatically. This has implications for trust establishment—since there is no operator
controlling what services are published locally, some other mechanism is required for basic trust establishment.

2.1.1. Multiple Provisioning Domains

Additionally, whereas in a managed LAN with multiple links to the Internet, the network operator can configure the network so that multihoming is handled seamlessly, in a homenet, multihoming must be handled using multiple provisioning domains [RFC7556].

When a host on a homenet connects to a host outside the homenet, and the homenet is multihomed, the source address that the host uses for connecting determines which upstream ISP connection is used. In principle, this is not a problem, because the Internet is a fully connected network, so any host that is on the Internet can be reached by any host on the Internet, regardless of how that host connects to the Internet.

Unfortunately in practice this is not always the case. Some ISPs provide special services to their end users that are only accessible when connected through the ISP. When such a service is discovered using that ISP’s name server, a response will be provided that will only work if the host connects using a prefix provided by that ISP. If another ISP’s prefix is used, the connection will fail.

In the case of content delivery networks (CDNs), using the name service of one ISP and then connecting through a second ISP may seem to work, but may provide very poor service.

In order to address this problem, the homenet naming architecture takes two approaches. First, for hosts that do not support provisioning domain separation, we make sure that all ISP name servers are consulted in such a way that Happy Eyeballs will tend to work. Second, for hosts that do support provisioning domain separation, we provide information to the hosts to identify provisioning domains, and we provide a mechanism that hosts can use to indicate which provisioning domain to use for a particular DNS query.

2.2. Homenet-specific considerations

A naming architecture for homenets therefore adds the following considerations:

- All of the operations mentioned here must reliably function automatically, without any user intervention or debugging.
Because user intervention cannot be required, naming conflicts must be resolved automatically, and, to the extent possible, transparently.

Devices that provide services must be able to publish those services on the homenet, and those services must be available from any part of the homenet, not just the link to which the device is attached.

Homenets must address the problem of multiple provisioning domains, in the sense that the DNS may give a different answer depending on whether caching resolvers at one ISP or another are queried.

An additional requirement from the Homenet Architecture [RFC7556] is that hosts are not required to implement any homenet-specific capabilities in order to discover and access services on the homenet. This architecture may define optional homenet-specific features, but hosts that do not implement these features must work on homenets.

3. Terminology

This document uses the following terms and abbreviations:

- HNR Homenet Router
- SHNR Homenet Router implementing simple homenet naming architecture
- AHNR Homenet Router implementing advanced homenet naming architecture
- ISP Internet Service Provider
- Forward Mapping A mapping between a host name or service name and some information about that host or service.
- Reverse Mapping A mapping between an IP address and the host that has that IP address.
- Homenet Domain A domain name that is used for publishing the names of devices and services that are present on the homenet. By default, ‘home.arpa.’

4. Name

In order for names to be published on a homenet, it is necessary that there be a set of domain names under which such names are published. These domain names, together, are referred to as the "local domains."
By default, homnets publish names for forward lookups under the reserved domain ‘home.arpa.’ [RFC8375] publishing names.

So a host called ‘example’ that published its name on the homenet would publish its records on the domain name ‘example.home.arpa.’. Because ‘home.arpa.’ is used by all homnets, it has no global meaning, and names published under the domain ‘home.arpa’ cannot be used outside of the homenet on which they are published.

How to publish names outside of the homenet is out of scope for this document. However, in order to address the problem of validating names published on the homenet using DNSSEC, it is necessary that the homenet have a globally valid delegation from the root. This allows hosts on the homenet to validate names published on the homenet using the DNS root trust anchor ([RFC4033] section 3.1).

It is not necessary that this delegation work for hosts off the homenet. HNRs implementing this specification do not answer queries from outside the homenet; however, when a validating resolver inside the homenet attempts to validate the chain of trust up to the root zone, the chain of trust will validate correctly, because the answer given for internally-available zones will be signed by a DS record that is present in the delegation externally.

If there is a valid delegation from the root, the homenet domain will be the name of the delegated domain. By default, there will be no delegation from the root; in this case, the homenet domainname will be ‘home.arpa.’

In addition to the homenet domain, names are needed for reverse lookups. These names are dependent on the IP addressing used on the homenet. If the homenet is addressed with IPv4, a reverse domain corresponding to the IPv4 subnet [RFC1034] section 5.2.1 should be constructed. For example, if the homenet is allocating local IP addresses out of net 10 [RFC1918], a domain, ‘10.in-addr.arpa’ would be required. Like ‘home.arpa.’, ‘10.in-addr.arpa’ is a locally-served zone, and has no validity outside of the homenet.

If the homenet is addressed with IPv6, it is expected to have a unique local address prefix. The reverse mapping domain for hosts on any link in the subnet will be a subdomain of the reverse zone for the subset of the ULA prefix that is being advertised on that link. Every service on the homenet that supports IPv6 is expected to be reachable at an address that is configured using the ULA prefix. Therefore there is no need for any IPv6 reverse zone to be populated other than the ULA zone. So for example if the homenet’s ULA prefix is fc00:2001:db8::/48, then the reverse domain name for the homenet would end in ‘8.b.d.0.1.0.0.2.0.0.d.f.ip6.arpa’.
5. Authority

There are two types of authoritative name service on the homenet. Every link on the homenet has a zone that is a subdomain of the homenet’s primary domain. Authority for these zones is local to the HNR that is currently authoritative for that zone. The contents of these zones are served using DNSSD Discovery Proxy [I-D.ietf-dnssd-hybrid]. Consequently, there is no need for database replication in the case that a new HNR is elected; that HNR simply takes over the Discovery Relay function.

Name service for the homenet domain itself may be stateless or stateful. HNRs are not required to implement stateful service. If one or more HNRs on the homenet are capable of providing this service, then one of those HNRs is elected to act as the primary nameserver for the homenet domain; one or more HNRs may also act as secondary servers.

Name service for reverse mapping subdomains is only provided if one or more HNRs can provide stateful service. If no such server is present, the reverse mapping subdomains are not served. If stateful servers are present, the primary and secondary servers for these subdomains will be the same as for the homenet domain.

5.1. Reachability

Whether the homenet domain is a global domain name or not, HNRs answering queries for domains on the homenet do not respond to queries from off the homenet unless configured to do so. Exposing services on the homenet for browsing off the homenet creates many opportunities for security issues; as such, even an HNR configured to answer queries from prefixes off the homenet do not provide answers for names of devices on the homenet unless configured to do so. How reachability of names published on the homenet is managed is out of scope for this document: an HNR implementing only this document checks the source address of every query to see if it is within a prefix belonging to the homenet; if not, the HNR does not answer the query.

5.2. Link Names

Each link must have a name. These names are determined using HNCP. Each router will have zero or more wired links, each of which must be labeled. In addition, each router will have zero or more wireless links. Each of these links will be named by the frequency band the link supports, 2.4ghz or 5ghz.
The HNR is named using its manufacturer name. If, as is likely, two or more HNRs from the same manufacturer are present on a homenet, then the HNR name is made up of the manufacturer name plus as many hexadecimal digits as are required from the HNRs link layer addresses so as to disambiguate them.

When shipping multiple HNRs as a kit, manufacturers are advised to arrange that each HNR has a different number in the lowest four bits of the link-layer address. Manufacturers are also advised to print that link layer address, in full, somewhere on the outside of the HNR where it can be seen by the user. Since most HNRs will have more than one interface, the manufacturer should be consistent in choosing which link-layer address is printed on the outside and used to identify the router.

The name given to a link is the name of the HNR, plus a hyphen (‘-’), plus name of the interface of that HNR that is attached to the link. In the event that this name must be displayed to the user, this should give the user enough information to figure out which link is being referenced. In the event that the HNR that is providing authoritative service for that link changes, the link name changes. This should only happen if the network topology changes.

If the appearance of a new HNR requires that the name of an existing HNR change, then the names of all the links managed by that existing HNR change to reflect the new name.

5.3. Authoritative name service for the homenet domain

All HNRs must be capable of providing authoritative name service for the homenet domain. HNRs that provide only stateless authoritative service publish the information that is required for hosts to do DNS Service Discovery over DNS, using the local resolver as a DNSSD Discovery Broker.

Some contents are required for the homenet domain, whether it is stateful or stateless.

- Every link on the homenet has a name that is a subdomain of the homenet domain. The zone associated with the homenet domain contains a delegation for each of these subdomains.

- In order for DNSSD service discovery to work, a default browsing domain must be published. The default browsing domain is simply the homenet domain.

- If DNSSD SRP is supported (that is, if stateful authoritative service is present), then an SRV record must be published, along

...
with a list of available registration zones containing exactly one
entry, for the homenet domain ([I-D.sctl-service-registration]
section 2).

- Also if DNSSD SRP is supported, then one or more A and/or AAAA
  records must be published under the name that the SRV record
  points to, which should be a single label subdomain of the homenet
domain.

Both stateful and stateless authoritative servers provided by HNRs
must support DNS Stateful Operations [I-D.ietf-dnsop-session-signal]
and DNS Push [I-D.ietf-dnssd-push] for the names for which they are
authoritative.

5.4. Authoritative name service for per-link subdomains of the homenet
domain

Per-link subdomains of the homenet domain are served by DNSSD
Discovery Proxies. Although these proxies generally do caching, no
long-lived state is kept by them. DNSSD Discovery Proxies running on
HNRs must support DNS Stateful Operations and DNS Push.

5.5. Authoritative name service for the ULA reverse mapping domain

The ULA reverse mapping domain itself is only published if stateful
name service is available. It is represented as a single zone, which
contains no delegations: every reverse mapping for an address in the
ULA prefix is simply published in the ULA zone.

In order to permit registration of reverse mappings in this domain,
it must contain an SRV record for the label _homenet-rrp._tcp at the
top level, pointing to the primary server for the domain.

5.6. Authoritative name service for the RFC1918 reverse mapping domains

If IPv4 service is being provided on the homenet, and if stateful
name service is being provided on the homenet, then either one or
sixteen reverse mapping zones for the RFC1918 prefix in use must be
provided. If more than one RFC1918 prefix is in use, reverse mapping
zones for all such prefixes must be provided.

Like the ULA reverse mapping zone, the RFC1918 reverse mapping zones
must each contain an SRV record on the label _homenet-rrp._tcp at the
top level, pointing to the name of the primary server for the zone.

The RFC1918 reverse mapping zone contains the entire address space of
the RFC1918 prefix that is in use on the homenet. Section 3 of
RFC1918 defines three prefixes that may be used. The homenet will
use all of one of these three prefixes. Of these, the 172.16.0.0 prefix is subdivided on a 12-bit boundary, and therefore must be represented as 16 separate zones. The 10.0.0.0/8 and 192.168.0.0/16 prefixes are each represented as a single zone.

The zone to be updated is therefore the 10.in-addr.arpa zone for all addresses in 10.0.0.0/8, and the 168.192.in-addr.arpa zone for all addresses in 192.168.0.0/16. For addresses in the 172.16.0.0/12 prefix, the zone to be updated is the subdomain of 172.in-addr.arpa that corresponds to bits 8-11 of the prefix: a number between 16 and 31, inclusive.

Also like the ULA zone, the RFC1918 reverse mapping zones contain no delegations: if there is a single zone, then every reverse mapping published for an address in the RFC1918 prefix in use on the homenet is published directly under this zone. If there are sixteen zones, each address is published in its respective zone. Because the zone 172.in-addr.arpa is not available to be served locally, its locally served subdomains are simply served individually with no delegation.

6. Resolution

Name resolution on the homenet must accomplish two tasks: resolving names that are published on the homenet, and resolving names that are published elsewhere. This is accomplished by providing several functional layers.

1. The set of caching nameservers provided by the ISP or ISPs through which the homenet gains access to the global internet, if any (homenets can operate standalone as well).

2. The set of stateful name servers on the homenet that are authoritative for the homenet domain as a whole, and for any reverse mapping zones that are provided by the homenet. This layer is optional, and may or may not be present. If present, it is provided by one or more HNRs on the homenet that support stateful service.

3. The set of stateless name servers on the homenet that are authoritative for the homenet domain as a whole. These are not used if one or more stateful servers are present.

4. The set of stateless DNSSD Discovery Proxies that are authoritative for each of the links in the homenet.

5. A DNS routing proxy. Hereafter we refer to this as the DNS proxy.
The reason that these are described as layers is that it’s quite possible that all of the DNS services on the homenet might be provided by a single service listening on port 53; how the request is routed then depends on the question being asked. So the services described as running on HNRs are treated as functional blocks which may be connected internally, if the question being asked can be answered directly by the HNR that received it, or they may be separate name servers running on different HNRs, if the question can be answered within the homenet, or it may be that the HNR receiving the query forwards it to an ISP caching name server.

The routing works as follows. When a request is received (opcode=0, Q/R=0), the DNS proxy looks at the owner name in the question part of the message.

- If the name is a subdomain of the homenet domain, the query is local.
- If the name is a subdomain of a locally-valid ULA reverse mapping domain, the query is local.
- If the name is a subdomain of a locally valid RFC1918 reverse mapping zone, the query is local.
- If the name is a subdomain of any locally-served zone, as defined in Locally Served DNS Zones [localzones], but is not otherwise identified as local, the response is NXDOMAIN.
- Otherwise, the query is not local.

Local queries are further divided. If the query is for a link subdomain, the DNS proxy consults the table that maps per-link subdomains to the HNRs that serve them. Either the HNR that serves this link subdomain is the HNR that received the question, or not. If it is, then the DNS proxy passes the query directly to the local DNSSD Discovery Proxy. Otherwise, it forwards the query to the DNSSD Discovery Proxy on the HNR that is providing Discovery Proxy service for that link.

If the query is for the homenet subdomain, and stateful authoritative service for the homenet subdomain is present on the homenet, then either the HNR receiving the query provides stateful authoritative service, or not. If it does, then the query is passed directly to the local authoritative server. If not, then the HNR looks in the table of authoritative servers generated by HNCP and forwards the request to one of these servers. Queries for the reverse mapping zones are handled the same way.
Otherwise, the query is examined to see if it contains an EDNS(0) Provisioning Domain option. If not, it round-robin across the resolvers provided by each ISP in such a way that each ISP is tried in succession, and the same ISP is not asked the same question repeatedly. If the query does contain the EDNS(0) Provisioning Domain option, then that option is used to select which ISP’s resolvers are used for the round robin.

6.1. Round Robining

There are several cases above where there may be a choice of servers to which to forward queries. It’s assumed that when the query can be satisfied by the HNR that received it, round robinning is not required. If there is a specific HNR that is responsible for a particular link, then round robinning is likewise not required. However, if the query is for a stateful authoritative server, and the HNR that received it does not provide this service, and there is more than one HNR on the homenet that does provide the service, the HNR that received the query round robinns it across the available set of HNRs that could answer it.

Similarly, if the query is to be sent to an ISP’s resolver, and the ISP has provided more than one resolver, round robinning is done across the set of resolvers provided by that ISP. If the query is to be attempted at every ISP, then that is accomplished by round-robinning in such a way that each ISP is tried in succession, rather than all the resolvers at one ISP, and then all the resolvers at the next ISP, and so on.

6.2. Retransmission

For queries that can’t be resolved locally by the HNR that received them, retransmission as described in [RFC1035] is performed.

6.3. DNS Stateful Operations and DNS Push

DNS proxies on HNRs are required to support DNS Stateful Operations and DNS Push. When a DNS Push operation is requested on a name that can be satisfied by the HNR that received it, it is handled locally. When such an operation is requested on a name that is local to the homenet, but can’t be satisfied by the HNR that received it, a DNS Stateful operation is started with the HNR that is responsible for it.
6.4. Multicast DNS

In addition to consulting the local resolver, hosts on the homenet may attempt to discover services directly using Multicast DNS. HNRs may filter out incoming Multicast DNS queries, forcing the client to do service discovery using the DNS protocol. If such filtering is not done, the client will be able to discover services on the link to which it is attached, but will not be able to discover services elsewhere.

It is believed that all currently-available hosts support DNSSD using the DNS protocol. Support for mDNS on the local link is therefore not required. However, if an mDNS query returns the same answer as the DNS protocol query, this is not expected to be a problem.

6.5. Host behavior

Hosts that support the RA Provisioning Domain option direct queries to the name server(s) of the provisioning domain they will use for communication using the EDNS(0) provisioning domain option. In practice this means that a host that supports PvDs will keep a set of provisioning information for each prefix that it received from the router, and will either choose a prefix to use based on its own criteria, or will attempt to connect using every PvD at once or in sequence. Answers to queries sent for a particular provisioning domain will only be used with source addresses for prefixes that are in that provisioning domain.

7. Publication

Names are published either using Multicast DNS Service Discovery [RFC6762] or DNSSD Service Registration Protocol ([I-D.sctl-service-registration]). Reverse mappings are published using Homenet Reverse Mapping Update Protocol Section 7.2.

7.1. DNSSD Service Registration Protocol

HNRs that provide stateful authoritative service also publish information acquired using DNSSD Service Registration Protocol [I-D.sctl-service-registration]. DNSSD SRF does not explicitly support population of the reverse zone; hosts that wish to provide reverse mapping information must first establish their hostname using DNSSD SRF; once established, the key used to authenticate the DNSSD SRF update is also used to update the reverse name.

Support for SRP provides several advantages over DNSSD Discovery Proxy. First, DNSSD SRP provides a secure way of claiming service names. Second, a claimed name is valid for the entire network.
covered by the SRP service, not just an individual link, as is the case with mDNS. Third, SRP does not use multicast, and is therefore more reliable on links with constrained multicast support [I-D.ietf-mboned-ieee802-mcast-problems].

Support for the DNSSD SRP service is not sufficient to achieve full deployment of DNSSD SRP: it is also necessary that services advertise using DNSSD SRP. Requiring such support is out of scope for this document; our goal is simply to specify a way in which DNSSD SRP can be supported on homenets, so that as adoption of SRP increases on devices providing service, it can actually be used.

7.2. Homenet Reverse Mapping Update Protocol

This is an extension to the DNSSD Service Registration protocol. The purpose is to allow for updates of reverse mappings. Hosts wishing to publish reverse mappings first publish their hostname using DNSSD SRP. When this process has successfully completed, the host can add reverse mappings to the ULA reverse mapping domain and to the RFC1918 reverse mapping domain, if present.

7.2.1. Adding ULA reverse mappings

The host first determines the ULA prefix. If there is more than one ULA prefix active, the ULA prefix with the longest preferred lifetime is used. A ULA prefix can be identified because it matches the prefix fc00::/7 ([RFC4193] section 3.1). The actual prefix is then the first 48 bits of the advertised prefix or the IP address in that prefix.

Because the ULA reverse mapping zone contains no delegations, all updates go to that one zone. To determine where to send the updates, the host first queries the SRV record under the label _homenet-rrp._tcp at the top of the ULA reverse mapping zone. It then uses the name contained in the SRV record to look up A and/or AAAA records to which to send the update.

The update is then signed using SIG(0) with the key that was used for the DNSSD SRP registration. The update is then sent using DNS Update [RFC2136] to one of the IP addresses received during the A/AAAA resolution step. The update is sent using TCP; if a TCP connection to one of the addresses fails, each subsequent address is tried in succession; if none of the addresses is reachable, the update fails, and may be retried after a reasonable period (on the order of an hour) has elapsed.
7.2.2. Adding RFC1918 reverse mappings

RFC1918 reverse mapping updates use the same mechanism as ULA reverse mapping updates. The host must first determine which zone to update, as described earlier in Section 5.6. Once the zone has been determined, the reverse mapping is updated as described in Section 7.2.1.

8. Host Configuration

Each HNR provides a Homenet DNS Proxy. When an HNR provides the DNS resolver IP address to hosts on the link using RA, DHCPv4 or DHCPv6, it provides its own address. The IPv4 address that it provides is a valid IPv4 address on the link to which the host is attached. The IPv6 address it provides is an address in the homenet’s ULA prefix that is valid on the link to which the host is attached.

When sending router advertisements, the homenet includes the PvD ID RA option [I-D.ietf-intarea-provisioning-domains] in each RA. Because the PvD ID RA option can only be sent once per RA message, if the homenet is connected to more than one ISP, the prefixes for each ISP must be advertised in different RA options. In this case, the prefix for the ULA should also be sent in a separate RA.

If the configuration received from the ISP includes a Domain Name (DHCPv4) or Domain Search List (DHCPv4 or DHCPv6) option, the domain name provided is used to identify the PvD. In the case of Domain Search List options, if there is more than one, the first one is used. For the ULA prefix, the homenet domain is used to identify the PvD.

In order to facilitate DNSSD bootstrapping, any DHCPv4, DHCPv6 or RA Domain Search List options contain only a single domain name, the homenet domain. This allows hosts to quickly bootstrap DNS Service Discovery using the local domain name, as described in [RFC6763] section 11.

9. Globally Unique Names

Homenets are not required to have globally unique names. Homenets operating according to this specification do not publish names in such a way that they can be resolved by hosts that aren’t on the homenet. However, such names are useful for DNSSEC validation.

There are three ways that homenets can get global names:

1. They can be manually configured by the user. How this is done is out of scope for this document.
2. They can publish a delegation with the ISP, using a Homenet Delegation Registration Protocol Section 11.

3. They can publish a delegation with some other provider, using Homenet Delegation Registration Protocol Section 11. How this is configured is out of scope for this document.

Homenets are also not required to support global delegations for reverse mapping of global IPv4 and IPv6 addresses. How this would be done is out of scope for this document.

10. DNSSEC Validation

DNSSEC validation for ‘home.arpa’ requires installing a per-homenet trust anchor on the host, and is therefore not practical. Validation for locally-served reverse zones for the ULA and RFC1918 addresses would likewise require a trust anchor to be installed on the host, and likewise are not practical.

If DNSSEC validation is to be done for the homenet, the homenet must acquire a global name, and must be provided with a secure delegation. Secure delegations must also be provided from the homenet domain to each of the per-link subdomains.

Each HNR on a homenet generates its own private/public key pair that can serve as a trust anchor. These keys are shared using HNCP [RFC7788]. HNRs MUST NOT use pre-installed keys: each HNR MUST generate its own key. The HNR responsible for authoritative Discovery Proxy service on a particular link signs the zone for that link; delegations from the homenet domain zone to each per-link subdomain zone include a DS record signed by the ZSK of the homenet zone.

10.1. How trust is established

Every HNR has its own public/private key pair. A DS record for each such public key is published in the delegation for the homenet domain. If stateless authoritative service for the homenet zone is being provided, then each HNR signs its own homenet zone. The signed zone should be very stable, although the delegations may change when the network topology changes. The HNR can therefore sign the zone using its private key whenever it changes. Each HNR will have a copy of the zone signed with a different key, but since all of the ZSKs are present in the DS RRset at the delegation point, validation will succeed.

If stateful authoritative service is being provided, the HNR that is acting as primary signs the zone, and all the secondaries serve
copies acquired using zone transfers. If the HNR that is primary goes away, then a secondary becomes primary and signs the zone before beginning to provide service. Again, since all of the HNR’s public keys exist in the DS RRset at the delegation, the zone can be validated.

11. Homenet Delegation Registration Protocol

Homenet Delegation Registration Protocol (HDeRP) operates similarly to DNSSD Service Registration Protocol. When a homenet is not connected to an ISP that supports HDeRP, and then an ISP connection becomes available, the HNR that is connected to the ISP determines whether HDeRP is available. This is done by first determining the ISP domain.

If the connection to the ISP is IPv4-only, this will be either the DHCPv4 Domain Name option or, if not present, the only domain name in the DHCPv4 Domain Name Search List option. If the Domain Name Search List option contains more than one name, HDeRP is not supported by the ISP.

If the connection to the ISP is dual-stack or IPv6-only, then the DHCPv6 Domain Search List option obtained through DHCPv6 Prefix Delegation is used. If it is not present, or if it contains more than one domain name, HDeRP is not supported by the ISP.

Once the ISP domain has been discovered, the HNR looks for an SRV record owned by the name _homenet-derp._tcp under the ISP domain. If this is not present, HDeRP is not supported. If the SRV record is present, then the HNR looks for A and AAAA records on the hostname provided in the HNR. If present, these are used when attempting the update.

The HNR then constructs a DNS update. The DNS update creates a delegation for the zone home.arpa, with a DS record for each HNR on the homenet, containing that HNR’s public key. The HNR doing the update lists its key as the first key in the DS RRset. The update is signed using SIG(0) with the private key of the HNR that is constructing it. As with DNSSD SRP, the update includes an Update Lease EDNS(0) option, specifying a key lifetime of a week.

The HNR then attempts to connect to the hostname provided in the SRV record, in a round-robin fashion across the set of IP addresses discovered during the A/AAAA lookup phase. When it has successfully connected, it sends the DNS update.

The HDeRP server validates the update by checking the SIG(0) signature of the update against the first key in the DS RRset. If
the update is successfully validated, then the server generates a
domain name and sends a reply back to the HNR on the same TCP
connection, including the NOERROR (0) RCODE, and including in the
query section the actual domain name that was generated.

This domain name then becomes the homenet name. Subsequent updates
use the homenet name rather than 'home.arpa'. It is not necessary
that the same HNR do the update; if a different HNR does the update,
it lists its public key first in the DS RRset, and signs the update
using its private key.

The HDeRP is responsible for removing the delegation if it is not
refreshed for the length of its lifetime. HNRs should attempt to
refresh the delegation when half the lifetime has experienced, then
again at 5/8ths, and again at 7/8ths of the lifetime. If the ISP
becomes unavailable, and a different ISP becomes available that
supports HDeRP, the homenet should migrate to the new ISP.

12. Using the Local Namespace While Away From Home

This document does not specify a way for service discovery to be
performed on the homenet by devices that are not directly connected
to a link that is part of the homenet.

13. Expected Host Behavior

It is expected that hosts will fall into one of two categories: hosts
that are able to discover DNS-SD browsing domains, and hosts that are
not. Hosts that can discover DNS-SD browsing domains can be expected
to successfully use service discovery across the entire homenet.
Hosts that do not will only be able to discover services on the
particular local subnet of the homenet to which they happen to be
attached at any given time.

This is not considered to be a problem, since it is understood by the
authors that the vast majority of hosts that are capable of doing
mDNS discovery are also capable of doing DNS-SD discovery as
described in [RFC6763].

14. Management Considerations

This architecture is intended to be self-healing, and should not
require management. That said, a great deal of debugging and
management can be done simply using the DNS Service Discovery
protocol.
15. Privacy Considerations

Privacy is somewhat protected in the sense that names published on the homenet are only visible to devices connected to the homenet. This may be insufficient privacy in some cases.

The privacy of host information on the homenet is left to hosts. Various mechanisms are available to hosts to ensure that tracking does not occur if it is not desired. However, devices that need to have special permission to manage the homenet will inevitably reveal something about themselves when doing so.

16. Security Considerations

There are some clear issues with the security model described in this document, which will be documented in a future version of this section. A full analysis of the avenues of attack for the security model presented here have not yet been done, and must be done before the document is published.

17. IANA considerations

17.1. Homenet Reverse Registration Protocol

IANA is requested to add a new entry to the Service Names and Port Numbers registry for homenet-rrp with a transport type of tcp. No port number is to be assigned. The reference should be to this document, and the Assignee and Contact information should reference the authors of this document. The Description should be as follows:

Availability of Homenet Reverse Registration Protocol service for a given domain is advertised using an SRV record with an owner name of "_homenet-rrp._tcp.<domain>." in that domain, which gives the target host and port where Homenet Reverse Registration service is provided for the named domain.

17.2. Homenet Delegation Registration Protocol

IANA is requested to add a new entry to the Service Names and Port Numbers registry for homenet-derp with a transport type of tcp. No port number is to be assigned. The reference should be to this document, and the Assignee and Contact information should reference the authors of this document. The Description should be as follows:

Availability of Homenet Delegation Registration Protocol service for a given domain is advertised using an SRV record with an owner name of "_homenet-derp._tcp.<domain>." in that domain, which gives the
target host and port where Homenet Delegation Registration service is provided for the named domain.

17.3. Unique Local Address Reserved Documentation Prefix

IANA is requested to add an entry to the IPv6 Special-Purpose Address Registry for the prefix fc00:2001:db8::/48. The Name shall be "Unique Local Address Documentation Prefix." The reference RFC will be this document, once published. The date will be the date the entry was added. All other fields will be the same as for the Documentation prefix, 2001:db8::/32.

18. References

18.1. Normative References

[I-D.ietf-dnsop-session-signal]

[I-D.ietf-dnssd-hybrid]
Cheshire, S., "Discovery Proxy for Multicast DNS-Based Service Discovery", draft-ietf-dnssd-hybrid-08 (work in progress), March 2018.

[I-D.ietf-dnssd-push]

[I-D.ietf-intarea-provisioning-domains]

[I-D.sctl-service-registration]

[localzones]

18.2. Informative References


Authors’ Addresses

Ted Lemon
Nibhaya Consulting
P.O. Box 958
Brattleboro, Vermont 05301
United States of America

Email: mellon@fugue.com

Daniel Migault
Ericsson
8400 boulevard Decarie
Montreal, QC H4P 2N2
Canada

Email: daniel.migault@ericsson.com

Stuart Cheshire
Apple Inc.
1 Infinite Loop
Cupertino, California 95014
USA

Phone: +1 408 974 3207
Email: cheshire@apple.com