
Internet Area                                                  J. Robert
Internet-Draft                                    FAU Erlangen-Nuernberg
Intended status: Standards Track                              C. Perkins
Expires: January 17, 2019                                      Futurewei
                                                           July 16, 2018

                  SCHC for 802.15.4 lpwan applications
                   draft-authors-lpwan-schc-802154-00

Abstract

   This document provides guidelines for creating Rules for Static
   Context Header Compression for IEEE 802.15.4.  Since 802.15.4
   provides layer-2 acknowledgements, some complexities that were
   designed for more general systems can be avoided.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 17, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Robert & Perkins        Expires January 17, 2019                [Page 1]



Internet-Draft              SCHC for 802.15.4                  July 2018

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  SCHC parameters . . . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  Size of the Rule ID . . . . . . . . . . . . . . . . . . .   4
     3.2.  Use of Padding  . . . . . . . . . . . . . . . . . . . . .   4
     3.3.  Fragmentation Delivery Reliability Option . . . . . . . .   4
     3.4.  MAX_ACK_REQUEST . . . . . . . . . . . . . . . . . . . . .   4
     3.5.  FCN . . . . . . . . . . . . . . . . . . . . . . . . . . .   4
     3.6.  DTag  . . . . . . . . . . . . . . . . . . . . . . . . . .   4
     3.7.  L2 CRC  . . . . . . . . . . . . . . . . . . . . . . . . .   5
     3.8.  Fragmentation ACK Parameters (not used) . . . . . . . . .   5
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .   5
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   5
   6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   5
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   5
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .   5
     7.2.  Informative References  . . . . . . . . . . . . . . . . .   6
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .   6

1.  Introduction

   Static Context Header Compression (SCHC)
   [I-D.ietf-lpwan-ipv6-static-context-hc] is a solution for header
   compression, highly specialized for very predictable IPv6 packets to
   and from an lpwan node with significant resource constraints
   (especially power).  This document provides guidelines for creating
   Rules for Static Context Header Compression (SCHC) for IEEE 802.15.4
   [dot4].  Since 802.15.4 provides layer-2 acknowledgements, some
   complexities that were designed for more general systems can be
   avoided.

   The Low-Power, Wide-Area IEEE 802.15.4w task group (LPWA) has been
   chartered to specify modifications to 802.15.4 MAC and PHY parameters
   that would be needed to make the technology more suitable for lpwan
   applications [lpwa_par], [lpwa_csd].  Although 801.15.4g [dot4g] and
   802.15.4k [dot4k] were previously designed for such systems, recent
   experiments and further experience with new use cases have indicated
   the need for additional specification and wider applicability.

   LPWA has listed different use-cases that may be relevant for LPWAN in
   a study group document [lpwa_use_cases].  The LPWAN use-cases
   discussed in that document are characterized as follows:

   o  Focusing on uplink data
   o  Typical Payload data length less than 16 bytes
   o  No strict latency requirements

Robert & Perkins        Expires January 17, 2019                [Page 2]



Internet-Draft              SCHC for 802.15.4                  July 2018

   The LPWA also determined that it would be useful to produce a
   document for the IETF lp-wan Working Group to suggest parameters for
   the use cases.  The discussion so far in LPWA has resulted in the
   document [lpwa_schc].

                  |
               +-----+
               |     | Gateway (default) router
               |     |
               +-----+
                  |
                  |
               +-----+
               |     | LPWA access point
               |     |
               +-----+
                  o
              o o   o  o
             o  o o  o o
             o   o  o  o
               o   o o

                 LLN

       Figure 1: Representative Architecture for 802.15.4w Use Cases

   A typical 802.15.4w use case is illustrated in Figure 1.  The header
   compression context is statically configured for the transmission and
   reception of packets between the LPWA access point and the individual
   low-power devices (indicated as ’o’).  Most of the rules follow the
   recommended practice in [I-D.ietf-lpwan-ipv6-static-context-hc] for
   compressing the IPv6 addresses and UDP ports; the same rulesets can
   be used for the possibly thousands of low-power devices, only
   changing the IPv6 address for the particular device relevant to the
   context.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119].

   This document uses the following definitions:

   LPWA
      Low-Power Wide Area
   PAN

Robert & Perkins        Expires January 17, 2019                [Page 3]



Internet-Draft              SCHC for 802.15.4                  July 2018

      Personal Area Network
   802.15.4w
      Low-Power Wide Area (LPWA) task group within IEEE 802.15

3.  SCHC parameters

   In this section we provide details about parameter selection for a
   static compression context to be used over 802.15.4, according to the
   guidelines in [minaburo_email].  The method by which the context is
   agreed upon by sender and receiver is left unspecified.  For the
   purposes of this document, the rule-ID, rule parameters, and other
   uncompressed information is to be considered as a normal L2 payload
   that will be decompressed before delivery to L3.

3.1.  Size of the Rule ID

   Size of the Rule ID should be 3, to allow for up to 8 rules.

3.2.  Use of Padding

   Pad to a multiple of 8 bits in the L2 payload.

3.3.  Fragmentation Delivery Reliability Option

   802.15.4 link acknowledgement should be used, since the static
   context as defined should be decompressed after delivery over a
   single link.

3.4.  MAX_ACK_REQUEST

   MAX_ACK_REQUEST SHOULD be set to 3, following usual practice in
   802.15.4.

3.5.  FCN

   FCN SHOULD be set to 0, since unfragmented traffic is expected for
   most use cases under consideration in 802.15.4w.

3.6.  DTag

   Similarly, DTag SHOULD be set to 0, since unfragmented traffic is
   expected for most use cases under consideration in 802.15.4w.

Robert & Perkins        Expires January 17, 2019                [Page 4]



Internet-Draft              SCHC for 802.15.4                  July 2018

3.7.  L2 CRC

   Either CRC-16 or CRC-32 as defined in 802.15.4 could be used.

3.8.  Fragmentation ACK Parameters (not used)

   Since acknowledgments SHOULD be handled at Layer 2, no specification
   is made here for the following:

   o  The timer duration for Fragmentation ACK Always
   o  When to abort in ACK Always
   o  MAX_ATTEMPTS counter size
   o  The timer size between windows in ACK On Error.
   o  The inactivity timer.

4.  Security Considerations

   This document does not introduce any security mechanisms, and does
   not have affect existing security mechanisms or vulnerabilities
   already present in the base SCHC document.

5.  IANA Considerations

   This document does not specify any IANA actions.

6.  Acknowledgements

   This document has benefitted from discussions with the following
   people, in alphabetical order: Pat Kinney

7.  References

7.1.  Normative References

   [I-D.ietf-lpwan-ipv6-static-context-hc]
              Minaburo, A., Toutain, L., Gomez, C., and D. Barthel,
              "LPWAN Static Context Header Compression (SCHC) and
              fragmentation for IPv6 and UDP", draft-ietf-lpwan-ipv6-
              static-context-hc-16 (work in progress), June 2018.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

Robert & Perkins        Expires January 17, 2019                [Page 5]



Internet-Draft              SCHC for 802.15.4                  July 2018

7.2.  Informative References

   [dot4]     P802.15, "Part 15: Wireless LAN Medium Access Control
              (MAC) and Physical Layer (PHY) Specifications", March
              2012.

   [dot4g]    P802.15, "Part 15: Wireless LAN Medium Access Control
              (MAC) and Physical Layer (PHY) Specifications", March
              2012.

   [dot4k]    P802.15, "Part 15: Wireless LAN Medium Access Control
              (MAC) and Physical Layer (PHY) Specifications", March
              2012.

   [lpwa_csd]
              P802.15, "Part 15: Wireless LAN Medium Access Control
              (MAC) and Physical Layer (PHY) Specifications", March
              2012.

   [lpwa_par]
              P802.15, "Part 15: Wireless LAN Medium Access Control
              (MAC) and Physical Layer (PHY) Specifications", March
              2012.

   [lpwa_schc]
              Joerg Robert, "Discussion on Suitable Parameters for
              SCHC", May 2018.

   [lpwa_use_cases]
              Joerg Robert, "LPWA Use-Cases", Mar 2017.

   [minaburo_email]
              Ana Minaburo, "SCHC technology specific parameters", Feb
              2018.

Authors’ Addresses

   Joerg Robert
   Friedrich-Alexander Universitaet Erlangen-Nuernberg
   Am Wolfsmantel 33
   Erlangen  91058
   Germany

   Phone: +49-9131-85-25373
   Email: joerg.robert@fau.de

Robert & Perkins        Expires January 17, 2019                [Page 6]



Internet-Draft              SCHC for 802.15.4                  July 2018

   Charles E. Perkins
   Futurewei Inc.
   2330 Central Expressway
   Santa Clara, CA  95050
   USA

   Phone: +1-408-330-4586
   Email: charliep@computer.org

Robert & Perkins        Expires January 17, 2019                [Page 7]



lpwan Working Group                                          A. Minaburo
Internet-Draft                                                    Acklio
Intended status: Informational                                L. Toutain
Expires: January 3, 2019          Institut MINES TELECOM; IMT Atlantique
                                                            R. Andreasen
                                             Universidad de Buenos Aires
                                                           July 02, 2018

        LPWAN Static Context Header Compression (SCHC) for CoAP
               draft-ietf-lpwan-coap-static-context-hc-04

Abstract

   This draft defines the way SCHC header compression can be applied to
   CoAP headers.  CoAP header structure differs from IPv6 and UDP
   protocols since the CoAP
   use a flexible header with a variable number of options themself of a
   variable length.  Another important difference is the asymmetry in
   the header format used in request and response messages.  Most of the
   compression mechanisms have been introduced in
   [I-D.ietf-lpwan-ipv6-static-context-hc], this document explains how
   to use the SCHC compression for CoAP.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 3, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents

Minaburo, et al.         Expires January 3, 2019                [Page 1]



Internet-Draft           LPWAN CoAP compression                July 2018

   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  SCHC Compression Process  . . . . . . . . . . . . . . . . . .   3
   3.  CoAP Compression with SCHC  . . . . . . . . . . . . . . . . .   4
   4.  Compression of CoAP header fields . . . . . . . . . . . . . .   6
     4.1.  CoAP version field  . . . . . . . . . . . . . . . . . . .   6
     4.2.  CoAP type field . . . . . . . . . . . . . . . . . . . . .   6
     4.3.  CoAP code field . . . . . . . . . . . . . . . . . . . . .   6
     4.4.  CoAP Message ID field . . . . . . . . . . . . . . . . . .   6
     4.5.  CoAP Token fields . . . . . . . . . . . . . . . . . . . .   7
   5.  CoAP options  . . . . . . . . . . . . . . . . . . . . . . . .   7
     5.1.  CoAP Content and Accept options.  . . . . . . . . . . . .   7
     5.2.  CoAP option Max-Age field, CoAP option Uri-Host and Uri-
           Port fields . . . . . . . . . . . . . . . . . . . . . . .   7
     5.3.  CoAP option Uri-Path and Uri-Query fields . . . . . . . .   8
       5.3.1.  Variable length Uri-Path and Uri-Query  . . . . . . .   8
       5.3.2.  Variable number of path or query elements . . . . . .   9
     5.4.  CoAP option Size1, Size2, Proxy-URI and Proxy-Scheme
           fields  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     5.5.  CoAP option ETag, If-Match, If-None-Match, Location-Path
           and Location-Query fields . . . . . . . . . . . . . . . .   9
   6.  Other RFCs  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     6.1.  Block . . . . . . . . . . . . . . . . . . . . . . . . . .   9
     6.2.  Observe . . . . . . . . . . . . . . . . . . . . . . . . .  10
     6.3.  No-Response . . . . . . . . . . . . . . . . . . . . . . .  10
     6.4.  Time Scale  . . . . . . . . . . . . . . . . . . . . . . .  10
     6.5.  OSCORE  . . . . . . . . . . . . . . . . . . . . . . . . .  10
   7.  Examples of CoAP header compression . . . . . . . . . . . . .  12
     7.1.  Mandatory header with CON message . . . . . . . . . . . .  12
     7.2.  Complete exchange . . . . . . . . . . . . . . . . . . . .  13
     7.3.  OSCORE Compression  . . . . . . . . . . . . . . . . . . .  14
     7.4.  Example OSCORE Compression  . . . . . . . . . . . . . . .  17
   8.  Normative References  . . . . . . . . . . . . . . . . . . . .  22
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  22

Minaburo, et al.         Expires January 3, 2019                [Page 2]



Internet-Draft           LPWAN CoAP compression                July 2018

1.  Introduction

   CoAP [rfc7252] is an implementation of the REST architecture for
   constrained devices.  Nevertheless, if limited, the size of a CoAP
   header may be too large for LPWAN constraints and some compression
   may be needed to reduce the header size.

   [I-D.ietf-lpwan-ipv6-static-context-hc] defines a header compression
   mechanism for LPWAN network based on a static context.  The context
   is said static since the field description composing the Rules and
   the context are not learned during the packet exchanges but are
   previously defined.  The context(s) is(are) known by both ends before
   transmission.

   A context is composed of a set of rules that are referenced by Rule
   IDs (identifiers).  A rule contains an ordered list of the fields
   descriptions containing a field ID (FID), its length (FL) and its
   position (FP), a direction indicator (DI) (upstream, downstream and
   bidirectional) and some associated Target Values (TV).  Target Value
   indicates the value that can be expected.  TV can also be a list of
   values.  A Matching Operator (MO) is associated to each header field
   description.  The rule is selected if all the MOs fit the TVs for all
   fields.  In that case, a Compression/Decompression Action (CDA)
   associated to each field defines the link between the compressed and
   decompressed value for each of the header fields.  Compression
   results mainly in 4 actions: send the field value, send nothing, send
   less significant bits of a field, send an index.  Values sent are
   called Compression Residues and follows the rule ID.

2.  SCHC Compression Process

   The SCHC Compression rules can be applied to CoAP flows.  SCHC
   Compression of the CoAP header may be done in conjunction with the
   above layers (IPv6/UDP) or independently.  The SCHC adaptation layers
   as described in [I-D.ietf-lpwan-ipv6-static-context-hc] may be used
   as as shown in the Figure 1.

Minaburo, et al.         Expires January 3, 2019                [Page 3]



Internet-Draft           LPWAN CoAP compression                July 2018

    ^   +------------+    ^  +------------+        ^  +------------+
    |   |    CoAP    |    |  |    CoAP    |  inner |  |    CoAP    |
    |   +------------+    v  +------------+        x  |    OSCORE  |
    |   |    UDP     |       |    DTLS    |  outer |  +------------+
    |   +------------+       +------------+        |  |    UDP     |
    |   |    IPv6    |       |    UDP     |        |  +------------+
    v   +------------+       +------------+        |  |    IPv6    |
                             |    IPv6    |        v  +------------+
                             +------------+

                       Figure 1: rule scope for CoAP

   Figure 1 shows some examples for CoAP architecture and the SCHC
   rule’s scope.  A rule can covers all headers from IPv6 to CoAP, SCHC
   C/D is done in the device and at the LPWAN boundary.  If an end-to-
   end encryption mechanisms is used between the device and the
   application.  CoAP must be compressed independently of the other
   layers.  The rule ID and the compression residue are encrypted using
   a mechanism such as DTLS.  Only the other end can decipher the
   information.
   Layers below may also be compressed using other SCHC rules (this is
   out of the scope of this document).  OSCORE
   [I-D.ietf-core-object-security] can also define 2 rules to compress
   the CoAP message.  A first rule focuses on the inner header and is
   end to end, a second rule may compress the outer header and the layer
   above.  SCHC C/D for inner header is done by both ends, SCHC C/D for
   outer header and other headers is done between the device and the
   LPWAN boundary.

3.  CoAP Compression with SCHC

   CoAP differs from IPv6 and UDP protocols on the following aspects:

   o  IPv6 and UDP are symmetrical protocols.  The same fields are found
      in the request and in the response, only the location in the
      header may vary (e.g. source and destination fields).  A CoAP
      request is different from a response.  For example, the URI-path
      option is mandatory in the request and is not found in the
      response, a request may contain an Accept option and the response
      a Content option.

      [I-D.ietf-lpwan-ipv6-static-context-hc] defines the use of a
      message direction (DI) when processing the rule which allows the
      description of message header format in both directions.

Minaburo, et al.         Expires January 3, 2019                [Page 4]



Internet-Draft           LPWAN CoAP compression                July 2018

   o  Even when a field is "symmetric" (i.e. found in both directions)
      the values carried in each direction are different.  Combined with
      a matching list in the TV, this will allow to reduce the range of
      expected values in a particular direction and therefore reduce the
      size of a compression residue.  For instance, if a client sends
      only CON request, the type can be elided by compression and the
      answer may use one bit to carry either the ACK or RST type.  Same
      behavior can be applied to the CoAP Code field (0.0X code are
      present in the request and Y.ZZ in the answer).  The direction
      allows to split in two parts the possible values for each
      direction.

   o  In IPv6 and UDP header fields have a fixed size.  In CoAP, Token
      size may vary from 0 to 8 bytes, length is given by a field in the
      header.  More systematically, the CoAP options are described using
      the Type-Length-Value.

      [I-D.ietf-lpwan-ipv6-static-context-hc] offers the possibility to
      define a function for the Field Length in the Field Description.

   o  In CoAP headers, a field can be duplicated several times, for
      instances, elements of an URI (path or queries).  The position
      defined in a rule, associated to a Field ID, can be used to
      identify the proper element.

      [I-D.ietf-lpwan-ipv6-static-context-hc] allows a Field id to
      appears several times in the rule, the Field Position (FP) removes
      ambiguities for the matching operation.

   o  Field size defined in the CoAP protocol can be to large regarding
      LPWAN traffic constraints.  This is particularly true for the
      message ID field or Token field.  The use of MSB MO can be used to
      reduce the information carried on LPWANs.

   o  CoAP also obeys to the client/server paradigm and the compression
      rate can be different if the request is issued from an LPWAN node
      or from an non LPWAN device.  For instance a Device (Dev) aware of
      LPWAN constraints can generate a 1 byte token, but a regular CoAP
      client will certainly send a larger token to the Thing.  SCHC
      compression will not modify the values to offer a better
      compression rate.  Nevertheless a proxy placed before the
      compressor may change some field values to offer a better
      compression rate and maintain the necessary context for
      interoperability with existing CoAP implementations.

Minaburo, et al.         Expires January 3, 2019                [Page 5]



Internet-Draft           LPWAN CoAP compression                July 2018

4.  Compression of CoAP header fields

   This section discusses of the compression of the different CoAP
   header fields.

4.1.  CoAP version field

   This field is bidirectional and must be elided during the SCHC
   compression, since it always contains the same value.  In the future,
   if new version of CoAP are defined, new rules ID will be defined
   avoiding ambiguities between versions.

4.2.  CoAP type field

   [rfc7252] defines 4 types of messages: CON, NON, ACK and RST.  The
   latter two ones are a response of the two first ones.  If the device
   plays a specific role, a rule can exploit these property with the
   mapping list: [CON, NON] for one direction and [ACK, RST] for the
   other direction.  Compression residue is reduced to 1 bit.

   The field must be elided if for instance a client is sending only NON
   or CON messages.

   In any case, a rule must be defined to carry RST to a client.

4.3.  CoAP code field

   The compression of the CoAP code field follows the same principle as
   for the CoAP type field.  If the device plays a specific role, the
   set of code values can be split in two parts, the request codes with
   the 0 class and the response values.

   If the device implement only a CoAP client, the request code can be
   reduced to the set of request the client is able to process.

   All the response codes should be compressed with a SCHC rule.

4.4.  CoAP Message ID field

   This field is bidirectional and is used to manage acknowledgments.
   Server memorizes the value for a EXCHANGE_LIFETIME period (by default
   247 seconds) for CON messages and a NON_LIFETIME period (by default
   145 seconds) for NON messages.  During that period, a server
   receiving the same Message ID value will process the message has a
   retransmission.  After this period, it will be processed as a new
   messages.

Minaburo, et al.         Expires January 3, 2019                [Page 6]



Internet-Draft           LPWAN CoAP compression                July 2018

   In case the Device is a client, the size of the message ID field may
   the too large regarding the number of messages sent.  Client may use
   only small message ID values, for instance 4 bit long.  Therefore a
   MSB can be used to limit the size of the compression residue.

   In case the Device is a server, client may be located outside of the
   LPWAN area and view the device as a regular device connected to the
   internet.  The client will generate Message ID using the 16 bits
   space offered by this field.  A CoAP proxy can be set before the SCHC
   C/D to reduce the value of the Message ID, to allow its compression
   with the MSB matching operator and LSB CDA.

4.5.  CoAP Token fields

   Token is defined through two CoAP fields, Token Length in the
   mandatory header and Token Value directly following the mandatory
   CoAP header.

   Token Length is processed as a tradition protocol field.  If the
   value remains the same during all the transaction, the size can be
   stored in the context and elided during the transmission.  Otherwise
   it will have to the send as a compression residue.

   Token Value size should not be defined directly in the rule in the
   Field Length (FL).  Instead a specific function designed as "TKL"
   must be used.  This function informs the SCHC C/D that the length of
   this field has to be read from the Token Length field.

5.  CoAP options

5.1.  CoAP Content and Accept options.

   These field are both unidirectional and must not be set to
   bidirectional in a rule entry.

   If single value is expected by the client, it can be stored in the TV
   and elided during the transmission.  Otherwise, if several possible
   values are expected by the client, a matching-list should be used to
   limit the size of the residue.  If not the possible, the value as to
   be sent as a residue (fixed or variable length).

5.2.  CoAP option Max-Age field, CoAP option Uri-Host and Uri-Port
      fields

   This field is unidirectional and must not be set to bidirectional in
   a rule entry.  It is used only by the server to inform of the caching
   duration and is never found in client requests.

Minaburo, et al.         Expires January 3, 2019                [Page 7]



Internet-Draft           LPWAN CoAP compression                July 2018

   If the duration is known by both ends, value can be elided on the
   LPWAN.

   A matching list can be used if some well-known values are defined.

   Otherwise these options should be sent as a residue (fixed or
   variable length).

5.3.  CoAP option Uri-Path and Uri-Query fields

   This fields are unidirectional and must not be set to bidirectional
   in a rule entry.  They are used only by the client to access to a
   specific resource and are never found in server responses.

   Uri-Path and Uri-Query elements are a repeatable options, the Field
   Position (FP) gives the position in the path.

   A Mapping list can be used to reduce size of variable Paths or
   Queries.  In that case, to optimize the compression, several elements
   can be regrouped into a single entry.  Numbering of elements do not
   change, MO comparison is set with the first element of the matching.

   FID       FL FP DI    TV         MO        CDA
   URI-Path     1  up  ["/a/b",   equal    not-sent
                        "/c/d"]
   URI-Path     3  up             ignore   value-sent

                      Figure 2: complex path example

   In Figure 2 a single bit residue can be used to code one of the 2
   paths.  If regrouping was not allowed, a 2 bits residue whould have
   been needed.

5.3.1.  Variable length Uri-Path and Uri-Query

   When the length is known at the rule creation, the Field Length must
   be set to variable, and the unit is set to bytes.

   The MSB MO can be apply to a Uri-Path or Uri-Query element.  Since
   MSB value is given in bit, the size must always be a multiple of 8
   bits and the LSB CDA must not carry any value.

   The length sent at the beginning of a variable length residue
   indicates the size of the LSB in bytes.

   For instance for a CoMi path /c/X6?k="eth0" the rule can be set to:

Minaburo, et al.         Expires January 3, 2019                [Page 8]



Internet-Draft           LPWAN CoAP compression                July 2018

   FID       FL FP DI    TV       MO        CDA
   URI-Path     1  up    "c"     equal     not-sent
   URI-Path     2  up            ignore    value-sent
   URI-Query    1  up    "k="    MSB (16)  LSB

                      Figure 3: CoMi URI compression

   Figure 3 shows the parsing and the compression of the URI. where c is
   not sent.  The second element is sent with the length (i.e. 0x2 X 6)
   followed by the query option (i.e. 0x05 "eth0").

5.3.2.  Variable number of path or query elements

   The number of Uri-path or Uri-Query element in a rule is fixed at the
   rule creation time.  If the number varies, several rules should be
   created to cover all the possibilities.  Another possibilities is to
   define the length of Uri-Path to variable and send a compression
   residue with a length of 0 to indicate that this Uri-Path is empty.
   This add 4 bits to the compression residue.

5.4.  CoAP option Size1, Size2, Proxy-URI and Proxy-Scheme fields

   These fields are unidirectional and must not be set to bidirectional
   in a rule entry.  They are used only by the client to access to a
   specific resource and are never found in server response.

   If the field value must be sent, TV is not set, MO is set to "ignore"
   and CDF is set to "value-sent.  A mapping can also be used.

   Otherwise the TV is set to the value, MO is set to "equal" and CDF is
   set to "not-sent"

5.5.  CoAP option ETag, If-Match, If-None-Match, Location-Path and
      Location-Query fields

   These fields are unidirectional.

   These fields values cannot be stored in a rule entry.  They must
   always be sent with the compression residues.

6.  Other RFCs

6.1.  Block

   Block [rfc7959] allows a fragmentation at the CoAP level.  SCHC
   includes also a fragmentation protocol.  They are compatible.  If a
   block option is used, its content must be sent as a compression
   residue.

Minaburo, et al.         Expires January 3, 2019                [Page 9]



Internet-Draft           LPWAN CoAP compression                July 2018

6.2.  Observe

   [rfc7641] defines the Observe option.  The TV is not set, MO is set
   to "ignore" and the CDF is set to "value-sent".  SCHC does not limit
   the maximum size for this option (3 bytes).  To reduce the
   transmission size either the device implementation should limit the
   value increase or a proxy can modify the incrementation.

   Since RST message may be sent to inform a server that the client do
   not require Observe response, a rule must allow the transmission of
   this message.

6.3.  No-Response

   [rfc7967]  defines an No-Response option limiting the responses made
   by a server to a request.  If the value is not known by both ends,
   then TV is set to this value, MO is set to "equal" and CDF is set to
   "not-sent".

   Otherwise, if the value is changing over time, TV is not set, MO is
   set to "ignore" and CDA to "value-sent".  A matching list can also be
   used to reduce the size.

6.4.  Time Scale

   Time scale [I-D.toutain-core-time-scale] option allows a client to
   inform the server that it is in a slow network and that message ID
   should be kept for a duration given by the option.

   If the value is not known by both ends, then TV is set to this value,
   MO is set to "equal" and CDA is set to "not-sent".

   Otherwise, if the value is changing over time, TV is not set, MO is
   set to "ignore" and CDA to "value-sent".  A matching list can also be
   used to reduce the size.

6.5.  OSCORE

   OSCORE [I-D.ietf-core-object-security] defines end-to-end protection
   for CoAP messages.  This section describes how SCHC rules can be
   applied to compress OSCORE-protected messages.

Minaburo, et al.         Expires January 3, 2019               [Page 10]



Internet-Draft           LPWAN CoAP compression                July 2018

         0 1 2 3 4 5 6 7 <--------- n bytes ------------->
        +-+-+-+-+-+-+-+-+---------------------------------
        |0 0 0|h|k|  n  |      Partial IV (if any) ...
        +-+-+-+-+-+-+-+-+---------------------------------
        |                                                |
        | <--------- CoAP OSCORE_piv ------------------> |

         <- 1 byte -> <------ s bytes ----->
        +------------+----------------------+-----------------------+
        | s (if any) | kid context (if any) | kid (if any)      ... |
        +------------+----------------------+-----------------------+
        |                                   |                       |
        | <------ CoAP OSCORE_kidctxt ----->|<-- CoAP OSCORE_kid -->|

                          Figure 4: OSCORE Option

   The encoding of the OSCORE Option Value defined in Section 6.1 of
   [I-D.ietf-core-object-security] is repeated in Figure 4.

   The first byte is used for flags that specify the contents of the
   OSCORE option.  The 3 most significant bits are reserved and always
   set to 0.  Bit h, when set, indicates the presence of the kid context
   field in the option.  Bit k, when set, indicates the presence of a
   kid field.  The 3 least significant bits n indicate to length of the
   piv field in bytes, n = 0 taken to mean that no piv is present.

   After the flag byte follow the piv field, kid context field and kid
   field in order and if present; the length of the kid context field is
   encoded in the first byte denoting by s the length of the kid context
   in bytes.

   This draft recommends to implement a parser that is able to identify
   the OSCORE Option and the fields it contains - this makes it possible
   to do a preliminary processing of the message in preparation for
   regular SCHC compression.

   Conceptually, the OSCORE option can transmit up to 3 distinct pieces
   of information at a time: the piv, the kid context, and the kid.
   This draft proposes that the SCHC Parser split the contents of this
   option into 3 SCHC fields:

   o  CoAP OSCORE_piv,

   o  CoAP OSCORE_ctxt,

   o  CoAP OSCORE_kid.

Minaburo, et al.         Expires January 3, 2019               [Page 11]



Internet-Draft           LPWAN CoAP compression                July 2018

   These fields are superposed on the OSCORE Option format in Figure 4,
   and include the corresponding flag and size bits for each part of the
   option.  Both the flag and size bits can be omitted by use of the MSB
   matching operator on each field.

7.  Examples of CoAP header compression

7.1.  Mandatory header with CON message

   In this first scenario, the LPWAN compressor receives from outside
   client a POST message, which is immediately acknowledged by the
   Device.  For this simple scenario, the rules are described Figure 5.

    Rule ID 1
   +-------------+--+--+--+------+---------+-------------++------------+
   | Field       |FL|FP|DI|Target| Match   |     CDA     ||    Sent    |
   |             |  |  |  |Value | Opera.  |             ||   [bits]   |
   +-------------+--+--+--+------+---------+-------------++------------+
   |CoAP version |  |  |bi|  01  |equal    |not-sent     ||            |
   |CoAP version |  |  |bi| 01   |equal    |not-sent     ||            |
   |CoAP Type    |  |  |dw| CON  |equal    |not-sent   ||            |
   |CoAP Type    |  |  |up|[ACK, |         |             ||            |
   |             |  |  |  | RST] |match-map|matching-sent|| T          |
   |CoAP TKL     |  |  |bi| 0    |equal    |not-sent     ||            |
   |CoAP Code    |  |  |bi| ML1  |match-map|matching-sent||  CC CCC    |
   |CoAP MID     |  |  |bi| 0000 |MSB(7 )  |LSB(9)       ||        M-ID|
   |CoAP Uri-Path|  |  |dw| path |equal 1  |not-sent     ||            |
   +-------------+--+--+--+------+---------+-------------++------------+

          Figure 5: CoAP Context to compress header without token

   The version and Token Length fields are elided.  Code has shrunk to 5
   bits using a matching list.  Uri-Path contains a single element
   indicated in the matching operator.

   Figure 6 shows the time diagram of the exchange.  A client in the
   Application Server sends a CON request.  It can go through a proxy
   which reduces the message ID to a smallest value, with at least the 9
   most significant bits equal to 0.  SCHC Compression reduces the
   header sending only the Type, a mapped code and the least 9
   significant bits of Message ID.

Minaburo, et al.         Expires January 3, 2019               [Page 12]



Internet-Draft           LPWAN CoAP compression                July 2018

                       Device     LPWAN      SCHC C/D
                          |                    |
                          |       rule id=1    |<--------------------
                          |<-------------------| +-+-+--+----+------+
     <------------------- | CCCCCMMMMMMMMM     | |1|0| 4|0.01|0x0034|
    +-+-+--+----+-------+ | 00001000110100     | |  0xb4   p   a   t|
    |1|0| 1|0.01|0x0034 | |                    | |  h   |
    |  0xb4   p   a   t | |                    | +------+
    |  h   |              |                    |
    +------+              |                    |
                          |                    |
                          |                    |
   ---------------------->|      rule id=1     |
   +-+-+--+----+--------+ |------------------->|
   |1|2| 0|2.05| 0x0034 | |  TCCCCCMMMMMMMMM   |--------------------->
   +-+-+--+----+--------+ |  001100000110100   | +-+-+--+----+------+
                          |                    | |1|2| 0|2.05|0x0034|
                          v                    v +-+-+--+----+------+

                Figure 6: Compression with global addresses

7.2.  Complete exchange

   In that example, the Thing is using CoMi and sends queries for 2 SID.

     CON
     MID=0x0012     |                         |
     POST           |                         |
     Accept X       |                         |
     /c/k=AS        |------------------------>|
                    |                         |
                    |                         |
                    |<------------------------|  ACK MID=0x0012
                    |                         |  0.00
                    |                         |
                    |                         |
                    |<------------------------|   CON
                    |                         |   MID=0X0034
                    |                         |   Content-Format X
   ACK MID=0x0034   |------------------------>|
   0.00

Minaburo, et al.         Expires January 3, 2019               [Page 13]



Internet-Draft           LPWAN CoAP compression                July 2018

7.3.  OSCORE Compression

   OSCORE aims to solve the problem of end-to-end encryption for CoAP
   messages, which are otherwise required to terminate their TLS or DTLS
   protection at the proxy, as discussed in Section 11.2 of [rfc7252].
   CoAP proxies are men-in-the-middle, but not all of the information
   they have access to is necessary for their operation.  The goal,
   therefore, is to hide as much of the message as possible while still
   enabling proxy operation.

   Conceptually this is achieved by splitting the CoAP message into an
   Inner Plaintext and Outer OSCORE Message.  The Inner Plaintext
   contains sensible information which is not necessary for proxy
   operation.  This, in turn, is the part of the message which can be
   encrypted and need not be decrypted until it reaches its end
   destination.  The Outer Message acts as a shell matching the format
   of a regular CoAP message, and includes all Options and information
   needed for proxy operation and caching.  This decomposition is
   illustrated in Figure 7.

   CoAP options are sorted into one of 3 classes, each granted a
   specific type of protection by the protocol:

   o  Class E: Enrypted options moved to the Inner Plaintext,

   o  Class I: Intergrity-protected options included in the AAD for the
      encryption of the Plaintext but otherwise left untouched in the
      Outer Message,

   o  Class U: Unprotected options left untouched in the Outer Message.

   Additionally, the OSCORE Option is added as an Outer option,
   signaling that the message is OSCORE protected.  This option carries
   the information necessary to retrieve the Security Context with which
   the message was encrypted so that it may be correctly decrypted at
   the other end-point.

Minaburo, et al.         Expires January 3, 2019               [Page 14]



Internet-Draft           LPWAN CoAP compression                July 2018

                         Orignal CoAP Message
                      +-+-+---+-------+---------------+
                      |v|t|tkl| code  |  Msg Id.      |
                      +-+-+---+-------+---------------+....+
                      | Token                              |
                      +-------------------------------.....+
                      | Options (IEU)            |
                      .                          .
                      .                          .
                      +------+-------------------+
                      | 0xFF |
                      +------+------------------------+
                      |                               |
                      |     Payload                   |
                      |                               |
                      +-------------------------------+
                             /                \
                            /                  \
                           /                    \
                          /                      \
        Outer Header     v                        v  Plaintext
     +-+-+---+--------+---------------+          +-------+
     |v|t|tkl|new code|  Msg Id.      |          | code  |
     +-+-+---+--------+---------------+....+     +-------+-----......+
     | Token                               |     | Options (E)       |
     +--------------------------------.....+     +-------+------.....+
     | Options (IU)             |                | OxFF  |
     .                          .                +-------+-----------+
     . OSCORE Option            .                |                   |
     +------+-------------------+                | Payload           |
     | 0xFF |                                    |                   |
     +------+                                    +-------------------+

        Figure 7: OSCORE inner and outer header form a CoAP message

   Figure 7 shows the message format for the OSCORE Message and
   Plaintext.  In the Outer Header, the original message code is hidden
   and replaced by a default value (POST or FETCH) depending on whether
   the original message was a Request or a Response.  The original
   message code is put into the first byte of the Plaintext.  Following
   the message code come the class E options and if present the original
   message Payload preceded by its payload marker.

   The Plaintext is now encrypted by an AEAD algorithm which integrity
   protects Security Context parameters and eventually any class I
   options from the Outer Header.  Currently no CoAP options are marked

Minaburo, et al.         Expires January 3, 2019               [Page 15]



Internet-Draft           LPWAN CoAP compression                July 2018

   class I.  The resulting Ciphertext becomes the new Payload of the
   OSCORE message, as illustrated in Figure 8.

        Outer Header
     +-+-+---+--------+---------------+
     |v|t|tkl|new code|  Msg Id.      |
     +-+-+---+--------+---------------+....+
     | Token                               |
     +--------------------------------.....+
     | Options (IU)             |
     .                          .
     . OSCORE Option            .
     +------+-------------------+
     | 0xFF |
     +------+-------------------------+
     |                                |
     |  Encrypted Inner Header and    |
     |  Payload                       |
     |                                |
     +--------------------------------+

                         Figure 8: OSCORE message

   The SCHC Compression scheme consists of compressing both the
   Plaintext before encryption and the resulting OSCORE message after
   encryption, see Figure 9.  This way compression reaches all fields of
   the original CoAP message.

Minaburo, et al.         Expires January 3, 2019               [Page 16]



Internet-Draft           LPWAN CoAP compression                July 2018

        Outer Message                             OSCORE Plaintext
     +-+-+---+--------+---------------+          +-------+
     |v|t|tkl|new code|  Msg Id.      |          | code  |
     +-+-+---+--------+---------------+....+     +-------+-----......+
     | Token                               |     | Options (E)       |
     +--------------------------------.....+     +-------+------.....+
     | Options (IU)             |                | OxFF  |
     .                          .                +-------+-----------+
     . OSCORE Option            .                |                   |
     +------+-------------------+                | Payload           |
     | 0xFF |                                    |                   |
     +------+------------+                       +-------------------+
     |  Ciphertext       |<---------\                      |
     |                   |          |                      v
     +-------------------+          |             +-----------------+
             |                      |             |   Inner SCHC    |
             v                      |             |   Compression   |
       +-----------------+          |             +-----------------+
       |   Outer SCHC    |          |                      |
       |   Compression   |          |                      v
       +-----------------+          |              +-------+
             |                      |              |Rule ID|
             v                      |              +-------+--+
         +--------+           +------------+       | Residue  |
         |Rule ID’|           | Encryption | <---  +----------+--------+
         +--------+--+        +------------+       |                   |
         | Residue’  |                             | Payload           |
         +-----------+-------+                     |                   |
         |  Ciphertext       |                     +-------------------+
         |                   |
         +-------------------+

                   Figure 9: OSCORE Compression Diagram

7.4.  Example OSCORE Compression

   In what follows we present an example GET Request and consequent
   CONTENT Response and show a possible set of rules for the Inner and
   Outer SCHC Compression.  We then show a dump of the results and
   contrast SCHC + OSCORE performance with SCHC + COAP performance.
   This gives an approximation to the cost of security with SCHC-OSCORE.

   Our first example CoAP message is the GET Request in Figure 10

Minaburo, et al.         Expires January 3, 2019               [Page 17]



Internet-Draft           LPWAN CoAP compression                July 2018

   Original message:
   =================
   0x4101000182bb74656d7065726174757265

   Header:
   0x4101
   01   Ver
     00   CON
       0001   tkl
           00000001   Request Code 1 "GET"

   0x0001 = mid
   0x82 = token

   Options:
   0xbb74656d7065726174757265
   Option 11: URI_PATH
   Value = temperature

   Original msg length:   17 bytes.

                        Figure 10: CoAP GET Request

   Its corresponding response is the CONTENT Response in Figure 11.

   Original message:
   =================
   0x6145000182ff32332043

   Header:
   0x6145
   01   Ver
     10   ACK
       0001   tkl
           01000101   Successful Response Code 69 "2.05 Content"

   0x0001 = mid
   0x82 = token

   0xFF  Payload marker
   Payload:
   0x32332043

   Original msg length:   10

                     Figure 11: CoAP CONTENT Response

Minaburo, et al.         Expires January 3, 2019               [Page 18]



Internet-Draft           LPWAN CoAP compression                July 2018

   The SCHC Rules for the Inner Compression include all fields that are
   already present in a regular CoAP message, what matters is the order
   of appearance and inclusion of only those CoAP fields that go into
   the Plaintext, Figure 12.

   Rule ID 0
  +----------------+--+--+-----------+-----------+-----------++--------+
  | Field          |FP|DI|  Target   |    MO     |     CDA   ||  Sent  |
  |                |  |  |  Value    |           |           || [bits] |
  +----------------+--+--+-----------+-----------+-----------++--------+
  |CoAP Code       |  |up|   1       |  equal    |not-sent   ||        |
  |CoAP Code       |  |dw|[69,132]   | match-map |match-sent || c      |
  |CoAP Uri-Path   |  |up|temperature|  equal    |not-sent   ||        |
  |COAP Option-End |  |dw| 0xFF      |  equal    |not-sent   ||        |
  +----------------+--+--+-----------+-----------+-----------++--------+

                        Figure 12: Inner SCHC Rules

   The Outer SCHC Rules (Figure 13) must process the OSCORE Options
   fields.  Here we mask off the repeated bits (most importantly the
   flag and size bits) with the MSB Mathing Operator.

Rule ID 0
+---------------+--+--+--------------+---------+-----------++------------+
| Field         |FP|DI|    Target    |   MO    |     CDA   ||    Sent    |
|               |  |  |    Value     |         |           ||   [bits]   |
+---------------+--+--+--------------+---------+-----------++------------+
|CoAP version   |  |bi|      01      |equal    |not-sent   ||            |
|CoAP Type      |  |up|      0       |equal    |not-sent   ||            |
|CoAP Type      |  |dw|      2       |equal    |not-sent   ||            |
|CoAP TKL       |  |bi|      1       |equal    |not-sent   ||            |
|CoAP Code      |  |up|      2       |equal    |not-sent   ||            |
|CoAP Code      |  |dw|      68      |equal    |not-sent   ||            |
|CoAP MID       |  |bi|     0000     |MSB(12)  |LSB        ||MMMM        |
|CoAP Token     |  |bi|     0x80     |MSB(5)   |LSB        ||TTT         |
|CoAP OSCORE_piv|  |up|    0x0900    |MSB(12)  |LSB        ||PPPP        |
|COAP OSCORE_kid|  |up|b’\x06client’ |MSB(52)  |LSB        ||KKKK        |
|CoAP OSCORE_piv|  |dw|     b’’      |equal    |not-sent   ||            |
|COAP Option-End|  |dw|     0xFF     |equal    |not-sent   ||            |
+---------------+--+--+--------------+---------+-----------++------------+

                        Figure 13: Outer SCHC Rules

   Next we show a dump of the compressed message:

Minaburo, et al.         Expires January 3, 2019               [Page 19]



Internet-Draft           LPWAN CoAP compression                July 2018

   Compressed message:
   ==================
   0x00291287f0a5c4833760d170
   0x00 = Rule ID

   piv = 0x04

   Compression residue:
   0b0001 010 0100 0100 (15 bits -> 2 bytes with padding)
     mid  tkn piv   kid

   Payload
   0xa1fc297120cdd8345c

   Compressed message length: 12 bytes

               Figure 14: SCHC-OSCORE Compressed GET Request

   Compressed message:
   ==================
   0x0015f4de9cb814c96aed9b1d981a3a58
   0x00 = Rule ID

   Compression residue:
   0b0001 010  (7 bits -> 1 byte with padding)
     mid  tkn

   Payload
   0xfa6f4e5c0a64b576cd8ecc0d1d2c

   Compressed msg length: 16 bytes

            Figure 15: SCHC-OSCORE Compressed CONTENT Response

   For contrast, we compare these results with what would be obtained by
   SCHC compressing the original CoAP messages without protecting them
   with OSCORE.  To do this, we compress the CoAP mesages according to
   the SCHC rules in Figure 16.

Minaburo, et al.         Expires January 3, 2019               [Page 20]



Internet-Draft           LPWAN CoAP compression                July 2018

 Rule ID 1
 +---------------+--+--+-----------+---------+-----------++------------+
 | Field         |FP|DI|  Target   |   MO    |     CDA   ||    Sent    |
 |               |  |  |  Value    |         |           ||   [bits]   |
 +---------------+--+--+-----------+---------+-----------++------------+
 |CoAP version   |  |bi|    01     |equal    |not-sent   ||            |
 |CoAP Type      |  |up|    0      |equal    |not-sent   ||            |
 |CoAP Type      |  |dw|    2      |equal    |not-sent   ||            |
 |CoAP TKL       |  |bi|    1      |equal    |not-sent   ||            |
 |CoAP Code      |  |up|    2      |equal    |not-sent   ||            |
 |CoAP Code      |  |dw| [69,132]  |equal    |not-sent   ||            |
 |CoAP MID       |  |bi|   0000    |MSB(12)  |LSB        ||MMMM        |
 |CoAP Token     |  |bi|    0x80   |MSB(5)   |LSB        ||TTT         |
 |CoAP Uri-Path  |  |up|temperature|equal    |not-sent   ||            |
 |COAP Option-End|  |dw|   0xFF    |equal    |not-sent   ||            |
 +---------------+--+--+-----------+---------+-----------++------------+

                  Figure 16: SCHC-CoAP Rules (No OSCORE)

   This yields the results in Figure 17 for the Request, and Figure 18
   for the Response.

   Compressed message:
   ==================
   0x0114
   0x01 = Rule ID

   Compression residue:
   0b00010100 (1 byte)

   Compressed msg length: 2

               Figure 17: CoAP GET Compressed without OSCORE

   Compressed message:
   ==================
   0x010a32332043
   0x01 = Rule ID

   Compression residue:
   0b00001010 (1 byte)

   Payload
   0x32332043

   Compressed msg length: 6

             Figure 18: CoAP CONTENT Compressed without OSCORE

Minaburo, et al.         Expires January 3, 2019               [Page 21]



Internet-Draft           LPWAN CoAP compression                July 2018

   As can be seen, the difference between applying SCHC + OSCORE as
   compared to regular SCHC + COAP is about 10 bytes of cost.

8.  Normative References

   [I-D.ietf-core-object-security]
              Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security for Constrained RESTful Environments
              (OSCORE)", draft-ietf-core-object-security-13 (work in
              progress), June 2018.

   [I-D.ietf-lpwan-ipv6-static-context-hc]
              Minaburo, A., Toutain, L., Gomez, C., and D. Barthel,
              "LPWAN Static Context Header Compression (SCHC) and
              fragmentation for IPv6 and UDP", draft-ietf-lpwan-ipv6-
              static-context-hc-16 (work in progress), June 2018.

   [I-D.toutain-core-time-scale]
              Minaburo, A. and L. Toutain, "CoAP Time Scale Option",
              draft-toutain-core-time-scale-00 (work in progress),
              October 2017.

   [rfc7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.

   [rfc7641]  Hartke, K., "Observing Resources in the Constrained
              Application Protocol (CoAP)", RFC 7641,
              DOI 10.17487/RFC7641, September 2015,
              <https://www.rfc-editor.org/info/rfc7641>.

   [rfc7959]  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
              the Constrained Application Protocol (CoAP)", RFC 7959,
              DOI 10.17487/RFC7959, August 2016,
              <https://www.rfc-editor.org/info/rfc7959>.

   [rfc7967]  Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.
              Bose, "Constrained Application Protocol (CoAP) Option for
              No Server Response", RFC 7967, DOI 10.17487/RFC7967,
              August 2016, <https://www.rfc-editor.org/info/rfc7967>.

Authors’ Addresses

Minaburo, et al.         Expires January 3, 2019               [Page 22]



Internet-Draft           LPWAN CoAP compression                July 2018

   Ana Minaburo
   Acklio
   1137A avenue des Champs Blancs
   35510 Cesson-Sevigne Cedex
   France

   Email: ana@ackl.io

   Laurent Toutain
   Institut MINES TELECOM; IMT Atlantique
   2 rue de la Chataigneraie
   CS 17607
   35576 Cesson-Sevigne Cedex
   France

   Email: Laurent.Toutain@imt-atlantique.fr

   Ricardo Andreasen
   Universidad de Buenos Aires
   Av. Paseo Colon 850
   C1063ACV Ciudad Autonoma de Buenos Aires
   Argentina

   Email: randreasen@fi.uba.ar

Minaburo, et al.         Expires January 3, 2019               [Page 23]



lpwan Working Group                                          A. Minaburo
Internet-Draft                                                    Acklio
Intended status: Standards Track                              L. Toutain
Expires: December 31, 2018                                IMT-Atlantique
                                                                C. Gomez
                                    Universitat Politecnica de Catalunya
                                                              D. Barthel
                                                             Orange Labs
                                                           June 29, 2018

  LPWAN Static Context Header Compression (SCHC) and fragmentation for
                              IPv6 and UDP
               draft-ietf-lpwan-ipv6-static-context-hc-16

Abstract

   This document defines the Static Context Header Compression (SCHC)
   framework, which provides both header compression and fragmentation
   functionalities.  SCHC has been tailored for Low Power Wide Area
   Networks (LPWAN).

   SCHC compression is based on a common static context stored in both
   the LPWAN devices and the network side.  This document defines a
   header compression mechanism and its application to compress IPv6/UDP
   headers.

   This document also specifies a fragmentation and reassembly mechanism
   that is used to support the IPv6 MTU requirement over the LPWAN
   technologies.  Fragmentation is needed for IPv6 datagrams that, after
   SCHC compression or when such compression was not possible, still
   exceed the layer two maximum payload size.

   The SCHC header compression and fragmentation mechanisms are
   independent of the specific LPWAN technology over which they are
   used.  Note that this document defines generic functionalities and
   advisedly offers flexibility with regard to parameter settings and
   mechanism choices.  Such settings and choices are expected to be made
   in other technology-specific documents.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute

Minaburo, et al.        Expires December 31, 2018               [Page 1]



Internet-Draft                 LPWAN SCHC                      June 2018

   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 31, 2018.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Requirements Notation . . . . . . . . . . . . . . . . . . . .   5
   3.  LPWAN Architecture  . . . . . . . . . . . . . . . . . . . . .   5
   4.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   6
   5.  SCHC overview . . . . . . . . . . . . . . . . . . . . . . . .   9
   6.  Rule ID . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
   7.  Static Context Header Compression . . . . . . . . . . . . . .  13
     7.1.  SCHC C/D Rules  . . . . . . . . . . . . . . . . . . . . .  14
     7.2.  Rule ID for SCHC C/D  . . . . . . . . . . . . . . . . . .  16
     7.3.  Packet processing . . . . . . . . . . . . . . . . . . . .  16
     7.4.  Matching operators  . . . . . . . . . . . . . . . . . . .  18
     7.5.  Compression Decompression Actions (CDA) . . . . . . . . .  18
       7.5.1.  not-sent CDA  . . . . . . . . . . . . . . . . . . . .  20
       7.5.2.  value-sent CDA  . . . . . . . . . . . . . . . . . . .  20
       7.5.3.  mapping-sent CDA  . . . . . . . . . . . . . . . . . .  20
       7.5.4.  LSB CDA . . . . . . . . . . . . . . . . . . . . . . .  20
       7.5.5.  DevIID, AppIID CDA  . . . . . . . . . . . . . . . . .  21
       7.5.6.  Compute-* . . . . . . . . . . . . . . . . . . . . . .  21
   8.  Fragmentation . . . . . . . . . . . . . . . . . . . . . . . .  21
     8.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .  21
     8.2.  Fragmentation Tools . . . . . . . . . . . . . . . . . . .  22

Minaburo, et al.        Expires December 31, 2018               [Page 2]



Internet-Draft                 LPWAN SCHC                      June 2018

     8.3.  Reliability modes . . . . . . . . . . . . . . . . . . . .  25
     8.4.  Fragmentation Formats . . . . . . . . . . . . . . . . . .  27
       8.4.1.  Fragments that are not the last one . . . . . . . . .  27
       8.4.2.  All-1 fragment  . . . . . . . . . . . . . . . . . . .  29
       8.4.3.  SCHC ACK format . . . . . . . . . . . . . . . . . . .  31
       8.4.4.  Abort formats . . . . . . . . . . . . . . . . . . . .  33
     8.5.  Baseline mechanism  . . . . . . . . . . . . . . . . . . .  35
       8.5.1.  No-ACK  . . . . . . . . . . . . . . . . . . . . . . .  36
       8.5.2.  ACK-Always  . . . . . . . . . . . . . . . . . . . . .  36
       8.5.3.  ACK-on-Error  . . . . . . . . . . . . . . . . . . . .  39
     8.6.  Supporting multiple window sizes  . . . . . . . . . . . .  40
     8.7.  Downlink SCHC Fragment transmission . . . . . . . . . . .  41
   9.  Padding management  . . . . . . . . . . . . . . . . . . . . .  42
   10. SCHC Compression for IPv6 and UDP headers . . . . . . . . . .  43
     10.1.  IPv6 version field . . . . . . . . . . . . . . . . . . .  43
     10.2.  IPv6 Traffic class field . . . . . . . . . . . . . . . .  43
     10.3.  Flow label field . . . . . . . . . . . . . . . . . . . .  44
     10.4.  Payload Length field . . . . . . . . . . . . . . . . . .  44
     10.5.  Next Header field  . . . . . . . . . . . . . . . . . . .  44
     10.6.  Hop Limit field  . . . . . . . . . . . . . . . . . . . .  45
     10.7.  IPv6 addresses fields  . . . . . . . . . . . . . . . . .  45
       10.7.1.  IPv6 source and destination prefixes . . . . . . . .  45
       10.7.2.  IPv6 source and destination IID  . . . . . . . . . .  46
     10.8.  IPv6 extensions  . . . . . . . . . . . . . . . . . . . .  46
     10.9.  UDP source and destination port  . . . . . . . . . . . .  46
     10.10. UDP length field . . . . . . . . . . . . . . . . . . . .  47
     10.11. UDP Checksum field . . . . . . . . . . . . . . . . . . .  47
   11. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  48
   12. Security considerations . . . . . . . . . . . . . . . . . . .  48
     12.1.  Security considerations for SCHC
            Compression/Decompression  . . . . . . . . . . . . . . .  48
     12.2.  Security considerations for SCHC
            Fragmentation/Reassembly . . . . . . . . . . . . . . . .  48
   13. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  49
   14. References  . . . . . . . . . . . . . . . . . . . . . . . . .  50
     14.1.  Normative References . . . . . . . . . . . . . . . . . .  50
     14.2.  Informative References . . . . . . . . . . . . . . . . .  50
   Appendix A.  SCHC Compression Examples  . . . . . . . . . . . . .  51
   Appendix B.  Fragmentation Examples . . . . . . . . . . . . . . .  54
   Appendix C.  Fragmentation State Machines . . . . . . . . . . . .  60
   Appendix D.  SCHC Parameters - Ticket #15 . . . . . . . . . . . .  67
   Appendix E.  Note . . . . . . . . . . . . . . . . . . . . . . . .  68
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  69

Minaburo, et al.        Expires December 31, 2018               [Page 3]



Internet-Draft                 LPWAN SCHC                      June 2018

1.  Introduction

   This document defines the Static Context Header Compression (SCHC)
   framework, which provides both header compression and fragmentation
   functionalities.  SCHC has been tailored for Low Power Wide Area
   Networks (LPWAN).

   Header compression is needed to efficiently bring Internet
   connectivity to the node within an LPWAN network.  Some LPWAN
   networks properties can be exploited to get an efficient header
   compression:

   o  The network topology is star-oriented, which means that all
      packets follow the same path.  For the needs of this document, the
      architecture can simply be described as Devices (Dev) exchanging
      information with LPWAN Application Servers (App) through Network
      Gateways (NGW).

   o  Because devices embed built-in applications, the traffic flows to
      be compressed are known in advance.  Indeed, new applications
      cannot be easily installed in LPWAN devices, as they would in
      computers or smartphones.

   The Static Context Header Compression (SCHC) is defined for this
   environment.  SCHC uses a context, in which information about header
   fieds is stored.  This context is static: the values of the header
   fields do not change over time.  This avoids complex
   resynchronization mechanisms, that would be incompatible with LPWAN
   characteristics.  In most cases, a small context identifier is enough
   to represent the full IPv6/UDP headers.  The SCHC header compression
   mechanism is independent of the specific LPWAN technology over which
   it is used.

   LPWAN technologies impose some strict limitations on traffic.  For
   instance, devices are sleeping most of the time and MAY receive data
   during short periods of time after transmission to preserve battery.
   LPWAN technologies are also characterized, among others, by a very
   reduced data unit and/or payload size (see [RFC8376]).  However, some
   of these technologies do not provide fragmentation functionality,
   therefore the only option for them to support the IPv6 MTU
   requirement of 1280 bytes [RFC8200] is to use a fragmentation
   protocol at the adaptation layer, below IPv6.  In response to this
   need, this document also defines a fragmentation/reassembly
   mechanism, which supports the IPv6 MTU requirement over LPWAN
   technologies.  Such functionality has been designed under the
   assumption that there is no out-of-sequence delivery of data units
   between the entity performing fragmentation and the entity performing
   reassembly.

Minaburo, et al.        Expires December 31, 2018               [Page 4]



Internet-Draft                 LPWAN SCHC                      June 2018

   Note that this document defines generic functionality and
   purposefully offers flexibility with regard to parameter settings and
   mechanism choices.  Such settings and choices are expected to be made
   in other, technology-specific documents.

2.  Requirements Notation

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  LPWAN Architecture

   LPWAN technologies have similar network architectures but different
   terminologies.  Using the terminology defined in [RFC8376], we can
   identify different types of entities in a typical LPWAN network, see
   Figure 1:

   o Devices (Dev) are the end-devices or hosts (e.g. sensors,
   actuators, etc.).  There can be a very high density of devices per
   radio gateway.

   o The Radio Gateway (RGW), which is the end point of the constrained
   link.

   o The Network Gateway (NGW) is the interconnection node between the
   Radio Gateway and the Internet.

   o LPWAN-AAA Server, which controls the user authentication and the
   applications.

   o Application Server (App)

                                              +------+
    ()   ()   ()       |                      |LPWAN-|
     ()  () () ()     / \       +---------+   | AAA  |
   () () () () () () /   \======|    ^    |===|Server|  +-----------+
    ()  ()   ()     |           | <--|--> |   +------+  |APPLICATION|
   ()  ()  ()  ()  / \==========|    v    |=============|   (App)   |
     ()  ()  ()   /   \         +---------+             +-----------+
    Dev        Radio Gateways         NGW

                       Figure 1: LPWAN Architecture

Minaburo, et al.        Expires December 31, 2018               [Page 5]



Internet-Draft                 LPWAN SCHC                      June 2018

4.  Terminology

   This section defines the terminology and acronyms used in this
   document.

   Note that the SCHC acronym is pronounced like "sheek" in English (or
   "chic" in French).  Therefore, this document writes "a SCHC Packet"
   instead of "an SCHC Packet".

   o  Abort.  A SCHC Fragment format to signal the other end-point that
      the on-going fragment transmission is stopped and finished.

   o  All-0.  The SCHC Fragment format for the last fragment of a window
      that is not the last one of a SCHC Packet (see window in this
      glossary).

   o  All-1.  The SCHC Fragment format for the last fragment of the SCHC
      Packet.

   o  All-0 empty.  An All-0 SCHC Fragment without payload.  It is used
      to request the SCHC ACK with the encoded Bitmap when the
      Retransmission Timer expires, in a window that is not the last one
      of a packet.

   o  All-1 empty.  An All-1 SCHC Fragment without payload.  It is used
      to request the SCHC ACK with the encoded Bitmap when the
      Retransmission Timer expires in the last window of a packet.

   o  App: LPWAN Application.  An application sending/receiving IPv6
      packets to/from the Device.

   o  AppIID: Application Interface Identifier.  The IID that identifies
      the application server interface.

   o  Bi: Bidirectional.  Characterises a Rule Entry that applies to
      headers of packets travelling in either direction (Up and Dw, see
      this glossary).

   o  Bitmap: a bit field in the SCHC ACK message that tells the sender
      which SCHC Fragments in a window of fragments were correctly
      received.

   o  C: Checked bit.  Used in an acknowledgement (SCHC ACK) header to
      determine if the MIC locally computed by the receiver matches (1)
      the received MIC or not (0).

   o  CDA: Compression/Decompression Action.  Describes the reciprocal
      pair of actions that are performed at the compressor to compress a

Minaburo, et al.        Expires December 31, 2018               [Page 6]



Internet-Draft                 LPWAN SCHC                      June 2018

      header field and at the decompressor to recover the original
      header field value.

   o  Compression Residue.  The bits that need to be sent (beyond the
      Rule ID itself) after applying the SCHC compression over each
      header field.

   o  Context: A set of Rules used to compress/decompress headers.

   o  Dev: Device.  A node connected to an LPWAN.  A Dev SHOULD
      implement SCHC.

   o  DevIID: Device Interface Identifier.  The IID that identifies the
      Dev interface.

   o  DI: Direction Indicator.  This field tells which direction of
      packet travel (Up, Dw or Bi) a Rule applies to.  This allows for
      assymmetric processing.

   o  DTag: Datagram Tag. This SCHC F/R header field is set to the same
      value for all SCHC Fragments carrying the same SCHC Packet.

   o  Dw: Downlink direction for compression/decompression in both
      sides, from SCHC C/D in the network to SCHC C/D in the Dev.

   o  FCN: Fragment Compressed Number.  This SCHC F/R header field
      carries an efficient representation of a larger-sized fragment
      number.

   o  Field Description.  A line in the Rule table.

   o  FID: Field Identifier.  This is an index to describe the header
      fields in a Rule.

   o  FL: Field Length is the length of the packet header field.  It is
      expressed in bits for header fields of fixed lengths or as a type
      (e.g. variable, token length, ...) for field lengths that are
      unknown at the time of Rule creation.  The length of a header
      field is defined in the corresponding protocol specification.

   o  FP: Field Position is a value that is used to identify the
      position where each instance of a field appears in the header.

   o  IID: Interface Identifier.  See the IPv6 addressing architecture
      [RFC7136]

Minaburo, et al.        Expires December 31, 2018               [Page 7]



Internet-Draft                 LPWAN SCHC                      June 2018

   o  Inactivity Timer.  A timer used after receiving a SCHC Fragment to
      detect when, due to a communication error, there is no possibility
      to continue an on-going fragmented SCHC Packet transmission.

   o  L2: Layer two.  The immediate lower layer SCHC interfaces with.
      It is provided by an underlying LPWAN technology.

   o  L2 Word: this is the minimum subdivision of payload data that the
      L2 will carry.  In most L2 technologies, the L2 Word is an octet.
      In bit-oriented radio technologies, the L2 Word might be a single
      bit.  The L2 Word size is assumed to be constant over time for
      each device.

   o  MIC: Message Integrity Check.  A SCHC F/R header field computed
      over the fragmented SCHC Packet and potential fragment padding,
      used for error detection after SCHC Packet reassembly.

   o  MO: Matching Operator.  An operator used to match a value
      contained in a header field with a value contained in a Rule.

   o  Padding (P).  Extra bits that may be appended by SCHC to a data
      unit that it passes to the underlying Layer 2 for transmission.
      SCHC itself operates on bits, not bytes, and does not have any
      alignment prerequisite.  See Section 9.

   o  Retransmission Timer.  A timer used by the SCHC Fragment sender
      during an on-going fragmented SCHC Packet transmission to detect
      possible link errors when waiting for a possible incoming SCHC
      ACK.

   o  Rule: A set of header field values.

   o  Rule entry: A column in a Rule that describes a parameter of the
      header field.

   o  Rule ID: An identifier for a Rule.  SCHC C/D on both sides share
      the same Rule ID for a given packet.  A set of Rule IDs are used
      to support SCHC F/R functionality.

   o  SCHC ACK: A SCHC acknowledgement for fragmentation.  This message
      is used to report on the success of reception of a set of SCHC
      Fragments.  See Section 8 for more details.

   o  SCHC C/D: Static Context Header Compression Compressor/
      Decompressor.  A mechanism used on both sides, at the Dev and at
      the network, to achieve Compression/Decompression of headers.
      SCHC C/D uses Rules to perform compression and decompression.

Minaburo, et al.        Expires December 31, 2018               [Page 8]



Internet-Draft                 LPWAN SCHC                      June 2018

   o  SCHC F/R: Static Context Header Compression Fragmentation/
      Reassembly.  A protocol used on both sides, at the Dev and at the
      network, to achieve Fragmentation/Reassembly of SCHC Packets.
      SCHC F/R has three reliability modes.

   o  SCHC Fragment: A data unit that carries a subset of a SCHC Packet.
      SCHC F/R is needed when the size of a SCHC packet exceeds the
      available payload size of the underlying L2 technology data unit.
      See Section 8.

   o  SCHC Packet: A packet (e.g. an IPv6 packet) whose header has been
      compressed as per the header compression mechanism defined in this
      document.  If the header compression process is unable to actually
      compress the packet header, the packet with the uncompressed
      header is still called a SCHC Packet (in this case, a Rule ID is
      used to indicate that the packet header has not been compressed).
      See Section 7 for more details.

   o  TV: Target value.  A value contained in a Rule that will be
      matched with the value of a header field.

   o  Up: Uplink direction for compression/decompression in both sides,
      from the Dev SCHC C/D to the network SCHC C/D.

   o  W: Window bit.  A SCHC Fragment header field used in ACK-on-Error
      or ACK-Always mode Section 8, which carries the same value for all
      SCHC Fragments of a window.

   o  Window: A subset of the SCHC Fragments needed to carry a SCHC
      Packet (see Section 8).

5.  SCHC overview

   SCHC can be abstracted as an adaptation layer between IPv6 and the
   underlying LPWAN technology.  SCHC comprises two sublayers (i.e. the
   Compression sublayer and the Fragmentation sublayer), as shown in
   Figure 2.

Minaburo, et al.        Expires December 31, 2018               [Page 9]



Internet-Draft                 LPWAN SCHC                      June 2018

                +----------------+
                |      IPv6      |
             +- +----------------+
             |  |   Compression  |
       SCHC <   +----------------+
             |  |  Fragmentation |
             +- +----------------+
                |LPWAN technology|
                +----------------+

        Figure 2: Protocol stack comprising IPv6, SCHC and an LPWAN
                                technology

   As per this document, when a packet (e.g. an IPv6 packet) needs to be
   transmitted, header compression is first applied to the packet.  The
   resulting packet after header compression (whose header may or may
   not actually be smaller than that of the original packet) is called a
   SCHC Packet.  If the SCHC Packet size exceeds the layer 2 (L2) MTU,
   fragmentation is then applied to the SCHC Packet.  The SCHC Packet or
   the SCHC Fragments are then transmitted over the LPWAN.  The
   reciprocal operations take place at the receiver.  This process is
   illustrated in Figure 3.

Minaburo, et al.        Expires December 31, 2018              [Page 10]



Internet-Draft                 LPWAN SCHC                      June 2018

   A packet (e.g. an IPv6 packet)
            |                                           ^
            v                                           |
   +------------------+                      +--------------------+
   | SCHC Compression |                      | SCHC Decompression |
   +------------------+                      +--------------------+
            |                                           ^
            |   If no fragmentation (*)                 |
            +-------------- SCHC Packet  -------------->|
            |                                           |
            v                                           |
   +--------------------+                       +-----------------+
   | SCHC Fragmentation |                       | SCHC Reassembly |
   +--------------------+                       +-----------------+
         |     ^                                     |     ^
         |     |                                     |     |
         |     +-------------- SCHC ACK -------------+     |
         |                                                 |
         +-------------- SCHC Fragments -------------------+

           SENDER                                    RECEIVER

   *: the decision to use Fragmentation or not is left to each LPWAN
      technology over which SCHC is applied. See LPWAN
      technology-specific documents.

   Figure 3: SCHC operations taking place at the sender and the receiver

   The SCHC Packet is composed of the Compressed Header followed by the
   payload from the original packet (see Figure 4).  The Compressed
   Header itself is composed of a Rule ID and a Compression Residue.
   The Compression Residue may be absent, see Section 7.  Both the Rule
   ID and the Compression Residue potentially have a variable size, and
   generally are not a mutiple of bytes in size.

   |  Rule ID +  Compression Residue |
   +---------------------------------+--------------------+
   |      Compressed Header          |      Payload       |
   +---------------------------------+--------------------+

                           Figure 4: SCHC Packet

   The Fragment Header size is variable and depends on the Fragmentation
   parameters.  The Fragment payload contains a part of the SCHC Packet
   Compressed Header, a part of the SCHC Packet Payload or both.  Its

Minaburo, et al.        Expires December 31, 2018              [Page 11]



Internet-Draft                 LPWAN SCHC                      June 2018

   size depends on the L2 data unit, see Section 8.  The SCHC Fragment
   has the following format:

   | Rule ID + DTAG + W + FCN [+ MIC ] |   Partial  SCHC Packet  |
   +-----------------------------------+-------------------------+
   |        Fragment Header            |   Fragment  Payload     |
   +-----------------------------------+-------------------------+

                          Figure 5: SCHC Fragment

   The SCHC ACK is only used for Fragmentation.  It has the following
   format:

   |Rule ID + DTag + W|
   +------------------+-------- ... ---------+
   |    ACK Header    |    encoded Bitmap    |
   +------------------+-------- ... ---------+

                            Figure 6: SCHC ACK

   The SCHC ACK Header and the encoded Bitmap both have variable size.

   Figure 7 below maps the functional elements of Figure 3 onto the
   LPWAN architecture elements of Figure 1.

        Dev                                                 App
   +----------------+                                  +--------------+
   | APP1 APP2 APP3 |                                  |APP1 APP2 APP3|
   |                |                                  |              |
   |       UDP      |                                  |     UDP      |
   |      IPv6      |                                  |    IPv6      |
   |                |                                  |              |
   |SCHC C/D and F/R|                                  |              |
   +--------+-------+                                  +-------+------+
            |   +--+     +----+     +-----------+              .
            +˜˜ |RG| === |NGW | === |   SCHC    |... Internet ..
                +--+     +----+     |F/R and C/D|
                                    +-----------+

                          Figure 7: Architecture

   SCHC C/D and SCHC F/R are located on both sides of the LPWAN
   transmission, i.e. on the Dev side and on the Network side.

   Let’s describe the operation in the Uplink direction.  The Device
   application packets use IPv6 or IPv6/UDP protocols.  Before sending

Minaburo, et al.        Expires December 31, 2018              [Page 12]



Internet-Draft                 LPWAN SCHC                      June 2018

   these packets, the Dev compresses their headers using SCHC C/D and,
   if the SCHC Packet resulting from the compression exceeds the maximum
   payload size of the underlying LPWAN technology, SCHC F/R is
   performed (see Section 8).  The resulting SCHC Fragments are sent as
   one or more L2 frames to an LPWAN Radio Gateway (RG) which forwards
   them to a Network Gateway (NGW).  The NGW sends the data to a SCHC F/
   R and then to the SCHC C/D for decompression.  The SCHC F/R and C/D
   on the Network side can be located in the NGW or somewhere else as
   long as a tunnel is established between them and the NGW.  Note that,
   for some LPWAN technologies, it MAY be suitable to locate the SCHC F/
   R functionality nearer the NGW, in order to better deal with time
   constraints of such technologies.  The SCHC C/D and F/R on both sides
   MUST share the same set of Rules.  After decompression, the packet
   can be sent over the Internet to one or several LPWAN Application
   Servers (App).

   The SCHC C/D and F/R process is symmetrical, therefore the
   description of the Downlink direction trivially derives from the one
   above.

6.  Rule ID

   Rule IDs are identifiers used to select the correct context either
   for Compression/Decompression or for Fragmentation/Reassembly.

   The size of the Rule IDs is not specified in this document, as it is
   implementation-specific and can vary according to the LPWAN
   technology and the number of Rules, among others.

   The Rule IDs are used:

   o  In the SCHC C/D context, to identify the Rule (i.e., the set of
      Field Descriptions) that is used to compress a packet header.

   o  At least one Rule ID MAY be allocated to tagging packets for which
      SCHC compression was not possible (no matching Rule was found).

   o  In SCHC F/R, to identify the specific modes and settings of SCHC
      Fragments being transmitted, and to identify the SCK ACKs,
      including their modes and settings.  Note that in the case of
      bidirectional communication, at least two Rule ID values are
      therefore needed for F/R.

7.  Static Context Header Compression

   In order to perform header compression, this document defines a
   mechanism called Static Context Header Compression (SCHC), which is
   based on using context, i.e. a set of Rules to compress or decompress

Minaburo, et al.        Expires December 31, 2018              [Page 13]



Internet-Draft                 LPWAN SCHC                      June 2018

   headers.  SCHC avoids context synchronization, which is the most
   bandwidth-consuming operation in other header compression mechanisms
   such as RoHC [RFC5795].  Since the nature of packets is highly
   predictable in LPWAN networks, static contexts MAY be stored
   beforehand to omit transmitting some information over the air.  The
   contexts MUST be stored at both ends, and they can be learned by a
   provisioning protocol or by out of band means, or they can be pre-
   provisioned.  The way the contexts are provisioned on both ends is
   out of the scope of this document.

7.1.  SCHC C/D Rules

   The main idea of the SCHC compression scheme is to transmit the Rule
   ID to the other end instead of sending known field values.  This Rule
   ID identifies a Rule that provides the closest match to the original
   packet values.  Hence, when a value is known by both ends, it is only
   necessary to send the corresponding Rule ID over the LPWAN network.
   How Rules are generated is out of the scope of this document.  The
   Rules MAY be changed at run-time but the way to do this will be
   specified in another document.

   The context contains a list of Rules (cf.  Figure 8).  Each Rule
   itself contains a list of Field Descriptions composed of a Field
   Identifier (FID), a Field Length (FL), a Field Position (FP), a
   Direction Indicator (DI), a Target Value (TV), a Matching Operator
   (MO) and a Compression/Decompression Action (CDA).

     /-----------------------------------------------------------------\
     |                         Rule N                                  |
    /-----------------------------------------------------------------\|
    |                       Rule i                                    ||
   /-----------------------------------------------------------------\||
   |  (FID)            Rule 1                                        |||
   |+-------+--+--+--+------------+-----------------+---------------+|||
   ||Field 1|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||||
   |+-------+--+--+--+------------+-----------------+---------------+|||
   ||Field 2|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||||
   |+-------+--+--+--+------------+-----------------+---------------+|||
   ||...    |..|..|..|   ...      | ...             | ...           ||||
   |+-------+--+--+--+------------+-----------------+---------------+||/
   ||Field N|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act|||
   |+-------+--+--+--+------------+-----------------+---------------+|/
   |                                                                 |
   \-----------------------------------------------------------------/

                Figure 8: Compression/Decompression Context

Minaburo, et al.        Expires December 31, 2018              [Page 14]



Internet-Draft                 LPWAN SCHC                      June 2018

   A Rule does not describe how to parse a packet header to find each
   field.  This MUST be known from the compressor/decompressor.  Rules
   only describe the compression/decompression behavior for each header
   field.  In a Rule, the Field Descriptions are listed in the order in
   which the fields appear in the packet header.

   A Rule also describes what Compression Residue is sent.  The
   Compression Residue is assembled by concatenating the residues for
   each field, in the order the Field Descriptions appear in the Rule.

   The Context describes the header fields and its values with the
   following entries:

   o  Field ID (FID) is a unique value to define the header field.

   o  Field Length (FL) represents the length of the field.  It can be
      either a fixed value (in bits) if the length is known when the
      Rule is created or a type if the length is variable.  The length
      of a header field is defined in the corresponding protocol
      specification.  The type defines the process to compute the
      length, its unit (bits, bytes,...) and the value to be sent before
      the Compression Residue.

   o  Field Position (FP): most often, a field only occurs once in a
      packet header.  Some fields may occur multiple times in a header.
      FP indicates which occurrence this Field Description applies to.
      The default value is 1 (first occurence).

   o  A Direction Indicator (DI) indicates the packet direction(s) this
      Field Description applies to.  Three values are possible:

      *  UPLINK (Up): this Field Description is only applicable to
         packets sent by the Dev to the App,

      *  DOWNLINK (Dw): this Field Description is only applicable to
         packets sent from the App to the Dev,

      *  BIDIRECTIONAL (Bi): this Field Description is applicable to
         packets travelling both Up and Dw.

   o  Target Value (TV) is the value used to make the match with the
      packet header field.  The Target Value can be of any type
      (integer, strings, etc.).  For instance, it can be a single value
      or a more complex structure (array, list, etc.), such as a JSON or
      a CBOR structure.

   o  Matching Operator (MO) is the operator used to match the Field
      Value and the Target Value.  The Matching Operator may require

Minaburo, et al.        Expires December 31, 2018              [Page 15]



Internet-Draft                 LPWAN SCHC                      June 2018

      some parameters.  MO is only used during the compression phase.
      The set of MOs defined in this document can be found in
      Section 7.4.

   o  Compression Decompression Action (CDA) describes the compression
      and decompression processes to be performed after the MO is
      applied.  Some CDAs MAY require parameter values for their
      operation.  CDAs are used in both the compression and the
      decompression functions.  The set of CDAs defined in this document
      can be found in Section 7.5.

7.2.  Rule ID for SCHC C/D

   Rule IDs are sent by the compression function in one side and are
   received for the decompression function in the other side.  In SCHC
   C/D, the Rule IDs are specific to a Dev. Hence, multiple Dev
   instances MAY use the same Rule ID to define different header
   compression contexts.  To identify the correct Rule ID, the SCHC C/D
   needs to correlate the Rule ID with the Dev identifier to find the
   appropriate Rule to be applied.

7.3.  Packet processing

   The compression/decompression process follows several steps:

   o  Compression Rule selection: The goal is to identify which Rule(s)
      will be used to compress the packet’s headers.  When doing
      decompression, on the network side the SCHC C/D needs to find the
      correct Rule based on the L2 address and in this way, it can use
      the DevIID and the Rule ID.  On the Dev side, only the Rule ID is
      needed to identify the correct Rule since the Dev only holds Rules
      that apply to itself.  The Rule will be selected by matching the
      Fields Descriptions to the packet header as described below.  When
      the selection of a Rule is done, this Rule is used to compress the
      header.  The detailed steps for compression Rule selection are the
      following:

      *  The first step is to choose the Field Descriptions by their
         direction, using the Direction Indicator (DI).  A Field
         Description that does not correspond to the appropriate DI will
         be ignored.  If all the fields of the packet do not have a
         Field Description with the correct DI, the Rule is discarded
         and SCHC C/D proceeds to explore the next Rule.

      *  When the DI has matched, then the next step is to identify the
         fields according to Field Position (FP).  If FP does not
         correspond, the Rule is not used and the SCHC C/D proceeds to
         consider the next Rule.

Minaburo, et al.        Expires December 31, 2018              [Page 16]



Internet-Draft                 LPWAN SCHC                      June 2018

      *  Once the DI and the FP correspond to the header information,
         each packet field’s value is then compared to the corresponding
         Target Value (TV) stored in the Rule for that specific field
         using the matching operator (MO).

         If all the fields in the packet’s header satisfy all the
         matching operators (MO) of a Rule (i.e. all MO results are
         True), the fields of the header are then compressed according
         to the Compression/Decompression Actions (CDAs) and a
         compressed header (with possibly a Compression Residue) SHOULD
         be obtained.  Otherwise, the next Rule is tested.

      *  If no eligible Rule is found, then the header MUST be sent
         without compression.  This MAY require the use of the SCHC F/R
         process.

   o  Sending: If an eligible Rule is found, the Rule ID is sent to the
      other end followed by the Compression Residue (which could be
      empty) and directly followed by the payload.  The Compression
      Residue is the concatenation of the Compression Residues for each
      field according to the CDAs for that Rule.  The way the Rule ID is
      sent depends on the specific underlying LPWAN technology.  For
      example, it can be either included in an L2 header or sent in the
      first byte of the L2 payload.  (Cf.  Figure 9).  This process will
      be specified in the LPWAN technology-specific document and is out
      of the scope of the present document.  On LPWAN technologies that
      are byte-oriented, the compressed header concatenated with the
      original packet payload is padded to a multiple of 8 bits, if
      needed.  See Section 9 for details.

   o  Decompression: When doing decompression, on the network side the
      SCHC C/D needs to find the correct Rule based on the L2 address
      and in this way, it can use the DevIID and the Rule ID.  On the
      Dev side, only the Rule ID is needed to identify the correct Rule
      since the Dev only holds Rules that apply to itself.

      The receiver identifies the sender through its device-id (e.g.
      MAC address, if exists) and selects the appropriate Rule from the
      Rule ID.  If a source identifier is present in the L2 technology,
      it is used to select the Rule ID.  This Rule describes the
      compressed header format and associates the values to the header
      fields.  The receiver applies the CDA action to reconstruct the
      original header fields.  The CDA application order can be
      different from the order given by the Rule.  For instance,
      Compute-* SHOULD be applied at the end, after all the other CDAs.

Minaburo, et al.        Expires December 31, 2018              [Page 17]



Internet-Draft                 LPWAN SCHC                      June 2018

   +--- ... --+------- ... -------+------------------+
   |  Rule ID |Compression Residue|  packet payload  |
   +--- ... --+------- ... -------+------------------+

   |----- compressed header ------|

                     Figure 9: SCHC C/D Packet Format

7.4.  Matching operators

   Matching Operators (MOs) are functions used by both SCHC C/D
   endpoints involved in the header compression/decompression.  They are
   not typed and can be indifferently applied to integer, string or any
   other data type.  The result of the operation can either be True or
   False.  MOs are defined as follows:

   o  equal: The match result is True if a field value in a packet and
      the value in the TV are equal.

   o  ignore: No check is done between a field value in a packet and a
      TV in the Rule.  The result of the matching is always true.

   o  MSB(x): A match is obtained if the most significant x bits of the
      packet header field value are equal to the TV in the Rule.  The x
      parameter of the MSB MO indicates how many bits are involved in
      the comparison.  If the FL is described as variable, the length
      must be a multiple of the unit.  For example, x must be multiple
      of 8 if the unit of the variable length is in bytes.

   o  match-mapping: With match-mapping, the Target Value is a list of
      values.  Each value of the list is identified by a short ID (or
      index).  Compression is achieved by sending the index instead of
      the original header field value.  This operator matches if the
      header field value is equal to one of the values in the target
      list.

7.5.  Compression Decompression Actions (CDA)

   The Compression Decompression Action (CDA) describes the actions
   taken during the compression of headers fields, and inversely, the
   action taken by the decompressor to restore the original value.

Minaburo, et al.        Expires December 31, 2018              [Page 18]



Internet-Draft                 LPWAN SCHC                      June 2018

   /--------------------+-------------+----------------------------\
   |  Action            | Compression | Decompression              |
   |                    |             |                            |
   +--------------------+-------------+----------------------------+
   |not-sent            |elided       |use value stored in context |
   |value-sent          |send         |build from received value   |
   |mapping-sent        |send index   |value from index on a table |
   |LSB                 |send LSB     |TV, received value          |
   |compute-length      |elided       |compute length              |
   |compute-checksum    |elided       |compute UDP checksum        |
   |DevIID              |elided       |build IID from L2 Dev addr  |
   |AppIID              |elided       |build IID from L2 App addr  |
   \--------------------+-------------+----------------------------/

             Figure 10: Compression and Decompression Actions

   Figure 10 summarizes the basic functions that can be used to compress
   and decompress a field.  The first column lists the actions name.
   The second and third columns outline the reciprocal compression/
   decompression behavior for each action.

   Compression is done in order that Fields Descriptions appear in a
   Rule.  The result of each Compression/Decompression Action is
   appended to the working Compression Residue in that same order.  The
   receiver knows the size of each compressed field which can be given
   by the Rule or MAY be sent with the compressed header.

   If the field is identified as being variable in the Field
   Description, then the size of the Compression Residue value (using
   the unit defined in the FL) MUST be sent first using the following
   coding:

   o  If the size is between 0 and 14, it is sent as a 4-bits integer.

   o  For values between 15 and 254, the first 4 bits sent are set to 1
      and the size is sent using 8 bits integer.

   o  For higher values of size, the first 12 bits are set to 1 and the
      next two bytes contain the size value as a 16 bits integer.

   If a field is not present in the packet but exists in the Rule and
   its FL is specified as being variable, size 0 MUST be sent to denote
   its absence.

Minaburo, et al.        Expires December 31, 2018              [Page 19]



Internet-Draft                 LPWAN SCHC                      June 2018

7.5.1.  not-sent CDA

   The not-sent function is generally used when the field value is
   specified in a Rule and therefore known by both the Compressor and
   the Decompressor.  This action is generally used with the "equal" MO.
   If MO is "ignore", there is a risk to have a decompressed field value
   different from the original field that was compressed.

   The compressor does not send any Compression Residue for a field on
   which not-sent compression is applied.

   The decompressor restores the field value with the Target Value
   stored in the matched Rule identified by the received Rule ID.

7.5.2.  value-sent CDA

   The value-sent action is generally used when the field value is not
   known by both the Compressor and the Decompressor.  The value is sent
   as a residue in the compressed message header.  Both Compressor and
   Decompressor MUST know the size of the field, either implicitly (the
   size is known by both sides) or by explicitly indicating the length
   in the Compression Residue, as defined in Section 7.5.  This function
   is generally used with the "ignore" MO.

7.5.3.  mapping-sent CDA

   The mapping-sent is used to send a smaller index (the index into the
   Target Value list of values) instead of the original value.  This
   function is used together with the "match-mapping" MO.

   On the compressor side, the match-mapping Matching Operator searches
   the TV for a match with the header field value and the mapping-sent
   CDA appends the corresponding index to the Compression Residue to be
   sent.  On the decompressor side, the CDA uses the received index to
   restore the field value by looking up the list in the TV.

   The number of bits sent is the minimal size for coding all the
   possible indices.

7.5.4.  LSB CDA

   The LSB action is used together with the "MSB(x)" MO to avoid sending
   the most significant part of the packet field if that part is already
   known by the receiving end.  The number of bits sent is the original
   header field length minus the length specified in the MSB(x) MO.

Minaburo, et al.        Expires December 31, 2018              [Page 20]



Internet-Draft                 LPWAN SCHC                      June 2018

   The compressor sends the Least Significant Bits (e.g.  LSB of the
   length field).  The decompressor concatenates the x most significant
   bits of Target Value and the received residue.

   If this action needs to be done on a variable length field, the size
   of the Compression Residue in bytes MUST be sent as described in
   Section 7.5.

7.5.5.  DevIID, AppIID CDA

   These functions are used to process respectively the Dev and the App
   Interface Identifiers (DevIID and AppIID) of the IPv6 addresses.
   AppIID CDA is less common since current LPWAN technologies frames
   contain a single address, which is the Dev’s address.

   The IID value MAY be computed from the Device ID present in the L2
   header, or from some other stable identifier.  The computation is
   specific to each LPWAN technology and MAY depend on the Device ID
   size.

   In the downlink direction (Dw), at the compressor, this DevIID CDA
   may be used to generate the L2 addresses on the LPWAN, based on the
   packet destination address.

7.5.6.  Compute-*

   Some fields are elided during compression and reconstructed during
   decompression.  This is the case for length and checksum, so:

   o  compute-length: computes the length assigned to this field.  This
      CDA MAY be used to compute IPv6 length or UDP length.

   o  compute-checksum: computes a checksum from the information already
      received by the SCHC C/D.  This field MAY be used to compute UDP
      checksum.

8.  Fragmentation

8.1.  Overview

   In LPWAN technologies, the L2 data unit size typically varies from
   tens to hundreds of bytes.  The SCHC F/R (Fragmentation /Reassembly)
   MAY be used either because after applying SCHC C/D or when SCHC C/D
   is not possible the entire SCHC Packet still exceeds the L2 data
   unit.

   The SCHC F/R functionality defined in this document has been designed
   under the assumption that data unit out-of-sequence delivery will not

Minaburo, et al.        Expires December 31, 2018              [Page 21]



Internet-Draft                 LPWAN SCHC                      June 2018

   happen between the entity performing fragmentation and the entity
   performing reassembly.  This assumption allows reducing the
   complexity and overhead of the SCHC F/R mechanism.

   This document also assumes that the L2 data unit size does not vary
   while a fragmented SCHC Packet is being transmitted.

   To adapt the SCHC F/R to the capabilities of LPWAN technologies, it
   is required to enable optional SCHC Fragment retransmission and to
   allow for a range of reliability options for sending the SCHC
   Fragments.  This document does not make any decision with regard to
   which SCHC Fragment delivery reliability mode will be used over a
   specific LPWAN technology.  These details will be defined in other
   technology-specific documents.

   SCHC F/R uses the knowledge of the L2 Word size (see Section 4) to
   encode some messages.  Therefore, SCHC MUST know the L2 Word size.
   SCHC F/R generates SCHC Fragments and SCHC ACKs that are, for most of
   them, multiples of L2 Words.  The padding overhead is kept to the
   absolute minimum.  See Section 9.

8.2.  Fragmentation Tools

   This subsection describes the different tools that are used to enable
   the SCHC F/R functionality defined in this document, such as fields
   in the SCHC F/R header frames (see the related formats in
   Section 8.4), windows and timers.

   o  Rule ID.  The Rule ID is present in the SCHC Fragment header and
      in the SCHC ACK header formats.  The Rule ID in a SCHC Fragment
      header is used to identify that a SCHC Fragment is being carried,
      which SCHC F/R reliability mode is used and which window size is
      used.  The Rule ID in the SCHC Fragment header also allows
      interleaving non-fragmented SCHC Packets and SCHC Fragments that
      carry other SCHC Packets.  The Rule ID in a SCHC ACK identifies
      the message as a SCHC ACK.

   o  Fragment Compressed Number (FCN).  The FCN is included in all SCHC
      Fragments.  This field can be understood as a truncated, efficient
      representation of a larger-sized fragment number, and does not
      carry an absolute SCHC Fragment number.  There are two FCN
      reserved values that are used for controlling the SCHC F/R
      process, as described next:

      *  The FCN value with all the bits equal to 1 (All-1) denotes the
         last SCHC Fragment of a packet.  The last window of a packet is
         called an All-1 window.

Minaburo, et al.        Expires December 31, 2018              [Page 22]



Internet-Draft                 LPWAN SCHC                      June 2018

      *  The FCN value with all the bits equal to 0 (All-0) denotes the
         last SCHC Fragment of a window that is not the last one of the
         packet.  Such a window is called an All-0 window.

      The rest of the FCN values are assigned in a sequentially
      decreasing order, which has the purpose to avoid possible
      ambiguity for the receiver that might arise under certain
      conditions.  In the SCHC Fragments, this field is an unsigned
      integer, with a size of N bits.  In the No-ACK mode, the size is
      set to 1 bit (N=1), All-0 is used in all SCHC Fragments and All-1
      for the last one.  For the other reliability modes, it is
      recommended to use a number of bits (N) equal to or greater than
      3.  Nevertheless, the appropriate value of N MUST be defined in
      the corresponding technology-specific profile documents.  For
      windows that are not the last one of a fragmented SCHC Packet, the
      FCN for the last SCHC Fragment in such windows is an All-0.  This
      indicates that the window is finished and communication proceeds
      according to the reliability mode in use.  The FCN for the last
      SCHC Fragment in the last window is an All-1, indicating the last
      SCHC Fragment of the SCHC Packet.  It is also important to note
      that, in the No-ACK mode or when N=1, the last SCHC Fragment of
      the packet will carry a FCN equal to 1, while all previous SCHC
      Fragments will carry a FCN to 0.  For further details see
      Section 8.5.  The highest FCN in the window, denoted MAX_WIND_FCN,
      MUST be a value equal to or smaller than 2^N-2.  (Example for N=5,
      MAX_WIND_FCN MAY be set to 23, then subsequent FCNs are set
      sequentially and in decreasing order, and the FCN will wrap from 0
      back to 23).

   o  Datagram Tag (DTag).  The DTag field, if present, is set to the
      same value for all SCHC Fragments carrying the same SCHC
      packet, and to different values for different SCHC Packets.  Using
      this field, the sender can interleave fragments from different
      SCHC Packets, while the receiver can still tell them apart.  In
      the SCHC Fragment formats, the size of the DTag field is T bits,
      which MAY be set to a value greater than or equal to 0 bits.  For
      each new SCHC Packet processed by the sender, DTag MUST be
      sequentially increased, from 0 to 2^T - 1 wrapping back from 2^T -
      1 to 0.  In the SCHC ACK format, DTag carries the same value as
      the DTag field in the SCHC Fragments for which this SCHC ACK is
      intended.  When there is no Dtag, there can be only one SCHC
      Packet in transit.  Only after all its fragments have been
      transmitted can another SCHC Packet be sent.  The length of DTag,
      denoted T, is not specified in this document because it is
      technology dependant.  It will be defined in the corresponding
      technology-specific documents, based on the number of simultaneous
      packets that are to be supported.

Minaburo, et al.        Expires December 31, 2018              [Page 23]



Internet-Draft                 LPWAN SCHC                      June 2018

   o  W (window): W is a 1-bit field.  This field carries the same value
      for all SCHC Fragments of a window, and it is complemented for the
      next window.  The initial value for this field is 0.  In the SCHC
      ACK format, this field also has a size of 1 bit.  In all SCHC
      ACKs, the W bit carries the same value as the W bit carried by the
      SCHC Fragments whose reception is being positively or negatively
      acknowledged by the SCHC ACK.

   o  Message Integrity Check (MIC).  This field is computed by the
      sender over the complete SCHC Packet and before SCHC
      fragmentation.  The MIC allows the receiver to check errors in the
      reassembled packet, while it also enables compressing the UDP
      checksum by use of SCHC compression.  The CRC32 as 0xEDB88320
      (i.e. the reverse representation of the polynomial used e.g. in
      the Ethernet standard [RFC3385]) is recommended as the default
      algorithm for computing the MIC.  Nevertheless, other algorithms
      MAY be required and are defined in the technology-specific
      documents as well as the length in bits of the MIC used.

   o  C (MIC checked): C is a 1-bit field.  This field is used in the
      SCHC ACK packets to report the outcome of the MIC check, i.e.
      whether the reassembled packet was correctly received or not.  A
      value of 1 represents a positive MIC check at the receiver side
      (i.e. the MIC computed by the receiver matches the received MIC).

   o  Retransmission Timer.  A SCHC Fragment sender uses it after the
      transmission of a window to detect a transmission error of the
      SCHC ACK corresponding to this window.  Depending on the
      reliability mode, it will lead to a request a SCHC ACK
      retransmission (in ACK-Always mode) or it will trigger the
      transmission of the next window (in ACK-on-Error mode).  The
      duration of this timer is not defined in this document and MUST be
      defined in the corresponding technology-specific documents.

   o  Inactivity Timer.  A SCHC Fragment receiver uses it to take action
      when there is a problem in the transmission of SCHC fragments.
      Such a problem could be detected by the receiver not getting a
      single SCHC Fragment during a given period of time.  When this
      happens, an Abort message will be sent (see related text later in
      this section).  Initially, and each time a SCHC Fragment is
      received, the timer is reinitialized.  The duration of this timer
      is not defined in this document and MUST be defined in the
      corresponding technology-specific document.

   o  Attempts.  This counter counts the requests for a missing SCHC
      ACK.  When it reaches the value MAX_ACK_REQUESTS, the sender
      assumes there are recurrent SCHC Fragment transmission errors and
      determines that an Abort is needed.  The default value

Minaburo, et al.        Expires December 31, 2018              [Page 24]



Internet-Draft                 LPWAN SCHC                      June 2018

      MAX_ACK_REQUESTS is not stated in this document, and it is
      expected to be defined in the corresponding technology-specific
      document.  The Attempts counter is defined per window.  It is
      initialized each time a new window is used.

   o  Bitmap.  The Bitmap is a sequence of bits carried in a SCHC ACK.
      Each bit in the Bitmap corresponds to a SCHC fragment of the
      current window, and provides feedback on whether the SCHC Fragment
      has been received or not.  The right-most position on the Bitmap
      reports if the All-0 or All-1 fragment has been received or not.
      Feedback on the SCHC fragment with the highest FCN value is
      provided by the bit in the left-most position of the Bitmap.  In
      the Bitmap, a bit set to 1 indicates that the SCHC Fragment of FCN
      corresponding to that bit position has been correctly sent and
      received.  The text above describes the internal representation of
      the Bitmap.  When inserted in the SCHC ACK for transmission from
      the receiver to the sender, the Bitmap is shortened for energy/
      bandwidth optimisation, see more details in Section 8.4.3.1.

   o  Abort.  On expiration of the Inactivity timer, or when Attempts
      reaches MAX_ACK_REQUESTS or upon occurrence of some other error,
      the sender or the receiver may use the Abort.  When the receiver
      needs to abort the on-going fragmented SCHC Packet transmission,
      it sends the Receiver-Abort format.  When the sender needs to
      abort the transmission, it sends the Sender-Abort format.  None of
      the Aborts are acknowledged.

8.3.  Reliability modes

   This specification defines three reliability modes: No-ACK, ACK-
   Always, and ACK-on-Error.  ACK-Always and ACK-on-Error operate on
   windows of SCHC Fragments.  A window of SCHC Fragments is a subset of
   the full set of SCHC Fragments needed to carry a SCHC Packet.

   o  No-ACK.  No-ACK is the simplest SCHC Fragment reliability mode.
      The receiver does not generate overhead in the form of
      acknowledgements (ACKs).  However, this mode does not enhance
      reliability beyond that offered by the underlying LPWAN
      technology.  In the No-ACK mode, the receiver MUST NOT issue SCHC
      ACKs.  See further details in Section 8.5.1.

   o  ACK-Always.  The ACK-Always mode provides flow control using a
      windowing scheme.  This mode is also able to handle long bursts of
      lost SCHC Fragments since detection of such events can be done
      before the end of the SCHC Packet transmission as long as the
      window size is short enough.  However, such benefit comes at the
      expense of SCHC ACK use.  In ACK-Always, the receiver sends a SCHC
      ACK after a window of SCHC Fragments has been received.  The SCHC

Minaburo, et al.        Expires December 31, 2018              [Page 25]



Internet-Draft                 LPWAN SCHC                      June 2018

      ACK is used to inform the sender which SCHC Fragments in the
      current window have been well received.  Upon a SCHC ACK
      reception, the sender retransmits the lost SCHC Fragments.  When a
      SCHC ACK is lost and the sender has not received it by the
      expiration of the Retransmission Timer, the sender uses a SCHC ACK
      request by sending the All-0 empty SCHC Fragment when it is not
      the last window and the All-1 empty Fragment when it is the last
      window.  The maximum number of SCHC ACK requests is
      MAX_ACK_REQUESTS.  If MAX_ACK_REQUESTS is reached, the
      transmission needs to be aborted.  See further details in
      Section 8.5.2.

   o  ACK-on-Error.  The ACK-on-Error mode is suitable for links
      offering relatively low L2 data unit loss probability.  In this
      mode, the SCHC Fragment receiver reduces the number of SCHC ACKs
      transmitted, which MAY be especially beneficial in asymmetric
      scenarios.  The receiver transmits a SCHC ACK only after the
      complete window transmission and if at least one SCHC Fragment of
      this window has been lost.  An exception to this behavior is in
      the last window, where the receiver MUST transmit a SCHC ACK,
      including the C bit set based on the MIC checked result, even if
      all the SCHC Fragments of the last window have been correctly
      received.  The SCHC ACK gives the state of all the SCHC Fragments
      of the current window (received or lost).  Upon a SCHC ACK
      reception, the sender retransmits any lost SCHC Fragments based on
      the SCHC ACK.  If a SCHC ACK is not transmitted back by the
      receiver at the end of a window, the sender assumes that all SCHC
      Fragments have been correctly received.  When a SCHC ACK is lost,
      the sender assumes that all SCHC Fragments covered by the lost
      SCHC ACK have been successfully delivered, so the sender continues
      transmitting the next window of SCHC Fragments.  If the next SCHC
      Fragments received belong to the next window and it is still
      expecting fragments from the previous window, the receiver will
      abort the on-going fragmented packet transmission.  See further
      details in Section 8.5.3.

   The same reliability mode MUST be used for all SCHC Fragments of a
   SCHC Packet.  The decision on which reliability mode will be used and
   whether the same reliability mode applies to all SCHC Packets is an
   implementation problem and is out of the scope of this document.

   Note that the reliability mode choice is not necessarily tied to a
   particular characteristic of the underlying L2 LPWAN technology, e.g.
   the No-ACK mode MAY be used on top of an L2 LPWAN technology with
   symmetric characteristics for uplink and downlink.  This document
   does not make any decision as to which SCHC Fragment reliability
   modes are relevant for a specific LPWAN technology.

Minaburo, et al.        Expires December 31, 2018              [Page 26]



Internet-Draft                 LPWAN SCHC                      June 2018

   Examples of the different reliability modes described are provided in
   Appendix B.

8.4.  Fragmentation Formats

   This section defines the SCHC Fragment format, including the All-0
   and All-1 formats and their "empty" variations, the SCHC ACK format
   and the Abort formats.

   A SCHC Fragment conforms to the general format shown in Figure 11.
   It comprises a SCHC Fragment Header and a SCHC Fragment Payload.  In
   addition, the last SCHC Fragment carries as many padding bits as
   needed to fill up an L2 Word.  The SCHC Fragment Payload carries a
   subset of the SCHC Packet.  The SCHC Fragment is the data unit passed
   on to the L2 for transmission.

   +-----------------+-----------------------+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   | Fragment Header |   Fragment payload    | padding (as needed)
   +-----------------+-----------------------+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

   Figure 11: SCHC Fragment general format.  Presence of a padding field
                                is optional

8.4.1.  Fragments that are not the last one

   In ACK-Always or ACK-on-Error, SCHC Fragments except the last one
   SHALL conform to the detailed format defined in Figure 12.

    |----- Fragment Header -----|
              |-- T --|1|-- N --|
    +-- ... --+- ... -+-+- ... -+--------...-------+
    | Rule ID | DTag  |W|  FCN  | Fragment payload |
    +-- ... --+- ... -+-+- ... -+--------...-------+

     Figure 12: Fragment Detailed Format for Fragments except the Last
                     One, ACK-Always and ACK-on-Error

   In the No-ACK mode, SCHC Fragments except the last one SHALL conform
   to the detailed format defined in Figure 13.

Minaburo, et al.        Expires December 31, 2018              [Page 27]



Internet-Draft                 LPWAN SCHC                      June 2018

    |---- Fragment Header ----|
              |-- T --|-- N --|
    +-- ... --+- ... -+- ... -+--------...-------+
    | Rule ID |  DTag |  FCN  | Fragment payload |
    +-- ... --+- ... -+- ... -+--------...-------+

     Figure 13: Fragment Detailed Format for Fragments except the Last
                             One, No-ACK mode

   The total size of the fragment header is not necessarily a multiple
   of the L2 Word size.  To build the fragment payload, SCHC F/R MUST
   take from the SCHC Packet a number of bits that makes the SCHC
   Fragment an exact multiple of L2 Words.  As a consequence, no padding
   bit is used for these fragments.

8.4.1.1.  All-0 fragment

   The All-0 format is used for sending the last SCHC Fragment of a
   window that is not the last window of the SCHC Packet.

   |----- Fragment Header -----|
             |-- T --|1|-- N --|
   +-- ... --+- ... -+-+- ... -+--------...-------+
   | Rule ID | DTag  |W|  0..0 | Fragment payload |
   +-- ... --+- ... -+-+- ... -+--------...-------+

                 Figure 14: All-0 fragment detailed format

   This is simply an instance of the format described in Figure 12.  An
   All-0 fragment payload MUST be at least the size of an L2 Word.  The
   rationale is that the All-0 empty fragment (see Section 8.4.1.2)
   needs to be distinguishable from the All-0 regular fragment, even in
   the presence of padding.

8.4.1.2.  All-0 empty fragment

   The All-0 empty fragment is an exception to the All-0 fragment
   described above.  It is used by a sender to request the
   retransmission of a SCHC ACK by the receiver.  It is only used in
   ACK-Always mode.

Minaburo, et al.        Expires December 31, 2018              [Page 28]



Internet-Draft                 LPWAN SCHC                      June 2018

   |----- Fragment Header -----|
             |-- T --|1|-- N --|
   +-- ... --+- ... -+-+- ... -+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   | Rule ID | DTag  |W|  0..0 | padding (as needed)      (no payload)
   +-- ... --+- ... -+-+- ... -+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

              Figure 15: All-0 empty fragment detailed format

   The size of the All-0 fragment header is generally not a multiple of
   the L2 Word size.  Therefore, an All-0 empty fragment generally needs
   padding bits.  The padding bits are always less than an L2 Word.

   Since an All-0 payload MUST be at least the size of an L2 Word, a
   receiver can distinguish an All-0 empty fragment from a regular All-0
   fragment, even in the presence of padding.

8.4.2.  All-1 fragment

   In the No-ACK mode, the last SCHC Fragment of a SCHC Packet SHALL
   contain a SCHC Fragment header that conforms to the detailed format
   shown in Figure 16.

   |---------- Fragment Header ----------|
                |-- T --|-N=1-|
   +---- ... ---+- ... -+-----+-- ... --+---...---+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   |   Rule ID  | DTag  |  1  |   MIC   | payload | padding (as needed)
   +---- ... ---+- ... -+-----+-- ... --+---...---+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

   Figure 16: All-1 Fragment Detailed Format for the Last Fragment, No-
                                 ACK mode

   In ACK-Always or ACK-on-Error mode, the last fragment of a SCHC
   Packet SHALL contain a SCHC Fragment header that conforms to the
   detailed format shown in Figure 17.

  |---------- Fragment Header ----------|
            |-- T --|1|-- N --|
  +-- ... --+- ... -+-+- ... -+-- ... --+---...---+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
  | Rule ID | DTag  |W| 11..1 |   MIC   | payload | padding (as needed)
  +-- ... --+- ... -+-+- ... -+-- ... --+---...---+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
                        (FCN)

   Figure 17: All-1 Fragment Detailed Format for the Last Fragment, ACK-
                          Always or ACK-on-Error

Minaburo, et al.        Expires December 31, 2018              [Page 29]



Internet-Draft                 LPWAN SCHC                      June 2018

   The total size of the All-1 SCHC Fragment header is generally not a
   multiple of the L2 Word size.  The All-1 fragment being the last one
   of the SCHC Packet, SCHC F/R cannot freely choose the payload size to
   align the fragment to an L2 Word.  Therefore, padding bits are
   generally appended to the All-1 fragment to make it a multiple of L2
   Words in size.

   The MIC MUST be computed on the payload and the padding bits.  The
   rationale is that the SCHC Reassembler needs to check the correctness
   of the reassembled SCHC packet but has no way of knowing where the
   payload ends.  Indeed, the latter requires decompressing the SCHC
   Packet.

   An All-1 fragment payload MUST be at least the size of an L2 Word.
   The rationale is that the All-1 empty fragment (see Section 8.4.2.1)
   needs to be distinguishable from the All-1 fragment, even in the
   presence of padding.  This may entail saving an L2 Word from the
   previous fragment payload to make the payload of this All-1 fragment
   big enough.

   The values for N, T and the length of MIC are not specified in this
   document, and SHOULD be determined in other documents (e.g.
   technology-specific profile documents).

   The length of the MIC MUST be at least an L2 Word size.  The
   rationale is to be able to distinguish a Sender-Abort (see
   Section 8.4.4) from an All-1 Fragment, even in the presence of
   padding.

8.4.2.1.  All-1 empty fragment

   The All-1 empty fragment format is an All-1 fragment format without a
   payload (see Figure 18).  It is used by a fragment sender, in either
   ACK-Always or ACK-on-Error, to request a retransmission of the SCHC
   ACK for the All-1 window.

   The size of the All-1 empty fragment header is generally not a
   multiple of the L2 Word size.  Therefore, an All-1 empty fragment
   generally needs padding bits.  The padding bits are always less than
   an L2 Word.

   Since an All-1 payload MUST be at least the size of an L2 Word, a
   receiver can distinguish an All-1 empty fragment from a regular All-1
   fragment, even in the presence of padding.

Minaburo, et al.        Expires December 31, 2018              [Page 30]



Internet-Draft                 LPWAN SCHC                      June 2018

   |---------- Fragment Header --------|
             |-- T --|1|-- N --|
   +-- ... --+- ... -+-+- ... -+- ... -+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   | Rule ID | DTag  |W|  1..1 |  MIC  | padding as needed (no payload)
   +-- ... --+- ... -+-+- ... -+- ... -+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

       Figure 18: All-1 for Retries format, also called All-1 empty

8.4.3.  SCHC ACK format

   The format of a SCHC ACK that acknowledges a window that is not the
   last one (denoted as All-0 window) is shown in Figure 19.

               |-- T --|1|
   +---- ... --+- ... -+-+---- ... -----+
   |  Rule ID  |  DTag |W|encoded Bitmap| (no payload)
   +---- ... --+- ... -+-+---- ... -----+

                  Figure 19: ACK format for All-0 windows

   To acknowledge the last window of a packet (denoted as All-1 window),
   a C bit (i.e.  MIC checked) following the W bit is set to 1 to
   indicate that the MIC check computed by the receiver matches the MIC
   present in the All-1 fragment.  If the MIC check fails, the C bit is
   set to 0 and the Bitmap for the All-1 window follows.

               |-- T --|1|1|
   +---- ... --+- ... -+-+-+
   |  Rule ID  |  DTag |W|1| (MIC correct)
   +---- ... --+- ... -+-+-+

   +---- ... --+- ... -+-+-+----- ... -----+
   |  Rule ID  |  DTag |W|0|encoded Bitmap |(MIC Incorrect)
   +---- ... --+- ... -+-+-+----- ... -----+
                          C

             Figure 20: Format of a SCHC ACK for All-1 windows

   The Rule ID and Dtag values in the SCHC ACK messages MUST be
   identical to the ones used in the SCHC Fragments that are being
   acknowledged.  This allows matching the SCHC ACK and the
   corresponding SCHC Fragments.

   The Bitmap carries information on the reception of each fragment of
   the window as described in Section 8.2.

Minaburo, et al.        Expires December 31, 2018              [Page 31]



Internet-Draft                 LPWAN SCHC                      June 2018

   See Appendix D for a discussion on the size of the Bitmaps.

   In order to reduce the SCK ACK size, the Bitmap that is actually
   transmitted is shortened ("encoded") as explained in Section 8.4.3.1.

8.4.3.1.  Bitmap Encoding

   The SCHC ACK that is transmitted is truncated by applying the
   following algorithm: the longest contiguous sequence of bits that
   starts at an L2 Word boundary of the SCHC ACK, where the bits of that
   sequence are all set to 1, are all part of the Bitmap and finish
   exactly at the end of the Bitmap, if one such sequence exists, MUST
   NOT be transmitted.  Because the SCHC Fragment sender knows the
   actual Bitmap size, it can reconstruct the original Bitmap from the
   shortened bitmap.

   When shortening effectively takes place, the SCHC ACK is a multiple
   of L2 Words, and padding MUST NOT be appended.  When shortening does
   not happen, padding bits MUST be appended as needed to fill up the
   last L2 Word.

   Figure 21 shows an example where L2 Words are actually bytes and
   where the original Bitmap contains 17 bits, the last 15 of which are
   all set to 1.

   |--  SCHC ACK Header --|--------       Bitmap    --------|
   |  Rule ID  |  DTag  |W|1|0|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|
        next L2 Word boundary ->|  next L2 Word |  next L2 Word |

                      Figure 21: A non-encoded Bitmap

   Figure 22 shows that the last 14 bits are not sent.

               |-- T --|1|
   +---- ... --+- ... -+-+-+-+-+
   |  Rule ID  |  DTag |W|1|0|1|
   +---- ... --+- ... -+-+-+-+-+
       next L2 Word boundary ->|

                    Figure 22: Optimized Bitmap format

   Figure 23 shows an example of a SCHC ACK with FCN ranging from 6 down
   to 0, where the Bitmap indicates that the second and the fifth SCHC
   Fragments have not been correctly received.

Minaburo, et al.        Expires December 31, 2018              [Page 32]



Internet-Draft                 LPWAN SCHC                      June 2018

                          6 5 4 3 2 1 0 (*)
               |-- T --|1|
   +-----------+-------+-+-+-+-+-+-+-+-+
   |  Rule ID  |  DTag |W|1|0|1|1|0|1|1|            Bitmap before tx
   +-----------+-------+-+-+-+-+-+-+-+-+
   next L2 Word boundary ->|<-- L2 Word -->|
       (*)=(FCN values)

   +-----------+-------+-+-+-+-+-+-+-+-+˜˜˜+
   |  Rule ID  |  DTag |W|1|0|1|1|0|1|1|Pad|        Encoded Bitmap
   +-----------+-------+-+-+-+-+-+-+-+-+˜˜˜+
   next L2 Word boundary ->|<-- L2 Word -->|

        Figure 23: Example of a Bitmap before transmission, and the
          transmitted one, for a window that is not the last one

   Figure 24 shows an example of a SCHC ACK with FCN ranging from 6 down
   to 0, where MIC check has failed but the Bitmap indicates that there
   is no missing SCHC Fragment.

   |- Fragmentation Header-|6 5 4 3 2 1 7 (*)
               |-- T --|1|
   |  Rule ID  |  DTag |W|0|1|1|1|1|1|1|1|          Bitmap before tx
     next L2 Word boundary ->|<-- L2 Word -->|
                          C
   +---- ... --+- ... -+-+-+-+
   |  Rule ID  |  DTag |W|0|1|                      Encoded Bitmap
   +---- ... --+- ... -+-+-+-+
     next L2 Word boundary ->|
      (*) = (FCN values indicating the order)

    Figure 24: Example of the Bitmap in ACK-Always or ACK-on-Error for
                              the last window

8.4.4.  Abort formats

   When a SCHC Fragment sender needs to abort the on-going fragmented
   SCHC Packet transmission, it sends a Sender-Abort.  The Sender-Abort
   format (see Figure 25) is a variation of the All-1 fragment, with
   neither a MIC nor a payload.  All-1 fragments contain at least a MIC.
   The absence of the MIC indicates a Sender-Abort.

Minaburo, et al.        Expires December 31, 2018              [Page 33]



Internet-Draft                 LPWAN SCHC                      June 2018

   |--- Sender-Abort Header ---|
   +--- ... ---+- ... -+-+-...-+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   |  Rule ID  | DTag  |W| FCN | padding (as needed)
   +--- ... ---+- ... -+-+-...-+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

    Figure 25: Sender-Abort format.  All FCN field bits in this format
                               are set to 1

   The size of the Sender-Abort header is generally not a multiple of
   the L2 Word size.  Therefore, a Sender-Abort generally needs padding
   bits.

   Since an All-1 fragment MIC MUST be at least the size of an L2 Word,
   a receiver can distinguish a Sender-Abort from an All-1 fragment,
   even in the presence of padding.

   When a SCHC Fragment receiver needs to abort the on-going fragmented
   SCHC Packet transmission, it transmits a Receiver-Abort.  The
   Receiver-Abort format is a variation on the SCHC ACK format, creating
   an exception in the encoded Bitmap algorithm.  As shown in Figure 26,
   a Receiver-Abort is coded as a SCHC ACK message with a shortened
   Bitmap set to 1 up to the first L2 Word boundary, followed by an
   extra L2 Word full of 1’s.  Such a message never occurs in a regular
   acknowledgement and is detected as a Receiver-Abort.

   The Rule ID and Dtag values in the Receive-Abort message MUST be
   identical to the ones used in the fragments of the SCHC Packet the
   transmission of which is being aborted.

   A Receiver-Abort is aligned to L2 Words, by design.  Therefore,
   padding MUST NOT be appended.

   |- Receiver-Abort Header -|

   +---- ... ----+-- ... --+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Rule ID   |   DTag  |W| 1..1|      1..1     |
   +---- ... ----+-- ... --+-+-+-+-+-+-+-+-+-+-+-+-+
           next L2 Word boundary ->|<-- L2 Word -->|

                     Figure 26: Receiver-Abort format

   Neither the Sender-Abort nor the Receiver-Abort messages are ever
   acknowledged or retransmitted.

   Use cases for the Sender-Abort and Receiver-Abort messages are
   explained in Section 8.5 or Appendix C.

Minaburo, et al.        Expires December 31, 2018              [Page 34]



Internet-Draft                 LPWAN SCHC                      June 2018

8.5.  Baseline mechanism

   If after applying SCHC header compression (or when SCHC header
   compression is not possible) the SCHC Packet does not fit within the
   payload of a single L2 data unit, the SCHC Packet SHALL be broken
   into SCHC Fragments and the fragments SHALL be sent to the fragment
   receiver.  The fragment receiver needs to identify all the SCHC
   Fragments that belong to a given SCHC Packet.  To this end, the
   receiver SHALL use:

   o  The sender’s L2 source address (if present),

   o  The destination’s L2 address (if present),

   o  Rule ID,

   o  DTag (if present).

   Then, the fragment receiver MAY determine the SCHC Fragment
   reliability mode that is used for this SCHC Fragment based on the
   Rule ID in that fragment.

   After a SCHC Fragment reception, the receiver starts constructing the
   SCHC Packet.  It uses the FCN and the arrival order of each SCHC
   Fragment to determine the location of the individual fragments within
   the SCHC Packet.  For example, the receiver MAY place the fragment
   payload within a payload reassembly buffer at the location determined
   from the FCN, the arrival order of the SCHC Fragments, and the
   fragment payload sizes.  In ACK-on-Error or ACK-Always, the fragment
   receiver also uses the W bit in the received SCHC Fragments.  Note
   that the size of the original, unfragmented packet cannot be
   determined from fragmentation headers.

   Fragmentation functionality uses the FCN value to transmit the SCHC
   Fragments.  It has a length of N bits where the All-1 and All-0 FCN
   values are used to control the fragmentation transmission.  The rest
   of the FCN numbers MUST be assigned sequentially in a decreasing
   order, the first FCN of a window is RECOMMENDED to be MAX_WIND_FCN,
   i.e. the highest possible FCN value depending on the FCN number of
   bits.

   In all modes, the last SCHC Fragment of a packet MUST contain a MIC
   which is used to check if there are errors or missing SCHC Fragments
   and MUST use the corresponding All-1 fragment format.  Note that a
   SCHC Fragment with an All-0 format is considered the last SCHC
   Fragment of the current window.

Minaburo, et al.        Expires December 31, 2018              [Page 35]



Internet-Draft                 LPWAN SCHC                      June 2018

   If the receiver receives the last fragment of a SCHC Packet (All-1),
   it checks for the integrity of the reassembled SCHC Packet, based on
   the MIC received.  In No-ACK, if the integrity check indicates that
   the reassembled SCHC Packet does not match the original SCHC Packet
   (prior to fragmentation), the reassembled SCHC Packet MUST be
   discarded.  In ACK-on-Error or ACK-Always, a MIC check is also
   performed by the fragment receiver after reception of each subsequent
   SCHC Fragment retransmitted after the first MIC check.

   Notice that the SCHC ACK for the All-1 window carries one more bit
   (the C bit) compared to the SCHC ACKs for the previous windows.  See
   Appendix D for a discussion on various options to deal with this
   "bump" in the SCHC ACK.

   There are three reliability modes: No-ACK, ACK-Always and ACK-on-
   Error.  In ACK-Always and ACK-on-Error, a jumping window protocol
   uses two windows alternatively, identified as 0 and 1.  A SCHC
   Fragment with all FCN bits set to 0 (i.e. an All-0 fragment)
   indicates that the window is over (i.e. the SCHC Fragment is the last
   one of the window) and allows to switch from one window to the next
   one.  The All-1 FCN in a SCHC Fragment indicates that it is the last
   fragment of the packet being transmitted and therefore there will not
   be another window for this packet.

8.5.1.  No-ACK

   In the No-ACK mode, there is no feedback communication from the
   fragment receiver.  The sender will send all the SCHC fragments of a
   packet without any possibility of knowing if errors or losses have
   occurred.  As, in this mode, there is no need to identify specific
   SCHC Fragments, a one-bit FCN MAY be used.  Consequently, the FCN
   All-0 value is used in all SCHC fragments except the last one, which
   carries an All-1 FCN and the MIC.  The receiver will wait for SCHC
   Fragments and will set the Inactivity timer.  The receiver will use
   the MIC contained in the last SCHC Fragment to check for errors.
   When the Inactivity Timer expires or if the MIC check indicates that
   the reassembled packet does not match the original one, the receiver
   will release all resources allocated to reassembling this packet.
   The initial value of the Inactivity Timer will be determined based on
   the characteristics of the underlying LPWAN technology and will be
   defined in other documents (e.g. technology-specific profile
   documents).

8.5.2.  ACK-Always

   In ACK-Always, the sender transmits SCHC Fragments by using the two-
   jumping-windows procedure.  A delay between each SCHC fragment can be
   added to respect local regulations or other constraints imposed by

Minaburo, et al.        Expires December 31, 2018              [Page 36]



Internet-Draft                 LPWAN SCHC                      June 2018

   the applications.  Each time a SCHC fragment is sent, the FCN is
   decreased by one.  When the FCN reaches value 0, if there are more
   SCHC Fragments remaining to be sent, the sender transmits the last
   SCHC Fragment of this window using the All-0 fragment format.  It
   then starts the Retransmission Timer and waits for a SCHC ACK.
   Otherwise, if FCN reaches 0 and the sender transmits the last SCHC
   Fragment of the SCHC Packet, the sender uses the All-1 fragment
   format, which includes a MIC.  The sender sets the Retransmission
   Timer and waits for the SCHC ACK to know if transmission errors have
   occurred.

   The Retransmission Timer is dimensioned based on the LPWAN technology
   in use.  When the Retransmission Timer expires, the sender sends an
   All-0 empty (resp.  All-1 empty) fragment to request again the SCHC
   ACK for the window that ended with the All-0 (resp.  All-1) fragment
   just sent.  The window number is not changed.

   After receiving an All-0 or All-1 fragment, the receiver sends a SCHC
   ACK with an encoded Bitmap reporting whether any SCHC fragments have
   been lost or not.  When the sender receives a SCHC ACK, it checks the
   W bit carried by the SCHC ACK.  Any SCHC ACK carrying an unexpected W
   bit value is discarded.  If the W bit value of the received SCHC ACK
   is correct, the sender analyzes the rest of the SCHC ACK message,
   such as the encoded Bitmap and the MIC.  If all the SCHC Fragments
   sent for this window have been well received, and if at least one
   more SCHC Fragment needs to be sent, the sender advances its sending
   window to the next window value and sends the next SCHC Fragments.
   If no more SCHC Fragments have to be sent, then the fragmented SCHC
   Packet transmission is finished.

   However, if one or more SCHC Fragments have not been received as per
   the SCHC ACK (i.e. the corresponding bits are not set in the encoded
   Bitmap) then the sender resends the missing SCHC Fragments.  When all
   missing SCHC Fragments have been retransmitted, the sender starts the
   Retransmission Timer, even if an All-0 or an All-1 has not been sent
   as part of this retransmission and waits for a SCHC ACK.  Upon
   receipt of the SCHC ACK, if one or more SCHC Fragments have not yet
   been received, the counter Attempts is increased and the sender
   resends the missing SCHC Fragments again.  When Attempts reaches
   MAX_ACK_REQUESTS, the sender aborts the on-going fragmented SCHC
   Packet transmission by sending a Sender-Abort message and releases
   any resources for transmission of the packet.  The sender also aborts
   an on-going fragmented SCHC Packet transmission when a failed MIC
   check is reported by the receiver or when a SCHC Fragment that has
   not been sent is reported in the encoded Bitmap.

   On the other hand, at the beginning, the receiver side expects to
   receive window 0.  Any SCHC Fragment received but not belonging to

Minaburo, et al.        Expires December 31, 2018              [Page 37]



Internet-Draft                 LPWAN SCHC                      June 2018

   the current window is discarded.  All SCHC Fragments belonging to the
   correct window are accepted, and the actual SCHC Fragment number
   managed by the receiver is computed based on the FCN value.  The
   receiver prepares the encoded Bitmap to report the correctly received
   and the missing SCHC Fragments for the current window.  After each
   SCHC Fragment is received, the receiver initializes the Inactivity
   Timer.  When the Inactivity Timer expires, the transmission is
   aborted by the receiver sending a Receiver-Abort message.

   When an All-0 fragment is received, it indicates that all the SCHC
   Fragments have been sent in the current window.  Since the sender is
   not obliged to always send a full window, some SCHC Fragment number
   not set in the receiver memory may not correspond to losses.  The
   receiver sends the corresponding SCHC ACK, the Inactivity Timer is
   set and the transmission of the next window by the sender can start.

   If an All-0 fragment has been received and all SCHC Fragments of the
   current window have also been received, the receiver then expects a
   new Window and waits for the next SCHC Fragment.  Upon receipt of a
   SCHC Fragment, if the window value has not changed, the received SCHC
   Fragments are part of a retransmission.  A receiver that has already
   received a SCHC Fragment SHOULD discard it, otherwise, it updates the
   Bitmap.  If all the bits of the Bitmap are set to one, the receiver
   MUST send a SCHC ACK without waiting for an All-0 fragment and the
   Inactivity Timer is initialized.

   On the other hand, if the window value of the next received SCHC
   Fragment is set to the next expected window value, this means that
   the sender has received a correct encoded Bitmap reporting that all
   SCHC Fragments have been received.  The receiver then updates the
   value of the next expected window.

   When an All-1 fragment is received, it indicates that the last SCHC
   Fragment of the packet has been sent.  Since the last window is not
   always full, the MIC will be used by the receiver to detect if all
   SCHC Fragments of the packet have been received.  A correct MIC
   indicates the end of the transmission but the receiver MUST stay
   alive for an Inactivity Timer period to answer to any empty All-1
   fragments the sender MAY send if SCHC ACKs sent by the receiver are
   lost.  If the MIC is incorrect, some SCHC Fragments have been lost.
   The receiver sends the SCHC ACK regardless of successful fragmented
   SCHC Packet reception or not, the Inactitivity Timer is set.  In case
   of an incorrect MIC, the receiver waits for SCHC Fragments belonging
   to the same window.  After MAX_ACK_REQUESTS, the receiver will abort
   the on-going fragmented SCHC Packet transmission by transmitting a
   the Receiver-Abort format.  The receiver also aborts upon Inactivity
   Timer expiration by sending a Receiver-Abort message.

Minaburo, et al.        Expires December 31, 2018              [Page 38]



Internet-Draft                 LPWAN SCHC                      June 2018

   If the sender receives a SCK ACK with a Bitmap containing a bit set
   for a SCHC Fragment that it has not sent during the transmission
   phase of this window, it MUST abort the whole fragmentation and
   transmission of this SCHC Packet.

8.5.3.  ACK-on-Error

   The senders behavior for ACK-on-Error and ACK-Always are similar.
   The main difference is that in ACK-on-Error the SCHC ACK with the
   encoded Bitmap is not sent at the end of each window but only when at
   least one SCHC Fragment of the current window has been lost.  Except
   for the last window where a SCHC ACK MUST be sent to finish the
   transmission.

   In ACK-on-Error, the Retransmission Timer expiration is considered as
   a positive acknowledgement for all windows but the last one.  This
   timer is set after sending an All-0 or an All-1 fragment.  For an
   All-0 fragment, on timer expiration, the sender resumes operation and
   sends the SCHC Fragments of the next window.

   If the sender receives a SCHC ACK, it checks the window value.  SCHC
   ACKs with an unexpected window number are discarded.  If the window
   number in the received SCHC ACK is correct, the sender verifies if
   the receiver has received all SCHC fragments of the current window.
   When at least one SCHC Fragment has been lost, the counter Attempts
   is increased by one and the sender resends the missing SCHC Fragments
   again.  When Attempts reaches MAX_ACK_REQUESTS, the sender sends a
   Sender-Abort message and releases all resources for the on-going
   fragmented SCHC Packet transmission.  When the retransmission of the
   missing SCHC Fragments is finished, the sender starts listening for a
   SCHC ACK (even if an All-0 or an All-1 has not been sent during the
   retransmission) and initializes the Retransmission Timer.

   After sending an All-1 fragment, the sender listens for a SCHC ACK,
   initializes Attempts, and starts the Retransmission Timer.  If the
   Retransmission Timer expires, Attempts is increased by one and an
   empty All-1 fragment is sent to request the SCHC ACK for the last
   window.  If Attempts reaches MAX_ACK_REQUESTS, the sender aborts the
   on-going fragmented SCHC Packet transmission by transmitting the
   Sender-Abort fragment.

   At the end of any window, if the sender receives a SCK ACK with a
   Bitmap containing a bit set for a SCHC Fragment that it has not sent
   during the transmission phase of that window, it MUST abort the whole
   fragmentation and transmission of this SCHC Packet.

   Unlike the sender, the receiver for ACK-on-Error has a larger amount
   of differences compared with ACK-Always.  First, a SCHC ACK is not

Minaburo, et al.        Expires December 31, 2018              [Page 39]



Internet-Draft                 LPWAN SCHC                      June 2018

   sent unless there is a lost SCHC Fragment or an unexpected behavior.
   With the exception of the last window, where a SCHC ACK is always
   sent regardless of SCHC Fragment losses or not.  The receiver starts
   by expecting SCHC Fragments from window 0 and maintains the
   information regarding which SCHC Fragments it receives.  After
   receiving a SCHC Fragment, the Inactivity Timer is set.  If no
   further SCHC Fragment are received and the Inactivity Timer expires,
   the SCHC Fragment receiver aborts the on-going fragmented SCHC Packet
   transmission by transmitting the Receiver-Abort data unit.

   Any SCHC Fragment not belonging to the current window is discarded.
   The actual SCHC Fragment number is computed based on the FCN value.
   When an All-0 fragment is received and all SCHC Fragments have been
   received, the receiver updates the expected window value and expects
   a new window and waits for the next SCHC Fragment.
   If the window value of the next SCHC Fragment has not changed, the
   received SCHC Fragment is a retransmission.  A receiver that has
   already received a Fragment discard it.  If all SCHC Fragments of a
   window (that is not the last one) have been received, the receiver
   does not send a SCHC ACK.  While the receiver waits for the next
   window and if the window value is set to the next value, and if an
   All-1 fragment with the next value window arrived the receiver knows
   that the last SCHC Fragment of the packet has been sent.  Since the
   last window is not always full, the MIC will be used to detect if all
   SCHC Fragments of the window have been received.  A correct MIC check
   indicates the end of the fragmented SCHC Packet transmission.  An ACK
   is sent by the SCHC Fragment receiver.  In case of an incorrect MIC,
   the receiver waits for SCHC Fragments belonging to the same window or
   the expiration of the Inactivity Timer.  The latter will lead the
   receiver to abort the on-going SCHC fragmented packet transmission by
   transmitting the Receiver-Abort message.

   If, after receiving an All-0 fragment the receiver missed some SCHC
   Fragments, the receiver uses a SCHC ACK with the encoded Bitmap to
   ask the retransmission of the missing fragments and expect to receive
   SCHC Fragments with the actual window.  While waiting the
   retransmission an All-0 empty fragment is received, the receiver
   sends again the SCHC ACK with the encoded Bitmap, if the SCHC
   Fragments received belongs to another window or an All-1 fragment is
   received, the transmission is aborted by sending a Receiver-Abort
   fragment.  Once it has received all the missing fragments it waits
   for the next window fragments.

8.6.  Supporting multiple window sizes

   For ACK-Always or ACK-on-Error, implementers MAY opt to support a
   single window size or multiple window sizes.  The latter, when
   feasible, may provide performance optimizations.  For example, a

Minaburo, et al.        Expires December 31, 2018              [Page 40]



Internet-Draft                 LPWAN SCHC                      June 2018

   large window size SHOULD be used for packets that need to be carried
   by a large number of SCHC Fragments.  However, when the number of
   SCHC Fragments required to carry a packet is low, a smaller window
   size, and thus a shorter Bitmap, MAY be sufficient to provide
   feedback on all SCHC Fragments.  If multiple window sizes are
   supported, the Rule ID MAY be used to signal the window size in use
   for a specific packet transmission.

   Note that the same window size MUST be used for the transmission of
   all SCHC Fragments that belong to the same SCHC Packet.

8.7.  Downlink SCHC Fragment transmission

   In some LPWAN technologies, as part of energy-saving techniques,
   downlink transmission is only possible immediately after an uplink
   transmission.  In order to avoid potentially high delay in the
   downlink transmission of a fragmented SCHC Packet, the SCHC Fragment
   receiver MAY perform an uplink transmission as soon as possible after
   reception of a SCHC Fragment that is not the last one.  Such uplink
   transmission MAY be triggered by the L2 (e.g. an L2 ACK sent in
   response to a SCHC Fragment encapsulated in a L2 frame that requires
   an L2 ACK) or it MAY be triggered from an upper layer.

   For downlink transmission of a fragmented SCHC Packet in ACK-Always
   mode, the SCHC Fragment receiver MAY support timer-based SCHC ACK
   retransmission.  In this mechanism, the SCHC Fragment receiver
   initializes and starts a timer (the Inactivity Timer is used) after
   the transmission of a SCHC ACK, except when the SCHC ACK is sent in
   response to the last SCHC Fragment of a packet (All-1 fragment).  In
   the latter case, the SCHC Fragment receiver does not start a timer
   after transmission of the SCHC ACK.

   If, after transmission of a SCHC ACK that is not an All-1 fragment,
   and before expiration of the corresponding Inactivity timer, the SCHC
   Fragment receiver receives a SCHC Fragment that belongs to the
   current window (e.g. a missing SCHC Fragment from the current window)
   or to the next window, the Inactivity timer for the SCHC ACK is
   stopped.  However, if the Inactivity timer expires, the SCHC ACK is
   resent and the Inactivity timer is reinitialized and restarted.

   The default initial value for the Inactivity timer, as well as the
   maximum number of retries for a specific SCHC ACK, denoted
   MAX_ACK_RETRIES, are not defined in this document, and need to be
   defined in other documents (e.g. technology-specific profiles).  The
   initial value of the Inactivity timer is expected to be greater than
   that of the Retransmission timer, in order to make sure that a
   (buffered) SCHC Fragment to be retransmitted can find an opportunity
   for that transmission.

Minaburo, et al.        Expires December 31, 2018              [Page 41]



Internet-Draft                 LPWAN SCHC                      June 2018

   When the SCHC Fragment sender transmits the All-1 fragment, it starts
   its Retransmission Timer with a large timeout value (e.g. several
   times that of the initial Inactivity timer).  If a SCHC ACK is
   received before expiration of this timer, the SCHC Fragment sender
   retransmits any lost SCHC Fragments reported by the SCHC ACK, or if
   the SCHC ACK confirms successful reception of all SCHC Fragments of
   the last window, the transmission of the fragmented SCHC Packet is
   considered complete.  If the timer expires, and no SCHC ACK has been
   received since the start of the timer, the SCHC Fragment sender
   assumes that the All-1 fragment has been successfully received (and
   possibly, the last SCHC ACK has been lost: this mechanism assumes
   that the retransmission timer for the All-1 fragment is long enough
   to allow several SCHC ACK retries if the All-1 fragment has not;been
   received by the SCHC Fragment receiver, and it also assumes that it
   is unlikely that several ACKs become all lost).

9.  Padding management

   SCHC C/D and SCHC F/R operate on bits, not bytes.  SCHC itself does
   not have any alignment prerequisite.  If the Layer 2 below SCHC
   constrains the L2 Data Unit to align to some boundary, called L2
   Words (for example, bytes), SCHC will meet that constraint and
   produce messages with the correct alignement.  This may entail adding
   extra bits (called padding bits).

   When padding occurs, the number of appended bits is strictly less
   than the L2 Word size.

   Padding happens at most once for each Packet going through the full
   SCHC chain, i.e. Compression and (optionally) SCHC Fragmentation (see
   Figure 2).  If a SCHC Packet is sent unfragmented (see Figure 27), it
   is padded as needed.  If a SCHC Packet is fragmented, only the last
   fragment is padded as needed.

Minaburo, et al.        Expires December 31, 2018              [Page 42]



Internet-Draft                 LPWAN SCHC                      June 2018

   A packet (e.g. an IPv6 packet)
            |                                           ^ (padding bits
            v                                           |       dropped)
   +------------------+                      +--------------------+
   | SCHC Compression |                      | SCHC Decompression |
   +------------------+                      +--------------------+
            |                                           ^
            |   If no fragmentation                     |
            +---- SCHC Packet + padding as needed ----->|
            |                                           | (MIC checked
            v                                           |  and removed)
   +--------------------+                       +-----------------+
   | SCHC Fragmentation |                       | SCHC Reassembly |
   +--------------------+                       +-----------------+
        |       ^                                   |       ^
        |       |                                   |       |
        |       +------------- SCHC ACK ------------+       |
        |                                                   |
        +--------------- SCHC Fragments --------------------+
        +--- last SCHC Frag with MIC + padding as needed ---+

           SENDER                                    RECEIVER

          Figure 27: SCHC operations, including padding as needed

   Each technology-specific document MUST specify the size of the L2
   Word.  The L2 Word might actually be a single bit, in which case at
   most zero bits of padding will be appended to any message, i.e. no
   padding will take place at all.

10.  SCHC Compression for IPv6 and UDP headers

   This section lists the different IPv6 and UDP header fields and how
   they can be compressed.

10.1.  IPv6 version field

   This field always holds the same value.  Therefore, in the Rule, TV
   is set to 6, MO to "equal" and CDA to "not-sent".

10.2.  IPv6 Traffic class field

   If the DiffServ field does not vary and is known by both sides, the
   Field Descriptor in the Rule SHOULD contain a TV with this well-known
   value, an "equal" MO and a "not-sent" CDA.

Minaburo, et al.        Expires December 31, 2018              [Page 43]



Internet-Draft                 LPWAN SCHC                      June 2018

   Otherwise, two possibilities can be considered depending on the
   variability of the value:

   o  One possibility is to not compress the field and send the original
      value.  In the Rule, TV is not set to any particular value, MO is
      set to "ignore" and CDA is set to "value-sent".

   o  If some upper bits in the field are constant and known, a better
      option is to only send the LSBs.  In the Rule, TV is set to a
      value with the stable known upper part, MO is set to MSB(x) and
      CDA to LSB(y).

10.3.  Flow label field

   If the Flow Label field does not vary and is known by both sides, the
   Field Descriptor in the Rule SHOULD contain a TV with this well-known
   value, an "equal" MO and a "not-sent" CDA.

   Otherwise, two possibilities can be considered:

   o  One possibility is to not compress the field and send the original
      value.  In the Rule, TV is not set to any particular value, MO is
      set to "ignore" and CDA is set to "value-sent".

   o  If some upper bits in the field are constant and known, a better
      option is to only send the LSBs.  In the Rule, TV is set to a
      value with the stable known upper part, MO is set to MSB(x) and
      CDA to LSB(y).

10.4.  Payload Length field

   This field can be elided for the transmission on the LPWAN network.
   The SCHC C/D recomputes the original payload length value.  In the
   Field Descriptor, TV is not set, MO is set to "ignore" and CDA is
   "compute-IPv6-length".

   If the payload length needs to be sent and does not need to be coded
   in 16 bits, the TV can be set to 0x0000, the MO set to MSB(16-s)
   where ’s’ is the number of bits to code the maximum length, and CDA
   is set to LSB(s).

10.5.  Next Header field

   If the Next Header field does not vary and is known by both sides,
   the Field Descriptor in the Rule SHOULD contain a TV with this Next
   Header value, the MO SHOULD be "equal" and the CDA SHOULD be "not-
   sent".

Minaburo, et al.        Expires December 31, 2018              [Page 44]



Internet-Draft                 LPWAN SCHC                      June 2018

   Otherwise, TV is not set in the Field Descriptor, MO is set to
   "ignore" and CDA is set to "value-sent".  Alternatively, a matching-
   list MAY also be used.

10.6.  Hop Limit field

   The field behavior for this field is different for Uplink and
   Downlink.  In Uplink, since there is no IP forwarding between the Dev
   and the SCHC C/D, the value is relatively constant.  On the other
   hand, the Downlink value depends of Internet routing and MAY change
   more frequently.  One neat way of processing this field is to use the
   Direction Indicator (DI) to distinguish both directions:

   o  in the Uplink, elide the field: the TV in the Field Descriptor is
      set to the known constant value, the MO is set to "equal" and the
      CDA is set to "not-sent".

   o  in the Downlink, send the value: TV is not set, MO is set to
      "ignore" and CDA is set to "value-sent".

10.7.  IPv6 addresses fields

   As in 6LoWPAN [RFC4944], IPv6 addresses are split into two 64-bit
   long fields; one for the prefix and one for the Interface Identifier
   (IID).  These fields SHOULD be compressed.  To allow for a single
   Rule being used for both directions, these values are identified by
   their role (DEV or APP) and not by their position in the frame
   (source or destination).

10.7.1.  IPv6 source and destination prefixes

   Both ends MUST be synchronized with the appropriate prefixes.  For a
   specific flow, the source and destination prefixes can be unique and
   stored in the context.  It can be either a link-local prefix or a
   global prefix.  In that case, the TV for the source and destination
   prefixes contain the values, the MO is set to "equal" and the CDA is
   set to "not-sent".

   If the Rule is intended to compress packets with different prefix
   values, match-mapping SHOULD be used.  The different prefixes are
   listed in the TV, the MO is set to "match-mapping" and the CDA is set
   to "mapping-sent".  See Figure 29

   Otherwise, the TV contains the prefix, the MO is set to "equal" and
   the CDA is set to "value-sent".

Minaburo, et al.        Expires December 31, 2018              [Page 45]



Internet-Draft                 LPWAN SCHC                      June 2018

10.7.2.  IPv6 source and destination IID

   If the DEV or APP IID are based on an LPWAN address, then the IID can
   be reconstructed with information coming from the LPWAN header.  In
   that case, the TV is not set, the MO is set to "ignore" and the CDA
   is set to "DevIID" or "AppIID".  Note that the LPWAN technology
   generally carries a single identifier corresponding to the DEV.
   Therefore AppIID cannot be used.

   For privacy reasons or if the DEV address is changing over time, a
   static value that is not equal to the DEV address SHOULD be used.  In
   that case, the TV contains the static value, the MO operator is set
   to "equal" and the CDF is set to "not-sent".  [RFC7217] provides some
   methods that MAY be used to derive this static identifier.

   If several IIDs are possible, then the TV contains the list of
   possible IIDs, the MO is set to "match-mapping" and the CDA is set to
   "mapping-sent".

   It MAY also happen that the IID variability only expresses itself on
   a few bytes.  In that case, the TV is set to the stable part of the
   IID, the MO is set to "MSB" and the CDA is set to "LSB".

   Finally, the IID can be sent in extenso on the LPWAN.  In that case,
   the TV is not set, the MO is set to "ignore" and the CDA is set to
   "value-sent".

10.8.  IPv6 extensions

   No Rule is currently defined that processes IPv6 extensions.  If such
   extensions are needed, their compression/decompression Rules can be
   based on the MOs and CDAs described above.

10.9.  UDP source and destination port

   To allow for a single Rule being used for both directions, the UDP
   port values are identified by their role (DEV or APP) and not by
   their position in the frame (source or destination).  The SCHC C/D
   MUST be aware of the traffic direction (Uplink, Downlink) to select
   the appropriate field.  The following Rules apply for DEV and APP
   port numbers.

   If both ends know the port number, it can be elided.  The TV contains
   the port number, the MO is set to "equal" and the CDA is set to "not-
   sent".

Minaburo, et al.        Expires December 31, 2018              [Page 46]



Internet-Draft                 LPWAN SCHC                      June 2018

   If the port variation is on few bits, the TV contains the stable part
   of the port number, the MO is set to "MSB" and the CDA is set to
   "LSB".

   If some well-known values are used, the TV can contain the list of
   these values, the MO is set to "match-mapping" and the CDA is set to
   "mapping-sent".

   Otherwise the port numbers are sent over the LPWAN.  The TV is not
   set, the MO is set to "ignore" and the CDA is set to "value-sent".

10.10.  UDP length field

   The UDP length can be computed from the received data.  In that case,
   the TV is not set, the MO is set to "ignore" and the CDA is set to
   "compute-length".

   If the payload is small, the TV can be set to 0x0000, the MO set to
   "MSB" and the CDA to "LSB".

   In other cases, the length SHOULD be sent and the CDA is replaced by
   "value-sent".

10.11.  UDP Checksum field

   The UDP checksum operation is mandatory with IPv6 [RFC8200] for most
   packets but recognizes that there are exceptions to that default
   behavior.

   For instance, protocols that use UDP as a tunnel encapsulation may
   enable zero-checksum mode for a specific port (or set of ports) for
   sending and/or receiving.  [RFC8200] also stipulates that any node
   implementing zero-checksum mode must follow the requirements
   specified in "Applicability Statement for the Use of IPv6 UDP
   Datagrams with Zero Checksums" [RFC6936].

   6LoWPAN Header Compression [RFC6282] also authorizes to send UDP
   datagram that are deprived of the checksum protection when an upper
   layer guarantees the integrity of the UDP payload and pseudo-header
   all the way between the compressor that elides the UDP checksum and
   the decompressor that computes again it.  A specific example of this
   is when a Message Integrity Check (MIC) protects the compressed
   message all along that path with a strength that is identical or
   better to the UDP checksum.

   In a similar fashion, this specification allows a SCHC compressor to
   elide the UDP checks when another layer guarantees an identical or
   better integrity protection for the UDP payload and the pseudo-

Minaburo, et al.        Expires December 31, 2018              [Page 47]



Internet-Draft                 LPWAN SCHC                      June 2018

   header.  In this case, the TV is not set, the MO is set to "ignore"
   and the CDA is set to "compute-checksum".

   In particular, when SCHC fragmentation is used, a fragmentation MIC
   of 2 bytes or more provides equal or better protection than the UDP
   checksum; in that case, if the compressor is collocated with the
   fragmentation point and the decompressor is collocated with the
   packet reassembly point, then compressor MAY elide the UDP checksum.
   Whether and when the UDP Checksum is elided is to be specified in the
   technology-specific documents.

   Since the compression happens before the fragmentation, implementors
   should understand the risks when dealing with unprotected data below
   the transport layer and take special care when manipulating that
   data.

   In other cases, the checksum SHOULD be explicitly sent.  The TV is
   not set, the MO is set to "ignore" and the CDA is set to "value-
   sent".

11.  IANA Considerations

   This document has no request to IANA.

12.  Security considerations

12.1.  Security considerations for SCHC Compression/Decompression

   A malicious header compression could cause the reconstruction of a
   wrong packet that does not match with the original one.  Such a
   corruption MAY be detected with end-to-end authentication and
   integrity mechanisms.  Header Compression does not add more security
   problem than what is already needed in a transmission.  For instance,
   to avoid an attack, never re-construct a packet bigger than some
   configured size (with 1500 bytes as generic default).

12.2.  Security considerations for SCHC Fragmentation/Reassembly

   This subsection describes potential attacks to LPWAN SCHC F/R and
   suggests possible countermeasures.

   A node can perform a buffer reservation attack by sending a first
   SCHC Fragment to a target.  Then, the receiver will reserve buffer
   space for the IPv6 packet.  Other incoming fragmented SCHC Packets
   will be dropped while the reassembly buffer is occupied during the
   reassembly timeout.  Once that timeout expires, the attacker can
   repeat the same procedure, and iterate, thus creating a denial of
   service attack.  The (low) cost to mount this attack is linear with

Minaburo, et al.        Expires December 31, 2018              [Page 48]



Internet-Draft                 LPWAN SCHC                      June 2018

   the number of buffers at the target node.  However, the cost for an
   attacker can be increased if individual SCHC Fragments of multiple
   packets can be stored in the reassembly buffer.  To further increase
   the attack cost, the reassembly buffer can be split into SCHC
   Fragment-sized buffer slots.  Once a packet is complete, it is
   processed normally.  If buffer overload occurs, a receiver can
   discard packets based on the sender behavior, which MAY help identify
   which SCHC Fragments have been sent by an attacker.

   In another type of attack, the malicious node is required to have
   overhearing capabilities.  If an attacker can overhear a SCHC
   Fragment, it can send a spoofed duplicate (e.g. with random payload)
   to the destination.  If the LPWAN technology does not support
   suitable protection (e.g. source authentication and frame counters to
   prevent replay attacks), a receiver cannot distinguish legitimate
   from spoofed SCHC Fragments.  Therefore, the original IPv6 packet
   will be considered corrupt and will be dropped.  To protect resource-
   constrained nodes from this attack, it has been proposed to establish
   a binding among the SCHC Fragments to be transmitted by a node, by
   applying content-chaining to the different SCHC Fragments, based on
   cryptographic hash functionality.  The aim of this technique is to
   allow a receiver to identify illegitimate SCHC Fragments.

   Further attacks MAY involve sending overlapped fragments (i.e.
   comprising some overlapping parts of the original IPv6 datagram).
   Implementers SHOULD make sure that the correct operation is not
   affected by such event.

   In ACK-on-Error, a malicious node MAY force a SCHC Fragment sender to
   resend a SCHC Fragment a number of times, with the aim to increase
   consumption of the SCHC Fragment sender’s resources.  To this end,
   the malicious node MAY repeatedly send a fake ACK to the SCHC
   Fragment sender, with a Bitmap that reports that one or more SCHC
   Fragments have been lost.  In order to mitigate this possible attack,
   MAX_ACK_RETRIES MAY be set to a safe value which allows to limit the
   maximum damage of the attack to an acceptable extent.  However, note
   that a high setting for MAX_ACK_RETRIES benefits SCHC Fragment
   reliability modes, therefore the trade-off needs to be carefully
   considered.

13.  Acknowledgements

   Thanks to Carsten Bormann, Philippe Clavier, Eduardo Ingles Sanchez,
   Arunprabhu Kandasamy, Rahul Jadhav, Sergio Lopez Bernal, Antony
   Markovski, Alexander Pelov, Pascal Thubert, Juan Carlos Zuniga, Diego
   Dujovne, Edgar Ramos, and Shoichi Sakane for useful design
   consideration and comments.

Minaburo, et al.        Expires December 31, 2018              [Page 49]



Internet-Draft                 LPWAN SCHC                      June 2018

14.  References

14.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC7217]  Gont, F., "A Method for Generating Semantically Opaque
              Interface Identifiers with IPv6 Stateless Address
              Autoconfiguration (SLAAC)", RFC 7217,
              DOI 10.17487/RFC7217, April 2014,
              <https://www.rfc-editor.org/info/rfc7217>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

14.2.  Informative References

   [RFC3385]  Sheinwald, D., Satran, J., Thaler, P., and V. Cavanna,
              "Internet Protocol Small Computer System Interface (iSCSI)
              Cyclic Redundancy Check (CRC)/Checksum Considerations",
              RFC 3385, DOI 10.17487/RFC3385, September 2002,
              <https://www.rfc-editor.org/info/rfc3385>.

   [RFC4944]  Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
              "Transmission of IPv6 Packets over IEEE 802.15.4
              Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
              <https://www.rfc-editor.org/info/rfc4944>.

   [RFC5795]  Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
              Header Compression (ROHC) Framework", RFC 5795,
              DOI 10.17487/RFC5795, March 2010,
              <https://www.rfc-editor.org/info/rfc5795>.

   [RFC6282]  Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
              Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
              DOI 10.17487/RFC6282, September 2011,
              <https://www.rfc-editor.org/info/rfc6282>.

   [RFC6936]  Fairhurst, G. and M. Westerlund, "Applicability Statement
              for the Use of IPv6 UDP Datagrams with Zero Checksums",
              RFC 6936, DOI 10.17487/RFC6936, April 2013,
              <https://www.rfc-editor.org/info/rfc6936>.

Minaburo, et al.        Expires December 31, 2018              [Page 50]



Internet-Draft                 LPWAN SCHC                      June 2018

   [RFC7136]  Carpenter, B. and S. Jiang, "Significance of IPv6
              Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136,
              February 2014, <https://www.rfc-editor.org/info/rfc7136>.

   [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
              DOI 10.17487/RFC8200, July 2017,
              <https://www.rfc-editor.org/info/rfc8200>.

   [RFC8376]  Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
              Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
              <https://www.rfc-editor.org/info/rfc8376>.

Appendix A.  SCHC Compression Examples

   This section gives some scenarios of the compression mechanism for
   IPv6/UDP.  The goal is to illustrate the behavior of SCHC.

   The most common case using the mechanisms defined in this document
   will be a LPWAN Dev that embeds some applications running over CoAP.
   In this example, three flows are considered.  The first flow is for
   the device management based on CoAP using Link Local IPv6 addresses
   and UDP ports 123 and 124 for Dev and App, respectively.  The second
   flow will be a CoAP server for measurements done by the Device (using
   ports 5683) and Global IPv6 Address prefixes alpha::IID/64 to
   beta::1/64.  The last flow is for legacy applications using different
   ports numbers, the destination IPv6 address prefix is gamma::1/64.

   Figure 28 presents the protocol stack for this Device.  IPv6 and UDP
   are represented with dotted lines since these protocols are
   compressed on the radio link.

Minaburo, et al.        Expires December 31, 2018              [Page 51]



Internet-Draft                 LPWAN SCHC                      June 2018

    Management   Data
   +----------+---------+---------+
   |   CoAP   |  CoAP   | legacy  |
   +----||----+---||----+---||----+
   .   UDP    .  UDP    |   UDP   |
   ................................
   .   IPv6   .  IPv6   .  IPv6   .
   +------------------------------+
   |    SCHC Header compression   |
   |      and fragmentation       |
   +------------------------------+
   |      LPWAN L2 technologies   |
   +------------------------------+
            DEV or NGW

              Figure 28: Simplified Protocol Stack for LP-WAN

   Note that in some LPWAN technologies, only the Devs have a device ID.
   Therefore, when such technologies are used, it is necessary to
   statically define an IID for the Link Local address for the SCHC C/D.

   Rule 0
    +----------------+--+--+--+---------+--------+------------++------+
    | Field          |FL|FP|DI| Value   | Match  | Comp Decomp|| Sent |
    |                |  |  |  |         | Opera. | Action     ||[bits]|
    +----------------+--+--+--+---------+---------------------++------+
    |IPv6 version    |4 |1 |Bi|6        | equal  | not-sent   ||      |
    |IPv6 DiffServ   |8 |1 |Bi|0        | equal  | not-sent   ||      |
    |IPv6 Flow Label |20|1 |Bi|0        | equal  | not-sent   ||      |
    |IPv6 Length     |16|1 |Bi|         | ignore | comp-length||      |
    |IPv6 Next Header|8 |1 |Bi|17       | equal  | not-sent   ||      |
    |IPv6 Hop Limit  |8 |1 |Bi|255      | ignore | not-sent   ||      |
    |IPv6 DEVprefix  |64|1 |Bi|FE80::/64| equal  | not-sent   ||      |
    |IPv6 DevIID     |64|1 |Bi|         | ignore | DevIID     ||      |
    |IPv6 APPprefix  |64|1 |Bi|FE80::/64| equal  | not-sent   ||      |
    |IPv6 AppIID     |64|1 |Bi|::1      | equal  | not-sent   ||      |
    +================+==+==+==+=========+========+============++======+
    |UDP DEVport     |16|1 |Bi|123      | equal  | not-sent   ||      |
    |UDP APPport     |16|1 |Bi|124      | equal  | not-sent   ||      |
    |UDP Length      |16|1 |Bi|         | ignore | comp-length||      |
    |UDP checksum    |16|1 |Bi|         | ignore | comp-chk   ||      |
    +================+==+==+==+=========+========+============++======+

    Rule 1
    +----------------+--+--+--+---------+--------+------------++------+
    | Field          |FL|FP|DI| Value   | Match  | Action     || Sent |
    |                |  |  |  |         | Opera. | Action     ||[bits]|

Minaburo, et al.        Expires December 31, 2018              [Page 52]



Internet-Draft                 LPWAN SCHC                      June 2018

    +----------------+--+--+--+---------+--------+------------++------+
    |IPv6 version    |4 |1 |Bi|6        | equal  | not-sent   ||      |
    |IPv6 DiffServ   |8 |1 |Bi|0        | equal  | not-sent   ||      |
    |IPv6 Flow Label |20|1 |Bi|0        | equal  | not-sent   ||      |
    |IPv6 Length     |16|1 |Bi|         | ignore | comp-length||      |
    |IPv6 Next Header|8 |1 |Bi|17       | equal  | not-sent   ||      |
    |IPv6 Hop Limit  |8 |1 |Bi|255      | ignore | not-sent   ||      |
    |IPv6 DEVprefix  |64|1 |Bi|[alpha/64, match- |mapping-sent||  [1] |
    |                |  |  |  |fe80::/64] mapping|            ||      |
    |IPv6 DevIID     |64|1 |Bi|         | ignore | DevIID     ||      |
    |IPv6 APPprefix  |64|1 |Bi|[beta/64,| match- |mapping-sent||  [2] |
    |                |  |  |  |alpha/64,| mapping|            ||      |
    |                |  |  |  |fe80::64]|        |            ||      |
    |IPv6 AppIID     |64|1 |Bi|::1000   | equal  | not-sent   ||      |
    +================+==+==+==+=========+========+============++======+
    |UDP DEVport     |16|1 |Bi|5683     | equal  | not-sent   ||      |
    |UDP APPport     |16|1 |Bi|5683     | equal  | not-sent   ||      |
    |UDP Length      |16|1 |Bi|         | ignore | comp-length||      |
    |UDP checksum    |16|1 |Bi|         | ignore | comp-chk   ||      |
    +================+==+==+==+=========+========+============++======+

    Rule 2
    +----------------+--+--+--+---------+--------+------------++------+
    | Field          |FL|FP|DI| Value   | Match  | Action     || Sent |
    |                |  |  |  |         | Opera. | Action     ||[bits]|
    +----------------+--+--+--+---------+--------+------------++------+
    |IPv6 version    |4 |1 |Bi|6        | equal  | not-sent   ||      |
    |IPv6 DiffServ   |8 |1 |Bi|0        | equal  | not-sent   ||      |
    |IPv6 Flow Label |20|1 |Bi|0        | equal  | not-sent   ||      |
    |IPv6 Length     |16|1 |Bi|         | ignore | comp-length||      |
    |IPv6 Next Header|8 |1 |Bi|17       | equal  | not-sent   ||      |
    |IPv6 Hop Limit  |8 |1 |Up|255      | ignore | not-sent   ||      |
    |IPv6 Hop Limit  |8 |1 |Dw|         | ignore | value-sent ||  [8] |
    |IPv6 DEVprefix  |64|1 |Bi|alpha/64 | equal  | not-sent   ||      |
    |IPv6 DevIID     |64|1 |Bi|         | ignore | DevIID     ||      |
    |IPv6 APPprefix  |64|1 |Bi|gamma/64 | equal  | not-sent   ||      |
    |IPv6 AppIID     |64|1 |Bi|::1000   | equal  | not-sent   ||      |
    +================+==+==+==+=========+========+============++======+
    |UDP DEVport     |16|1 |Bi|8720     | MSB(12)| LSB        || [4]  |
    |UDP APPport     |16|1 |Bi|8720     | MSB(12)| LSB        || [4]  |
    |UDP Length      |16|1 |Bi|         | ignore | comp-length||      |
    |UDP checksum    |16|1 |Bi|         | ignore | comp-chk   ||      |
    +================+==+==+==+=========+========+============++======+

                         Figure 29: Context Rules

Minaburo, et al.        Expires December 31, 2018              [Page 53]



Internet-Draft                 LPWAN SCHC                      June 2018

   All the fields described in the three Rules depicted on Figure 29 are
   present in the IPv6 and UDP headers.  The DevIID-DID value is found
   in the L2 header.

   The second and third Rules use global addresses.  The way the Dev
   learns the prefix is not in the scope of the document.

   The third Rule compresses port numbers to 4 bits.

Appendix B.  Fragmentation Examples

   This section provides examples for the different fragment reliability
   modes specified in this document.

   Figure 30 illustrates the transmission in No-ACK mode of an IPv6
   packet that needs 11 fragments.  FCN is 1 bit wide.

           Sender               Receiver
             |-------FCN=0-------->|
             |-------FCN=0-------->|
             |-------FCN=0-------->|
             |-------FCN=0-------->|
             |-------FCN=0-------->|
             |-------FCN=0-------->|
             |-------FCN=0-------->|
             |-------FCN=0-------->|
             |-------FCN=0-------->|
             |-------FCN=0-------->|
             |-----FCN=1 + MIC --->|MIC checked: success =>

    Figure 30: Transmission in No-ACK mode of an IPv6 packet carried by
                               11 fragments

   In the following examples, N (i.e. the size if the FCN field) is 3
   bits.  Therefore, the All-1 FCN value is 7.

   Figure 31 illustrates the transmission in ACK-on-Error of an IPv6
   packet that needs 11 fragments, with MAX_WIND_FCN=6 and no fragment
   loss.

Minaburo, et al.        Expires December 31, 2018              [Page 54]



Internet-Draft                 LPWAN SCHC                      June 2018

           Sender               Receiver
             |-----W=0, FCN=6----->|
             |-----W=0, FCN=5----->|
             |-----W=0, FCN=4----->|
             |-----W=0, FCN=3----->|
             |-----W=0, FCN=2----->|
             |-----W=0, FCN=1----->|
             |-----W=0, FCN=0----->|
         (no ACK)
             |-----W=1, FCN=6----->|
             |-----W=1, FCN=5----->|
             |-----W=1, FCN=4----->|
             |--W=1, FCN=7 + MIC-->|MIC checked: success =>
             |<---- ACK, W=1 ------|

      Figure 31: Transmission in ACK-on-Error mode of an IPv6 packet
         carried by 11 fragments, with MAX_WIND_FCN=6 and no loss.

   Figure 32 illustrates the transmission in ACK-on-Error mode of an
   IPv6 packet that needs 11 fragments, with MAX_WIND_FCN=6 and three
   lost fragments.

            Sender             Receiver
             |-----W=0, FCN=6----->|
             |-----W=0, FCN=5----->|
             |-----W=0, FCN=4--X-->|
             |-----W=0, FCN=3----->|
             |-----W=0, FCN=2--X-->|             7
             |-----W=0, FCN=1----->|             /
             |-----W=0, FCN=0----->|       6543210
             |<-----ACK, W=0-------|Bitmap:1101011
             |-----W=0, FCN=4----->|
             |-----W=0, FCN=2----->|
         (no ACK)
             |-----W=1, FCN=6----->|
             |-----W=1, FCN=5----->|
             |-----W=1, FCN=4--X-->|
             |- W=1, FCN=7 + MIC ->|MIC checked: failed
             |<-----ACK, W=1-------|C=0 Bitmap:1100001
             |-----W=1, FCN=4----->|MIC checked: success =>
             |<---- ACK, W=1 ------|C=1, no Bitmap

      Figure 32: Transmission in ACK-on-Error mode of an IPv6 packet
        carried by 11 fragments, with MAX_WIND_FCN=6 and three lost
                                fragments.

Minaburo, et al.        Expires December 31, 2018              [Page 55]



Internet-Draft                 LPWAN SCHC                      June 2018

   Figure 33 illustrates the transmission in ACK-Always mode of an IPv6
   packet that needs 11 fragments, with MAX_WIND_FCN=6 and no loss.

           Sender               Receiver
             |-----W=0, FCN=6----->|
             |-----W=0, FCN=5----->|
             |-----W=0, FCN=4----->|
             |-----W=0, FCN=3----->|
             |-----W=0, FCN=2----->|
             |-----W=0, FCN=1----->|
             |-----W=0, FCN=0----->|
             |<-----ACK, W=0-------| Bitmap:1111111
             |-----W=1, FCN=6----->|
             |-----W=1, FCN=5----->|
             |-----W=1, FCN=4----->|
             |--W=1, FCN=7 + MIC-->|MIC checked: success =>
             |<-----ACK, W=1-------| C=1 no Bitmap
           (End)

   Figure 33: Transmission in ACK-Always mode of an IPv6 packet carried
        by 11 fragments, with MAX_WIND_FCN=6 and no lost fragment.

   Figure 34 illustrates the transmission in ACK-Always mode of an IPv6
   packet that needs 11 fragments, with MAX_WIND_FCN=6 and three lost
   fragments.

Minaburo, et al.        Expires December 31, 2018              [Page 56]



Internet-Draft                 LPWAN SCHC                      June 2018

           Sender               Receiver
             |-----W=1, FCN=6----->|
             |-----W=1, FCN=5----->|
             |-----W=1, FCN=4--X-->|
             |-----W=1, FCN=3----->|
             |-----W=1, FCN=2--X-->|             7
             |-----W=1, FCN=1----->|             /
             |-----W=1, FCN=0----->|       6543210
             |<-----ACK, W=1-------|Bitmap:1101011
             |-----W=1, FCN=4----->|
             |-----W=1, FCN=2----->|
             |<-----ACK, W=1-------|Bitmap:
             |-----W=0, FCN=6----->|
             |-----W=0, FCN=5----->|
             |-----W=0, FCN=4--X-->|
             |--W=0, FCN=7 + MIC-->|MIC checked: failed
             |<-----ACK, W=0-------| C= 0 Bitmap:11000001
             |-----W=0, FCN=4----->|MIC checked: success =>
             |<-----ACK, W=0-------| C= 1 no Bitmap
           (End)

   Figure 34: Transmission in ACK-Always mode of an IPv6 packet carried
      by 11 fragments, with MAX_WIND_FCN=6 and three lost fragments.

   Figure 35 illustrates the transmission in ACK-Always mode of an IPv6
   packet that needs 6 fragments, with MAX_WIND_FCN=6, three lost
   fragments and only one retry needed to recover each lost fragment.

             Sender                Receiver
                |-----W=0, FCN=6----->|
                |-----W=0, FCN=5----->|
                |-----W=0, FCN=4--X-->|
                |-----W=0, FCN=3--X-->|
                |-----W=0, FCN=2--X-->|
                |--W=0, FCN=7 + MIC-->|MIC checked: failed
                |<-----ACK, W=0-------|C= 0 Bitmap:1100001
                |-----W=0, FCN=4----->|MIC checked: failed
                |-----W=0, FCN=3----->|MIC checked: failed
                |-----W=0, FCN=2----->|MIC checked: success
                |<-----ACK, W=0-------|C=1 no Bitmap
              (End)

   Figure 35: Transmission in ACK-Always mode of an IPv6 packet carried
    by 11 fragments, with MAX_WIND_FCN=6, three lost framents and only
                 one retry needed for each lost fragment.

Minaburo, et al.        Expires December 31, 2018              [Page 57]



Internet-Draft                 LPWAN SCHC                      June 2018

   Figure 36 illustrates the transmission in ACK-Always mode of an IPv6
   packet that needs 6 fragments, with MAX_WIND_FCN=6, three lost
   fragments, and the second ACK lost.

             Sender                Receiver
                |-----W=0, FCN=6----->|
                |-----W=0, FCN=5----->|
                |-----W=0, FCN=4--X-->|
                |-----W=0, FCN=3--X-->|
                |-----W=0, FCN=2--X-->|
                |--W=0, FCN=7 + MIC-->|MIC checked: failed
                |<-----ACK, W=0-------|C=0  Bitmap:1100001
                |-----W=0, FCN=4----->|MIC checked: failed
                |-----W=0, FCN=3----->|MIC checked: failed
                |-----W=0, FCN=2----->|MIC checked: success
                |  X---ACK, W=0-------|C= 1 no Bitmap
       timeout  |                     |
                |--W=0, FCN=7 + MIC-->|
                |<-----ACK, W=0-------|C= 1 no Bitmap

              (End)

   Figure 36: Transmission in ACK-Always mode of an IPv6 packet carried
    by 11 fragments, with MAX_WIND_FCN=6, three lost fragments, and the
                             second ACK lost.

   Figure 37 illustrates the transmission in ACK-Always mode of an IPv6
   packet that needs 6 fragments, with MAX_WIND_FCN=6, with three lost
   fragments, and one retransmitted fragment lost again.

Minaburo, et al.        Expires December 31, 2018              [Page 58]



Internet-Draft                 LPWAN SCHC                      June 2018

              Sender                Receiver
                |-----W=0, FCN=6----->|
                |-----W=0, FCN=5----->|
                |-----W=0, FCN=4--X-->|
                |-----W=0, FCN=3--X-->|
                |-----W=0, FCN=2--X-->|
                |--W=0, FCN=7 + MIC-->|MIC checked: failed
                |<-----ACK, W=0-------|C=0 Bitmap:1100001
                |-----W=0, FCN=4----->|MIC checked: failed
                |-----W=0, FCN=3----->|MIC checked: failed
                |-----W=0, FCN=2--X-->|
         timeout|                     |
                |--W=0, FCN=7 + MIC-->|All-0 empty
                |<-----ACK, W=0-------|C=0 Bitmap: 1111101
                |-----W=0, FCN=2----->|MIC checked: success
                |<-----ACK, W=0-------|C=1 no Bitmap
              (End)

   Figure 37: Transmission in ACK-Always mode of an IPv6 packet carried
   by 11 fragments, with MAX_WIND_FCN=6, with three lost fragments, and
                  one retransmitted fragment lost again.

   Figure 38 illustrates the transmission in ACK-Always mode of an IPv6
   packet that needs 28 fragments, with N=5, MAX_WIND_FCN=23 and two
   lost fragments.  Note that MAX_WIND_FCN=23 may be useful when the
   maximum possible Bitmap size, considering the maximum lower layer
   technology payload size and the value of R, is 3 bytes.  Note also
   that the FCN of the last fragment of the packet is the one with
   FCN=31 (i.e.  FCN=2^N-1 for N=5, or equivalently, all FCN bits set to
   1).

Minaburo, et al.        Expires December 31, 2018              [Page 59]



Internet-Draft                 LPWAN SCHC                      June 2018

         Sender               Receiver
           |-----W=0, FCN=23----->|
           |-----W=0, FCN=22----->|
           |-----W=0, FCN=21--X-->|
           |-----W=0, FCN=20----->|
           |-----W=0, FCN=19----->|
           |-----W=0, FCN=18----->|
           |-----W=0, FCN=17----->|
           |-----W=0, FCN=16----->|
           |-----W=0, FCN=15----->|
           |-----W=0, FCN=14----->|
           |-----W=0, FCN=13----->|
           |-----W=0, FCN=12----->|
           |-----W=0, FCN=11----->|
           |-----W=0, FCN=10--X-->|
           |-----W=0, FCN=9 ----->|
           |-----W=0, FCN=8 ----->|
           |-----W=0, FCN=7 ----->|
           |-----W=0, FCN=6 ----->|
           |-----W=0, FCN=5 ----->|
           |-----W=0, FCN=4 ----->|
           |-----W=0, FCN=3 ----->|
           |-----W=0, FCN=2 ----->|
           |-----W=0, FCN=1 ----->|
           |-----W=0, FCN=0 ----->|
           |                      |lcl-Bitmap:110111111111101111111111
           |<------ACK, W=0-------|encoded Bitmap:1101111111111011
           |-----W=0, FCN=21----->|
           |-----W=0, FCN=10----->|
           |<------ACK, W=0-------|no Bitmap
           |-----W=1, FCN=23----->|
           |-----W=1, FCN=22----->|
           |-----W=1, FCN=21----->|
           |--W=1, FCN=31 + MIC-->|MIC checked: sucess =>
           |<------ACK, W=1-------|no Bitmap
         (End)

   Figure 38: Transmission in ACK-Always mode of an IPv6 packet carried
    by 28 fragments, with N=5, MAX_WIND_FCN=23 and two lost fragments.

Appendix C.  Fragmentation State Machines

   The fragmentation state machines of the sender and the receiver, one
   for each of the different reliability modes, are described in the
   following figures:

Minaburo, et al.        Expires December 31, 2018              [Page 60]



Internet-Draft                 LPWAN SCHC                      June 2018

                +===========+
   +------------+  Init     |
   |  FCN=0     +===========+
   |  No Window
   |  No Bitmap
   |                   +-------+
   |          +========+==+    | More Fragments
   |          |           | <--+ ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   +--------> |   Send    |      send Fragment (FCN=0)
              +===+=======+
                  |  last fragment
                  |  ˜˜˜˜˜˜˜˜˜˜˜˜
                  |  FCN = 1
                  v  send fragment+MIC
              +============+
              |    END     |
              +============+

            Figure 39: Sender State Machine for the No-ACK Mode

                         +------+ Not All-1
              +==========+=+    | ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
              |            + <--+ set Inactivity Timer
              |  RCV Frag  +-------+
              +=+===+======+       |All-1 &
      All-1 &   |   |              |MIC correct
    MIC wrong   |   |Inactivity    |
                |   |Timer Exp.    |
                v   |              |
     +==========++  |              v
     |   Error   |<-+     +========+==+
     +===========+        |    END    |
                          +===========+

           Figure 40: Receiver State Machine for the No-ACK Mode

Minaburo, et al.        Expires December 31, 2018              [Page 61]



Internet-Draft                 LPWAN SCHC                      June 2018

                 +=======+
                 | INIT  |       FCN!=0 & more frags
                 |       |       ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
                 +======++  +--+ send Window + frag(FCN)
                    W=0 |   |  | FCN-
     Clear local Bitmap |   |  v set local Bitmap
          FCN=max value |  ++==+========+
                        +> |            |
   +---------------------> |    SEND    |
   |                       +==+===+=====+
   |      FCN==0 & more frags |   | last frag
   |    ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |   | ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   |         set local-Bitmap |   | set local-Bitmap
   |   send wnd + frag(all-0) |   | send wnd+frag(all-1)+MIC
   |       set Retrans_Timer  |   | set Retrans_Timer
   |                          |   |
   |Recv_wnd == wnd &         |   |
   |Lcl_Bitmap==recv_Bitmap&  |   |  +----------------------+
   |more frag                 |   |  |lcl-Bitmap!=rcv-Bitmap|
   |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜    |   |  | ˜˜˜˜˜˜˜˜˜            |
   |Stop Retrans_Timer        |   |  | Attemp++             v
   |clear local_Bitmap        v   v  |                +=====+=+
   |window=next_window   +====+===+==+===+            |Resend |
   +---------------------+               |            |Missing|
                    +----+     Wait      |            |Frag   |
   not expected wnd |    |    Bitmap     |            +=======+
   ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ +--->+               ++Retrans_Timer Exp  |
       discard frag      +==+=+===+=+==+=+| ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |
                            | |   | ^  ^  |reSend(empty)All-* |
                            | |   | |  |  |Set Retrans_Timer  |
                            | |   | |  +--+Attemp++           |
   MIC_bit==1 &             | |   | +-------------------------+
   Recv_window==window &    | |   |   all missing frags sent
                no more frag| |   |   ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
    ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜| |   |   Set Retrans_Timer
          Stop Retrans_Timer| |   |
    +=============+         | |   |
    |     END     +<--------+ |   |
    +=============+           |   | Attemp > MAX_ACK_REQUESTS
               All-1 Window & |   | ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
                MIC_bit ==0 & |   v Send Abort
      Lcl_Bitmap==recv_Bitmap | +=+===========+
                 ˜˜˜˜˜˜˜˜˜˜˜˜ +>|    ERROR    |
                   Send Abort   +=============+

          Figure 41: Sender State Machine for the ACK-Always Mode

Minaburo, et al.        Expires December 31, 2018              [Page 62]



Internet-Draft                 LPWAN SCHC                      June 2018

    Not All- & w=expected +---+   +---+w = Not expected
    ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |   |   |   |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
    Set local_Bitmap(FCN) |   v   v   |discard
                         ++===+===+===+=+
   +---------------------+     Rcv      +--->* ABORT
   |  +------------------+   Window     |
   |  |                  +=====+==+=====+
   |  |       All-0 & w=expect |  ^ w =next & not-All
   |  |     ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |  |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   |  |     set lcl_Bitmap(FCN)|  |expected = next window
   |  |      send local_Bitmap |  |Clear local_Bitmap
   |  |                        |  |
   |  | w=expct & not-All      |  |
   |  | ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜     |  |
   |  | set lcl_Bitmap(FCN)+-+ |  | +--+ w=next & All-0
   |  | if lcl_Bitmap full | | |  | |  | ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   |  | send lcl_Bitmap    | | |  | |  | expct = nxt wnd
   |  |                    v | v  | |  | Clear lcl_Bitmap
   |  |  w=expct & All-1 +=+=+=+==+=++ | set lcl_Bitmap(FCN)
   |  |  ˜˜˜˜˜˜˜˜˜˜˜  +->+    Wait   +<+ send lcl_Bitmap
   |  |    discard    +--|    Next   |
   |  | All-0  +---------+  Window   +--->* ABORT
   |  | ˜˜˜˜˜  +-------->+========+=++
   |  | snd lcl_bm  All-1 & w=next| |  All-1 & w=nxt
   |  |                & MIC wrong| |  & MIC right
   |  |          ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜| | ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   |  |      set local_Bitmap(FCN)| |set lcl_Bitmap(FCN)
   |  |          send local_Bitmap| |send local_Bitmap
   |  |                           | +----------------------+
   |  |All-1 & w=expct            |                        |
   |  |& MIC wrong                v   +---+ w=expctd &     |
   |  |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜  +====+=====+ | MIC wrong      |
   |  |set local_Bitmap(FCN) |          +<+ ˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |
   |  |send local_Bitmap     | Wait End | set lcl_btmp(FCN)|
   |  +--------------------->+          +--->* ABORT       |
   |                         +===+====+=+-+ All-1&MIC wrong|
   |                             |    ^   | ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜|
   |      w=expected & MIC right |    +---+ send lcl_btmp  |
   |      ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |                         |
   |       set local_Bitmap(FCN) | +-+ Not All-1           |
   |        send local_Bitmap    | | | ˜˜˜˜˜˜˜˜˜           |
   |                             | | |  discard            |
   |All-1 & w=expctd & MIC right | | |                     |
   |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ v | v +----+All-1         |
   |set local_Bitmap(FCN)      +=+=+=+=+==+ |˜˜˜˜˜˜˜˜˜     |
   |send local_Bitmap          |          +<+Send lcl_btmp |
   +-------------------------->+    END   |                |
                               +==========+<---------------+

Minaburo, et al.        Expires December 31, 2018              [Page 63]



Internet-Draft                 LPWAN SCHC                      June 2018

          --->* ABORT
               ˜˜˜˜˜˜˜
               Inactivity_Timer = expires
           When DWN_Link
             IF Inactivity_Timer expires
                Send DWL Request
                Attemp++

         Figure 42: Receiver State Machine for the ACK-Always Mode

Minaburo, et al.        Expires December 31, 2018              [Page 64]



Internet-Draft                 LPWAN SCHC                      June 2018

                      +=======+
                      |       |
                      | INIT  |
                      |       |        FCN!=0 & more frags
                      +======++  +--+  ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
                         W=0 |   |  |  send Window + frag(FCN)
          ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |   |  |  FCN-
          Clear local Bitmap |   |  v  set local Bitmap
               FCN=max value |  ++=============+
                             +> |              |
                                |     SEND     |
    +-------------------------> |              |
    |                           ++=====+=======+
    |         FCN==0 & more frags|     |last frag
    |     ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜|     |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
    |            set local-Bitmap|     |set local-Bitmap
    |      send wnd + frag(all-0)|     |send wnd+frag(all-1)+MIC
    |           set Retrans_Timer|     |set Retrans_Timer
    |                            |     |
    |Retrans_Timer expires &     |     |   lcl-Bitmap!=rcv-Bitmap
    |more fragments              |     |   ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
    |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜        |     |   Attemp++
    |stop Retrans_Timer          |     |  +-----------------+
    |clear local-Bitmap          v     v  |                 v
    |window = next window  +=====+=====+==+==+         +====+====+
    +----------------------+                 +         | Resend  |
    +--------------------->+    Wait Bitmap  |         | Missing |
    |                  +-- +                 |         | Frag    |
    | not expected wnd |   ++=+===+===+===+==+         +======+==+
    | ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |    ^ |   |   |   ^                   |
    |    discard frag  +----+ |   |   |   +-------------------+
    |                         |   |   |     all missing frag sent
    |Retrans_Timer expires &  |   |   |     ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
    |       No more Frag      |   |   |     Set Retrans_Timer
    | ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |   |   |
    |  Stop Retrans_Timer     |   |   |
    |  Send ALL-1-empty       |   |   |
    +-------------------------+   |   |
                                  |   |
         Local_Bitmap==Recv_Bitmap|   |
         ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜|   |Attemp > MAX_ACK_REQUESTS
    +=========+Stop Retrans_Timer |   |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
    |   END   +<------------------+   v  Send Abort
    +=========+                     +=+=========+
                                    |   ERROR   |
                                    +===========+

         Figure 43: Sender State Machine for the ACK-on-Error Mode

Minaburo, et al.        Expires December 31, 2018              [Page 65]



Internet-Draft                 LPWAN SCHC                      June 2018

      Not All- & w=expected +---+   +---+w = Not expected
      ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |   |   |   |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
      Set local_Bitmap(FCN) |   v   v   |discard
                           ++===+===+===+=+
   +-----------------------+              +--+ All-0 & full
   |            ABORT *<---+  Rcv Window  |  | ˜˜˜˜˜˜˜˜˜˜˜˜
   |  +--------------------+              +<-+ w =next
   |  |     All-0 empty +->+=+=+===+======+ clear lcl_Bitmap
   |  |     ˜˜˜˜˜˜˜˜˜˜˜ |    | |   ^
   |  |     send bitmap +----+ |   |w=expct & not-All & full
   |  |                        |   |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   |  |                        |   |set lcl_Bitmap; w =nxt
   |  |                        |   |
   |  |      All-0 & w=expect  |   |     w=next
   |  |      & no_full Bitmap  |   |    ˜˜˜˜˜˜˜˜  +========+
   |  |      ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ |   |    Send abort| Error/ |
   |  |      send local_Bitmap |   |  +---------->+ Abort  |
   |  |                        |   |  | +-------->+========+
   |  |                        v   |  | |   all-1       ^
   |  |    All-0 empty    +====+===+==+=+=+ ˜˜˜˜˜˜˜     |
   |  |  ˜˜˜˜˜˜˜˜˜˜˜˜˜ +--+    Wait       | Send abort  |
   |  |  send lcl_btmp +->| Missing Fragm.|             |
   |  |                   +==============++             |
   |  |                                  +--------------+
   |  |                                   Uplink Only &
   |  |                             Inactivity_Timer = expires
   |  |                             ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
   |  |                              Send Abort
   |  |All-1 & w=expect & MIC wrong
   |  |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜      +-+  All-1
   |  |set local_Bitmap(FCN)             | v  ˜˜˜˜˜˜˜˜˜˜
   |  |send local_Bitmap     +===========+==+ snd lcl_btmp
   |  +--------------------->+   Wait End   +-+
   |                         +=====+=+====+=+ | w=expct &
   |       w=expected & MIC right  | |    ^   | MIC wrong
   |       ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜  | |    +---+ ˜˜˜˜˜˜˜˜˜
   |  set & send local_Bitmap(FCN) | | set lcl_Bitmap(FCN)
   |                               | |
   |All-1 & w=expected & MIC right | +-->* ABORT
   |˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ v
   |set & send local_Bitmap(FCN) +=+==========+
   +---------------------------->+     END    |
                                 +============+
               --->* ABORT
                    Only Uplink
                    Inactivity_Timer = expires
                    ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
                    Send Abort

Minaburo, et al.        Expires December 31, 2018              [Page 66]



Internet-Draft                 LPWAN SCHC                      June 2018

        Figure 44: Receiver State Machine for the ACK-on-Error Mode

Appendix D.  SCHC Parameters - Ticket #15

   This section gives the list of parameters that need to be defined in
   the technology-specific documents.

   o  Define the most common uses case and how SCHC may be deployed.

   o  LPWAN Architecture.  Explain the SCHC entities (Compression and
      Fragmentation), how/where they are represented in the
      corresponding technology architecture.  If applicable, explain the
      various potential channel conditions for the technology and the
      corresponding recommended use of C/D and F/R.

   o  L2 fragmentation decision

   o  Technology developers must evaluate that L2 has strong enough
      integrity checking to match SCHC’s assumption.

   o  Rule ID numbering system, number of Rules

   o  Size of the Rule IDs

   o  The way the Rule ID is sent (L2 or L3) and how (describe)

   o  Fragmentation delivery reliability mode used in which cases (e.g.
      based on link channel condition)

   o  Define the number of bits for FCN (N) and DTag (T)

   o  in particular, is interleaved packet transmission supported and to
      what extent

   o  The MIC algorithm to be used and the size, if different from the
      default CRC32

   o  Retransmission Timer duration

   o  Inactivity Timer duration

   o  Define MAX_ACK_REQUEST (number of attempts)

   o  Padding: size of the L2 Word (for most technologies, a byte; for
      some technologies, a bit).  Value of the padding bits (1 or 0).
      The value of the padding bits needs to be specified because the
      padding bits are included in the MIC calculation.

Minaburo, et al.        Expires December 31, 2018              [Page 67]



Internet-Draft                 LPWAN SCHC                      June 2018

   o  Take into account that the length of Rule ID + N + T + W when
      possible is good to have a multiple of 8 bits to complete a byte
      and avoid padding

   o  In the ACK format to have a length for Rule ID + T + W bit into a
      complete number of byte to do optimization more easily

   o  The technology documents will describe if Rule ID is constrained
      by any alignment

   o  When fragmenting in ACK-on-Error or ACK-Always mode, it is
      expected that the last window (called All-1 window) will not be
      fully utilised, i.e. there won’t be fragments with all FCN values
      from MAX_WIND_FCN downto 1 and finally All-1.  It is worth noting
      that this document does not mandate that other windows (called
      All-0 windows) are fully utilised either.  This document purposely
      does not specify that All-1 windows use Bitmaps with the same
      number of bits as All-0 windows do.  By default, Bitmaps for All-0
      and All-1 windows are of the same size MAX_WIND_FCN + 1.  But a
      technology-specific document MAY revert that decision.  The
      rationale for reverting the decision could be the following: Note
      that the SCHC ACK sent as a response to an All-1 fragment includes
      a C bit that SCHC ACK for other windows don’t have.  Therefore,
      the SCHC ACK for the All-1 window is one bit bigger.  An L2
      technology with a severely constrained payload size might decide
      that this "bump" in the SCHC ACK for the last fragment is a bad
      resource usage.  It could thus mandate that the All-1 window is
      not allowed to use the FCN value 1 and that the All-1 SCHC ACK
      Bitmap size is reduced by 1 bit.  This provides room for the C bit
      without creating a bump in the SCHC ACK.

   And the following parameters need to be addressed in another document
   but not forcely in the technology-specific one:

   o  The way the contexts are provisioning

   o  The way the Rules as generated

Appendix E.  Note

   Carles Gomez has been funded in part by the Spanish Government
   (Ministerio de Educacion, Cultura y Deporte) through the Jose
   Castillejo grant CAS15/00336, and by the ERDF and the Spanish
   Government through project TEC2016-79988-P.  Part of his contribution
   to this work has been carried out during his stay as a visiting
   scholar at the Computer Laboratory of the University of Cambridge.

Minaburo, et al.        Expires December 31, 2018              [Page 68]



Internet-Draft                 LPWAN SCHC                      June 2018

Authors’ Addresses

   Ana Minaburo
   Acklio
   1137A avenue des Champs Blancs
   35510 Cesson-Sevigne Cedex
   France

   Email: ana@ackl.io

   Laurent Toutain
   IMT-Atlantique
   2 rue de la Chataigneraie
   CS 17607
   35576 Cesson-Sevigne Cedex
   France

   Email: Laurent.Toutain@imt-atlantique.fr

   Carles Gomez
   Universitat Politecnica de Catalunya
   C/Esteve Terradas, 7
   08860 Castelldefels
   Spain

   Email: carlesgo@entel.upc.edu

   Dominique Barthel
   Orange Labs
   28 chemin du Vieux Chene
   38243 Meylan
   France

   Email: dominique.barthel@orange.com

Minaburo, et al.        Expires December 31, 2018              [Page 69]



lpwan Working Group                                          A. Minaburo
Internet-Draft                                                    Acklio
Intended status: Informational                                  E. Ramos
Expires: March 8, 2019                                          Ericsson
                                                       S. Shanmugalingam
                                                                  Acklio
                                                      September 04, 2018

       LPWAN Static Context Header Compression (SCHC) over NB-IoT
                    draft-minaburo-lpwan-nbiot-hc-01

Abstract

   The Static Context Header Compression (SCHC) specification describes
   a header compression and fragmentation functionalities for LPWAN (Low
   Power Wide Area Networks) technologies.  SCHC was designed to be
   adapted over any of the LPWAN technologies.

   This document describes the use of SCHC over the NB-IoT wireless
   access, and provides elements for an efficient parameterization.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 8, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Minaburo, et al.          Expires March 8, 2019                 [Page 1]



Internet-Draft                 SCHC NB-IoT                September 2018

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Architecture  . . . . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  Data Transmission . . . . . . . . . . . . . . . . . . . .   5
     3.2.  Data Transmission over User Plane . . . . . . . . . . . .   6
       3.2.1.  Packet Data Convergence Protocol (PDCP) . . . . . . .   7
       3.2.2.  Radio Link Protocol (RLC) . . . . . . . . . . . . . .   7
       3.2.3.  Medium Access Control (MAC) . . . . . . . . . . . . .   8
     3.3.  Data Over Control Plane . . . . . . . . . . . . . . . . .   9
     3.4.  SCHC entities . . . . . . . . . . . . . . . . . . . . . .  13
   4.  Static Context Header Compression . . . . . . . . . . . . . .  13
     4.1.  SCHC Rules  . . . . . . . . . . . . . . . . . . . . . . .  13
     4.2.  Packet processing . . . . . . . . . . . . . . . . . . . .  13
     4.3.  SCHC Context  . . . . . . . . . . . . . . . . . . . . . .  13
   5.  Fragmentation . . . . . . . . . . . . . . . . . . . . . . . .  13
     5.1.  Fragmentation modes . . . . . . . . . . . . . . . . . . .  14
     5.2.  Fragmentation Parameters  . . . . . . . . . . . . . . . .  14
   6.  Padding . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
   7.  Security considerations . . . . . . . . . . . . . . . . . . .  14
   8.  Appendix  . . . . . . . . . . . . . . . . . . . . . . . . . .  14
     8.1.  NB-IoT example with mobility  . . . . . . . . . . . . . .  15
   9.  Informative References  . . . . . . . . . . . . . . . . . . .  15
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16

1.  Introduction

   The Static Context Header Compression (SCHC)
   [I-D.ietf-lpwan-ipv6-static-context-hc] defines a header compression
   scheme and fragmentation functionality, both specially tailored for
   Low Power Wide Area Networks (LPWAN) networks defined in
   [I-D.ietf-lpwan-overview].

   Header compression is needed to efficiently bring Internet
   connectivity to the node within an NB-IoT network.  SCHC uses an
   static context to performs header compression with specific
   parameters that need to be adapted into the NB-IoT wireless access.
   This document assumes functionality for NB-IoT of 3GPP release 15
   otherwise other versions functionality is explicitly mentioned in the
   text.

Minaburo, et al.          Expires March 8, 2019                 [Page 2]



Internet-Draft                 SCHC NB-IoT                September 2018

   This document describes the use of SCHC and its parameterizing over
   the NB-IoT wireless access.

2.  Terminology

   This document will follow the terms defined in
   [I-D.ietf-lpwan-ipv6-static-context-hc], in
   [I-D.ietf-lpwan-overview], and the TGPP23720.

   o  CIoT.  Cellular IoT

   o  C-SGN.  CIoT Serving Gateway Node

   o  UE.  User Equipment

   o  eNB.  Node B.  Base Station that controls the UE

   o  EPC.  Evolved Packet Connectivity.  Core network of 3GPP LTE
      systems.

   o  EUTRAN.  Evolved Universal Terrestrial Radio Access Network.
      Radio network from LTE based systems.

   o  MME.  Mobility Management Entity.  Handle mobility of the UE

   o  NB-IoT.  Narrow Band IoT.  Referring to 3GPP LPWAN technology
      based in LTE architecture but with additional optmization for IoT
      and using a Narrow Band spectrum frequency.

   o  SGW.  Serving Gateway.  Routes and forwards the user data packets
      through the access network

   o  HSS.  Home Subscriber Server.  It is a database that performs
      mobility management

   o  PGW.  Packet Data Node Gateway.  Interface between the internal
      with the external network

   o  PDU.  Protocol Data Unit.  Data packets including headers that are
      transmitted between entities through a protocol.

   o  SDU.  Service Data Unit.  Data packets (PDUs) from higher layers
      protocols used by lower layer protocols as payload of their own
      PDUs that has not yet been encapsulated.

   o  IWK-SCEF.  InterWorking Service Capabilities Exposure Function.
      Used in roaming scenarios and serves for interconnection with the
      SCEF of the Home PLMN and is located in the Visited PLMN

Minaburo, et al.          Expires March 8, 2019                 [Page 3]



Internet-Draft                 SCHC NB-IoT                September 2018

   o  SCEF.  Service Capability Exposure Function.  EPC node for
      exposure of 3GPP network service capabilities to 3rd party
      applications.

3.  Architecture

   ## NB-IoT entities

      +--+
      |UE| \              +------+      +------+
      +--+  \             | MME  |------| HSS  |
             \          / +------+      +------+
      +--+    \+-----+ /      |
      |UE| ----| eNB |-       |
      +--+    /+-----+ \      |
             /          \ +--------+
            /            \|        |    +------+     Service PDN
      +--+ /              |  S-GW  |----| P-GW |---- e.g. Internet
      |UE|                |        |    +------+
      +--+                +--------+

                    Figure 1: 3GPP network architecture

   The architecture for 3GPP LTE network has been reused for NB-IoT with
   some optimizations and simplifications known as Cellular IoT (CIoT).
   Considering the typical use cases for CIoT devices here are described
   some of the additions to the LTE architecture specific for CIoT.
   C-SGN(CIoT Serving Gateway Node) is a deployment option co-locating
   EPS entities in the control plane and user plane paths (for example,
   MME + SGW + P-GW) and the external interfaces of the entities
   supported.  The C-SGN also supports at least some of the following
   CIoT EPS Optimizations: * Control Plane CIoT EPS Optimization for
   small data transmission.  * User Plane CIoT EPS Optimization for
   small data transmission.  * Necessary security procedures for
   efficient small data transmission.  * SMS without combined attach for
   NB-IoT only UEs.  * Paging optimizations for coverage enhancements.
   * Support for non-IP data transmission via SGi tunneling and/or SCEF.
   * Support for Attach without PDN (Packet Data Network) connectivity.

   Another node introduced in the CIOT architecture is the SCEF (Service
   Capability Exposure Function) that provide means to securely expose
   service and network capabilities to entities external to the network
   operator.  The northbound APIS are defined by OMA and OneM2M.  The
   main functions of a SCEF are: * Non-IP Data Delivery (NIDD)
   established through the SCEF.  * Monitoring and exposure of event
   related to UE reachability, loss of connectivity, location reporting,

Minaburo, et al.          Expires March 8, 2019                 [Page 4]



Internet-Draft                 SCHC NB-IoT                September 2018

   roaming status, communication failure and change of IMEI-IMSI
   association.

                                               +---------+
                                               |   HSS   |
                                               +---------+
                                              /
                               +-----------+ /S6a
                 +--------+    |           |/
   +----+  C-Uu  |        +----+           | T6i  +--------+ T7 +----+
   |CIOT+--------+  eNB   | S1 |           +------+IWK-SCEF+----+SCEF|
   |UE  |        |(NB-IoT)|    |           |      +--------+    +----+
   +----+        +--------+    |           |      +------------+
                               |   C-SGN   |SGd   |  SMS-GMSC/ |
                               |           +------+  IWMSC/SMS |
                  +--------+   |           |      |  router    |
   +----+  LTE-Uu |        |   |           |      +------------+
   |LTE |  (eMTC) |  eNB   +---+           |  S8  +---+    +------+
   |eMTC+---------+(eMTC)  | S1|           +------+PGW|SGi |Appli.|
   | UE |         +--------+   |           |      |   +----+Server|
   +----+                      +-----------+      +---+    | (AS) |
                                                           +------+

            Figure 2: 3GPP optimized CIOT network architecture

3.1.  Data Transmission

   3GPP networks deals not only with data transmitted end-to-end but
   also with in-band signaling that is used between the nodes and
   functions to configure, control and monitor the system functions and
   behaviors.  The control data is handled using a Control Plane which
   has an specific set of protocols, handling processes and entities.
   In contrast the end-to-end or user data utilize a User Plane with
   characteristics of its own separated from the Control Plane.  The
   handling and setup of the Control Plane and User Plane spans over the
   whole 3GPP network and it has particular implications in the radio
   network (i.e., EUTRAN) and in the packet core (ex., EPC).

   For the CIOT cases, additionally to transmissions of data over User
   Plane, 3GPP has specified optimizations for small data transmissions
   that allows to transport user data (IP, Non-IP) within signaling on
   the access network (Data transmission over Control Plane or Data Over
   NAS).

   The maximum recommended MTU size is 1358 Bytes.  The radio network
   protocols limits the packet sizes to be transmitted over the air

Minaburo, et al.          Expires March 8, 2019                 [Page 5]



Internet-Draft                 SCHC NB-IoT                September 2018

   including radio protocol overhead to 1600 Octets.  But the value is
   reduced further to avoid fragmentation in the backbone of the network
   due to the payload encryption size (multiple of 16) and handling of
   the additional core transport overhead.

3.2.  Data Transmission over User Plane

   The User Plane utilizes the protocol stack of the Access Stratum (AS)
   for data transfer.  AS (Access Stratum) is the functional layer
   responsible for transporting data over wireless connection and
   managing radio resources.  The user plane AS has support for features
   such as reliability, segmentation and concatenation.  The
   transmissions of the AS utilize link adaptation, meaning that the
   transport format utilized for the transmissions are optimized
   according to the radio conditions, the number of bits to transmit and
   the power and interference constrains.  That means that the number of
   bits transmitted over the air depends of the Modulation and Coding
   Schemes (MCS) selected.  The transmissions in the physical layer
   happens at network synchronized intervals of times called TTI
   (Transmission Time Interval).  The transmission of a Transport Block
   (TB) is completed during, at least, one TTI.  Each Transport Block
   has a different MCS and number of bits available to transmit.  The
   Transport Blocks characteristics are defined by the MAC technical
   specification {TGPP36321}.  The Access Stratum for User Plane is
   comprised by Packet Data Convergence Protocol (PDCP) {TGPP36323},
   Radio Link Protocol (RLC){TGPP36322}, Medium Access Control protocol
   (MAC){TGPP36321} and the Physical Layer {TGPP36201}.

     +---------+                                +---------+  |
     |IP/non-IP+--------------------------------+IP/non-IP+->+
     +---------+   |   +----------------+   |   +---------+  |
     | PDCP    +-------+ PDCP  | GTP|U  +-------+ GTP-U   |->+
     +---------+   |   +----------------+   |   +---------+  |
     | RLC     +-------+ RLC   |UDP/IP  +-------+ UDP/IP  +->+
     +---------+   |   +----------------+   |   +---------+  |
     | MAC     +-------+ MAC   | L2     +-------+ L2      +->+
     +---------+   |   +----------------+   |   +---------+  |
     | PHY     +-------+ PHY   | PHY    +-------+ PHY     +->+
     +---------+       +----------------+       +---------+  |
                  C-Uu/                    S1-U            SGi
       CIOT/     LTE+Uu      C-BS/eNB              C-SGN
      LTE eMTC
        UE

    Figure 3: 3GPP CIOT radio protocol architecture for data over user
                                   plane

Minaburo, et al.          Expires March 8, 2019                 [Page 6]



Internet-Draft                 SCHC NB-IoT                September 2018

3.2.1.  Packet Data Convergence Protocol (PDCP)

   Each of the Radio Bearers (RB) are associated with one PDCP entity.
   And a PDCP entity is associated with one or two RLC entities
   depending of the unidirectional or bi-directional characteristics of
   the RB and RLC mode used.  A PDCP entity is associated either control
   plane or user plane which independent configuration and functions.
   The maximum supported size for NB-IoT of a PDCP SDU is 1600 octets.
   The main services and functions of the PDCP sublayer for NB-IoT for
   the user plane include: * Header compression and decompression by
   means of ROHC (Robust Header Compression) * Transfer of user and
   control data to higher and lower layers * Duplicate detection of
   lower layer SDUs when re-establishing connection (when RLC with
   Acknowledge Mode in use for User Plane only) * Ciphering and
   deciphering * Timer-based SDU discard in uplink

3.2.2.  Radio Link Protocol (RLC)

   RLC is a layer-2 protocol that operates between the UE and the base
   station (eNB).  It supports the packet delivery from higher layers to
   MAC creating packets that are transmitted over the air optimizing the
   Transport Block utilization.  RLC flow of data packets is
   unidirectional and it is composed of a transmitter located in the
   transmission device and a receiver located in the destination device.
   Therefore to configure bi-directional flows, two set of entities, one
   in each direction (downlink and uplink) must be configured and they
   are effectively peered to each other.  The peering allows the
   transmission of control packets (ex., status reports) between
   entities.  RLC can be configured for data transfer in one of the
   following modes: * Transparent Mode (TM).  In this mode RLC do not
   segment or concatenate SDUs from higher layers and do not include any
   header to the payload.  When acting as a transmitter, RLC receives
   SDUs from upper layers and transmit directly to its flow RLC receiver
   via lower layers.  Similarly, an TM RLC receiver would only deliver
   without additional processing the packets to higher layers upon
   reception.  * Unacknowledged Mode (UM).  This mode provides support
   for segmentation and concatenation of payload.  The size of the RLC
   packet depends of the indication given at a particular transmission
   opportunity by the lower layer (MAC) and are octets aligned.  The
   packet delivery to the receiver do not include support for
   reliability and the lost of a segment from a packet means a whole
   packet loss.  Also in case of lower layer retransmissions there is no
   support for re-segmentation in case of change of the radio conditions
   triggring the selection of a smaller transport block.  Additionally
   it provides PDU duplication detection and discard, reordering of out
   of sequence and loss detection.  * Acknowledged Mode (AM).
   Additional to the same functions supported from UM, this mode also
   adds a moving windows based reliability service on top of the lower

Minaburo, et al.          Expires March 8, 2019                 [Page 7]



Internet-Draft                 SCHC NB-IoT                September 2018

   layer services.  It also provides support for re-segmentation and it
   requires bidirectional communication to exchange acknowledgment
   reports called RLC Status Report and trigger retransmissions is
   needed.  Protocol error detection is also supported by this mode.
   The mode uses depends of the operator configuration for the type of
   data to be transmitted.  For example, data transmissions supporting
   mobility or requiring high reliability would be most likely
   configured using AM, meanwhile streaming and real time data would be
   map to a UM configuration.

3.2.3.  Medium Access Control (MAC)

   MAC provides a mapping between the higher layers abstraction called
   Logical Channels comprised by the previously described protocols to
   the Physical layer channels (transport channels).  Additionally, MAC
   may multiplex packets from different Logical Channels and prioritize
   what to fit into one Transport Block if there is data and space
   available to maximize the efficiency of data transmission.  MAC also
   provides error correction and reliability support by means of HARQ,
   transport format selection and scheduling information reporting from
   the terminal to the network.  MAC also adds the necessary padding and
   piggyback control elements when possible additional to the higher
   layers data.

Minaburo, et al.          Expires March 8, 2019                 [Page 8]



Internet-Draft                 SCHC NB-IoT                September 2018

                                                  <Max. 1600 bytes>
                  +-----+         +---+           +---------+
    Application   | AP1 |         |AP1|           |   AP2   |
   (IP/non-IP)    | PDU |         |PDU|           |   PDU   |
                  +-----+         +---+           +---------+
                  |     |         |   |           |         |
      PDCP   +----------+    +--------+      +--------------+
             |PDCP| AP1 |    |PDCP|AP1|      |PDCP|   AP2   |
             |Head| PDU |    |Head|PDU|      |Head|   PDU   |
             +----------+    +--------+      +---------+----\
             |    |     |    |    |   |      |    |    |\    \_____
             |    |     |    |    |   |      |    |    | \         \
         +----------------------------+      |    | (1)|  \_____(2) \
    RLC  |RLC|PDCP| AP1 |RLC |PDCP|AP1| +--------------+   +----|----+
         |Head|Head|PDU |Head|Head|PDU| |RLC |PDCP| AP2|   |RLC | AP2|
         +--------------|-------------+ |Head|Head| PDU|   |Head| PDU|
         |        |     |         |   | +---------|----+   +---------+
         |        |     | LCID1   |   | /         /   /    |         |
         |        |     |         |   |/         /   /LCID2|         |
         |        |     |         |   |         |   |      |         |
         |        |     |         |   |         |   |      |         |
     +----------------------------------------------+ +---------+------+
   M |MAC|RLC|PDCP| AP1 |RLC |PDCP|AP1|RLC |PDCP|AP2| |MAC |RLC | AP2|P|
   A |Hea|Hea|Hea-| PDU |Hea-|Hea-|PDU|Hea-|Hea-|PDU| |Hea-|Hea-| PDU|a|
   C |der|der| der|     |der |der |   |der |der |PDU| |der |der |    |d|
     +----------------------------------------------+ +--------------+-+
                         TB1                                    TB2

       Figure 4: Example of User Plane packet encapsulation for two
                             transport blocks

3.3.  Data Over Control Plane

   The Non-Access Stratum (NAS), conveys mainly control signaling
   between the UE and the cellular network {TGPP24301}. NAS is
   transported on top of the Access Stratum (AS) already presented in
   the previous sections.

Minaburo, et al.          Expires March 8, 2019                 [Page 9]



Internet-Draft                 SCHC NB-IoT                September 2018

   +---------+                               +---------+---------+  |
   |IP/non-IP|---|-----------------------|---|IP/non-IP|IP/non-IP|->|
   +---------+   |                       |   +---------+---------+ >|
   | NAS     |---|-----------------------|---| NAS     | GTP-C/U |->|
   +---------+   |    +------+------+    |   +---------+---------+  |
   | RRC     |---|----| RRC  | S1-AP|----|---| S1-AP   |         |  |
   +---------+   |    +------+------+    |   +---------+  UDP    |->|
   | PDCP*   |---|----| PDCP*| SCTP |----|---| SCTP    |         |  |
   +---------+   |    +------+------+    |   +---------+---------+  |
   | RLC     |---|----| RLC  | IP   |----|---| IP      | IP      |->|
   +---------+   |    +------+------+    |   +---------+---------+  |
   | MAC     |---|----| MAC  | L2   |----|---| L2      | L2      |->|
   +---------+   |    +------+------+    |   +---------+---------+  |
   | PHY     |---|----| PHY  | PHY  |----|---| PHY     | PHY     |->|
   +---------         +------+------+        +---------+---------+  |
                C-Uu/                 S1-lite                     SGi
      CIOT/     LTE-Uu      C-BS/eNB                 C-SGN
     LTE eMTC
       UE

           *PDCP is bypassed until AS security is activated TGPP36300.

         Figure 5: 3GPP CIOT radio protocol architecture for DoNAS
                               transmissions

   NAS has been adapted to provide support for user plane data
   transmissions to reduce the overhead when transmitting infrequent
   small quantities of data.  This is known as Data over NAS (DoNAS) or
   Control Plane CIoT EPS optimization.  In DoNAS the UE makes use of
   the pre-established NAS security and piggyback uplink small data into
   the initial NAS uplink message, and uses an additional NAS message to
   receive downlink small data response.  The data encryption from the
   network side is performed by the C-SGN in a NAS PDU.  The AS protocol
   stack used by DoNAS is somehow special.  Since the security
   associations are not established yet in the radio network, to reduce
   the protocol overhead, PDCP (Packet Data Convergence Protocol) is
   bypassed until AS security is activated.  RLC (Radio Link Control
   protocol) is configured by default in AM mode, but depending of the
   features supported by the network and the terminal it may be
   configured in other modes by the network operator.  For example, the
   transparent mode does not add any header or does not process the
   payload in any way reducing the overhead, but the MTU would be
   limited by the transport block used to transmit the data which is
   couple of thousand of bits maximum.  If UM (only Release 15
   compatible terminals) is used, the RLC mechanisms of reliability is
   disabled and only the reliability provided by the MAC layer by Hybrid
   Automatic Repeat reQuest (HARQ) is available.  In this case, the
   protocol overhead might be smaller than for the AM case because the

Minaburo, et al.          Expires March 8, 2019                [Page 10]



Internet-Draft                 SCHC NB-IoT                September 2018

   lack of status reporting but with the same support for segmentation
   up to 16000 Bytes.  NAS packet are encapsulated within a RRC (Radio
   Resource Control){TGPP36331} message.

   Depending of the data type indication signaled (IP or non-IP data),
   the network allocates an IP address or just establish a direct
   forwarding path.  DoNAS is regulated under rate control upon previous
   agreement, meaning that a maximum number of bits per unit of time is
   agreed per device subscription beforehand and configured in the
   device.  The use of DoNAS is typically expected when a terminal in a
   power saving state requires to do a short transmission and receive an
   acknowledgment or short feedback from the network.  Depending of the
   size of buffered data to transmit, the UE might be instructed to
   deploy the connected mode transmissions instead, limiting and
   controlling the DoNAS transmissions to predefined thresholds and a
   good resource optimization balance for the terminal and the network.
   The support for mobility of DoNAS is present but produces additional
   overhead.

Minaburo, et al.          Expires March 8, 2019                [Page 11]



Internet-Draft                 SCHC NB-IoT                September 2018

       +--------+   +--------+   +--------+
       |        |   |        |   |        |       +------------------+
       |   UE   |   |  C-BS  |   |  C-SGN |       | Roaming Scenarios|
       +----|---+   +--------+   +--------+       |   +--------+     |
            |            |            |           |   |        |     |
        +----------------|------------|+          |   |  P-GW  |     |
        |        Attach                |          |   +--------+     |
        +------------------------------+          |        |         |
            |            |            |           |        |         |
     +------|------------|--------+   |           |        |         |
     |RRC Connection Establishment|   |           |        |         |
     |with NAS PDU transmission   |   |           |        |         |
     |& Ack Rsp                   |   |           |        |         |
     +----------------------------+   |           |        |         |
            |            |            |           |        |         |
            |            |Initial UE  |           |        |         |
            |            |message     |           |        |         |
            |            |----------->|           |        |         |
            |            |            |           |        |         |
            |            | +---------------------+|        |         |
            |            | |Checks Integrity     ||        |         |
            |            | |protection, decrypts ||        |         |
            |            | |data                 ||        |         |
            |            | +---------------------+|        |         |
            |            |            |        Small data packet     |
            |            |            |-------------------------------->
            |            |            |        Small data packet     |
            |            |            |<--------------------------------
            |            | +----------|---------+ |        |         |
            |            | Integrity protection,| |        |         |
            |            | encrypts data        | |        |         |
            |            | +--------------------+ |        |         |
            |            |            |           |        |         |
            |            |Downlink NAS|           |        |         |
            |            |message     |           |        |         |
            |            |<-----------|           |        |         |
   +-----------------------+          |           |        |         |
   |Small Data Delivery,   |          |           |        |         |
   |RRC connection release |          |           |        |         |
   +-----------------------+          |           |        |         |
                                                  |                  |
                                                  |                  |
                                                  +------------------+

   Figure 6: DoNAS transmission sequence from an Uplink initiated access

Minaburo, et al.          Expires March 8, 2019                [Page 12]



Internet-Draft                 SCHC NB-IoT                September 2018

3.4.  SCHC entities

   SCHC could be deployed differently depending of the placing of the
   entities in the architecture.  NB-IoT and in general the cellular
   technologies interfaces are standardized by 3GPP.  Therefore the
   introduction of SCHC entities in the RAN (Radio Access Network) would
   require support from both the network and terminal entities.  If SCHC
   entities are to be placed in RAN it would require to be added to be
   specified as an option for the UE - Base Station/C-SGN interfaces.
   Another option is to place the SCHC entities in the applications
   layer, and the SCHC packets would be transmitted as non-IP packets.
   The first option allows the deployment of IP for routing and
   addressing as well.

4.  Static Context Header Compression

   TBD (Edgar)

4.1.  SCHC Rules

   TBD (Ana) * Depending of SCHC deployment case * End-2-end * Global
   rules to fetch customized rules * Minimum rule set for applying
   functions * Fragmentation, compression, NATing

   o  Size of rule id

   o  1 fragment rule And at least one Rule ID may be reserved to the
      case where no SCHC C/D nor SCHC fragmentation were possible.

4.2.  Packet processing

   (Ana) *Operation over top vs 3gpp entities how to recognize a schc
   packet

4.3.  SCHC Context

   o  NATing

   o  What protocols can be identified for compression depending of the
      deployument

5.  Fragmentation

   The RLC layer of NB-IoT can segment packets in suitable units that
   fits the selected transport blocks for transmissions of the physical
   layer.  The selection of the blocks is done according to the input of
   the link adaptation function in the MAC layer and the quantity of
   data in the buffer.  The link adaptation layer may produce different

Minaburo, et al.          Expires March 8, 2019                [Page 13]



Internet-Draft                 SCHC NB-IoT                September 2018

   results at each Time Transmission Interval (TTI) for what is very
   difficult to set a fragmentation value according to the transport
   block that is selected for each transmission.  Instead for NB-IoT
   SCHC must take care of keeping the application packets with a
   suitable size that do not exceed the MTU (1600 bytes).

5.1.  Fragmentation modes

   (Sothy) Look a the different options of reliability and see the
   implications for NB-IoT for the different deployment modes

5.2.  Fragmentation Parameters

   (Edgar) Headers sizes Example for the end2end case and check what is
   operator defined * Rule ID

   o  DTag

   o  FCN

   o  Retransmission Timer

   o  Inactivity Timer

   o  MAX_ACK_Retries

   o  MAX_ATTEMPS

   o  MIC (Ana)

   TBD

6.  Padding

   NB-IoT and 3GPP wireless access in general assumes byte aligned
   payload.  Therefore the L2 word for NB-IoT MUST be considered 8 bits
   and the treatment of padding should use this value accordingly.

7.  Security considerations

   3GPP access security is specified in [TGPP33203].

8.  Appendix

   ## NB-IoT with data over NAS

Minaburo, et al.          Expires March 8, 2019                [Page 14]



Internet-Draft                 SCHC NB-IoT                September 2018

                       +---+ +---+ +----+                   +--+
   Applications        |AP1| |AP1| | AP2|                   |AP2|
   (IP/non-IP)         |PDU| |PDU| | PDU|˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜|PDU|
                       +---+ +---+ +----+                   +---+
                       |   |/   /      /                     |   |
    NAS /RRC       +-------+---|-----+-----+           +--------+
                   |NAS|AP1|AP1| AP2 |NAS/ |           |NAS/|AP2|
                   |RRC|PDU|PDU| PDU |RRC  |           |RRC |PDU|
                   +---+---|---+-----+-----+           +--------|
                   |       | \             |           |        |
                   |<----Max. 1600 bytes-->|           |_       |_
                   |       |   \            \            \        \
                   |       |    --\         -\            \_       \_
             +-------------| +-----|----------+             \        \
   RLC       |RLC  |NAS/RRC| |RLC  | NAS/RRC  |         +----|-------+
             |Head |  PDU  | |Head | PDU (2/2)|         |RLC |NAS/RRC|
             |     | (1/2) | |Head | PDU (2/2)|         |RLC |NAS/RRC|
             +-------------+ +-----+----------+         |Head|PDU    |
             |     |       | \                 \        +------------+
             |     | LCID1 |  \                 \       |            |
             |     |       |   \                 \      |            |
             |     |       |    \                 \      \           |
             |     |       |     \                 \      \          |
       +-------------------+ +----|-----------------+ +----+---------|-+
   MAC |MAC  |RLC  |  RLC  | |MAC |RLC |    RLC     | |MAC |    RLC  |P|
       |Head |Head |PAYLOAD| |Head|Head|   PAYLOAD  | |Head|    PDU  |a|
       |     |     |       | |    |    |            | |    |         |d|
       +-------------------+ +----------------------+ +----+---------+-+
             TB1                       TB2                     TB3

    Figure 7: Example of User Plane packet encapsulation for Data over
                                    NAS

8.1.  NB-IoT example with mobility

   ## LTE-M considerations

9.  Informative References

   [I-D.ietf-lpwan-ipv6-static-context-hc]
              Minaburo, A., Toutain, L., Gomez, C., and D. Barthel,
              "LPWAN Static Context Header Compression (SCHC) and
              fragmentation for IPv6 and UDP", draft-ietf-lpwan-ipv6-
              static-context-hc-16 (work in progress), June 2018.

Minaburo, et al.          Expires March 8, 2019                [Page 15]



Internet-Draft                 SCHC NB-IoT                September 2018

   [I-D.ietf-lpwan-overview]
              Farrell, S., "LPWAN Overview", draft-ietf-lpwan-
              overview-10 (work in progress), February 2018.

   [TGPP24301]
              "TS 24.301 v15.2.0 - Non-Access-Stratum (NAS) protocol for
              Evolved Packet System (EPS); Stage 3", n.d..

   [TGPP33203]
              "TS 33.203 v13.1.0 - 3G security; Access security for IP-
              based services", n.d..

   [TGPP36300]
              "TS 36.300 v15.1.0 - Evolved Universal Terrestrial Radio
              Access (E-UTRA) and Evolved Universal Terrestrial Radio
              Access Network (E-UTRAN); Overall description; Stage 2",
              n.d..

   [TGPP36321]
              "TS 36.321 v13.2.0 - Evolved Universal Terrestrial Radio
              Access (E-UTRA); Medium Access Control (MAC) protocol
              specification", n.d..

   [TGPP36323]
              "TS 36.323 v13.2.0 - Evolved Universal Terrestrial Radio
              Access (E-UTRA); Packet Data Convergence Protocol (PDCP)
              specification", n.d..

   [TGPP36331]
              "TS 36.331 v13.2.0 - Evolved Universal Terrestrial Radio
              Access (E-UTRA); Radio Resource Control (RRC); Protocol
              specification", n.d..

Authors’ Addresses

   Ana Minaburo
   Acklio
   2bis rue de la Chataigneraie
   35510 Cesson-Sevigne Cedex
   France

   Email: ana@ackl.io

Minaburo, et al.          Expires March 8, 2019                [Page 16]



Internet-Draft                 SCHC NB-IoT                September 2018

   Edgar Ramos
   Ericsson
   Hirsalantie 11
   02420 Jorvas
   Finland

   Email: edgar.ramos@ericsson.com

   Sivasothy Shanmugalingam
   Acklio
   2bis rue de la Chataigneraie
   35510 Cesson-Sevigne Cedex
   France

   Email: sothy@ackl.io

Minaburo, et al.          Expires March 8, 2019                [Page 17]



lpwan Working Group                                       N. Sornin, Ed.
Internet-Draft                                                M. Coracin
Intended status: Informational                                   Semtech
Expires: January 3, 2019                                       I. Petrov
                                                                  Acklio
                                                                A. Yegin
                                                                Actility
                                                             J. Catalano
                                                                 Kerlink
                                                             V. Audebert
                                                                 EDF R&D
                                                           July 02, 2018

         Static Context Header Compression (SCHC) over LoRaWAN
              draft-petrov-lpwan-ipv6-schc-over-lorawan-02

Abstract

   The Static Context Header Compression (SCHC) specification describes
   generic header compression and fragmentation techniques for LPWAN
   (Low Power Wide Area Networks) technologies.  SCHC is a generic
   mechanism designed for great flexibility, so that it can be adapted
   for any of the LPWAN technologies.

   This document provides the adaptation of SCHC for use in LoRaWAN
   networks, and provides elements such as efficient parameterization
   and modes of operation.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 3, 2019.

Sornin, et al.           Expires January 3, 2019                [Page 1]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Static Context Header Compression Overview  . . . . . . . . .   3
   4.  LoRaWAN Architecture  . . . . . . . . . . . . . . . . . . . .   4
     4.1.  Device classes (A, B, C) and interactions . . . . . . . .   5
     4.2.  Device addressing . . . . . . . . . . . . . . . . . . . .   6
     4.3.  General Message Types . . . . . . . . . . . . . . . . . .   6
     4.4.  LoRaWAN MAC Frames  . . . . . . . . . . . . . . . . . . .   6
   5.  SCHC over LoRaWAN . . . . . . . . . . . . . . . . . . . . . .   6
     5.1.  Rule ID management  . . . . . . . . . . . . . . . . . . .   6
     5.2.  IID computation . . . . . . . . . . . . . . . . . . . . .   6
     5.3.  Fragmentation . . . . . . . . . . . . . . . . . . . . . .   6
       5.3.1.  Reliability options . . . . . . . . . . . . . . . . .   6
       5.3.2.  Supporting multiple window sizes  . . . . . . . . . .  11
       5.3.3.  Downlink fragment transmission  . . . . . . . . . . .  11
       5.3.4.  SCHC behavior for devices in class A, B and C . . . .  11
   6.  Security considerations . . . . . . . . . . . . . . . . . . .  11
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  11
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  11
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  11
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  12
   Appendix A.  Examples . . . . . . . . . . . . . . . . . . . . . .  12
   Appendix B.  Note . . . . . . . . . . . . . . . . . . . . . . . .  12
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   The Static Context Header Compression (SCHC) specification
   [I-D.ietf-lpwan-ipv6-static-context-hc] describes generic header
   compression and fragmentation techniques that can be used on all
   LPWAN (Low Power Wide Area Networks) technologies defined in

Sornin, et al.           Expires January 3, 2019                [Page 2]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

   [I-D.ietf-lpwan-overview].  Even though those technologies share a
   great number of common features like start-oriented topologies,
   network architecture, devices with mostly quite predictable
   communications, etc; they do have some slight differences in respect
   of payload sizes, reactiveness, etc.

   SCHC gives a generic framework that enables those devices to
   communicate with other Internet networks.  However, for efficient
   performance, some parameters and modes of operation need to be set
   appropriately for each of the LPWAN technologies.

   This document describes the efficient parameters and modes of
   operation when SCHC is used over LoRaWAN networks.

2.  Terminology

   This section defines the terminology and acronyms used in this
   document.  For all other definitions, please look up the SCHC
   specification [I-D.ietf-lpwan-ipv6-static-context-hc].

   o DevEUI: an IEEE EUI-64 identifier used to identify the device
   during the procedure while joining the network (Join Procedure)

   o DevAddr: a 32-bit non-unique identifier assigned to a device
   statically or dynamically after a Join Procedure (depending on the
   activation mode)

   o TBD: all significant LoRaWAN-related terms.

3.  Static Context Header Compression Overview

   This section contains a short overview of Static Context Header
   Compression (SCHC).  For a detailed description, refer to the full
   specification [I-D.ietf-lpwan-ipv6-static-context-hc].

   Static Context Header Compression (SCHC) avoids context
   synchronization, which is the most bandwidth-consuming operation in
   other header compression mechanisms such as RoHC [RFC5795].  Based on
   the fact that the nature of data flows is highly predictable in LPWAN
   networks, some static contexts may be stored on the Device (Dev).
   The contexts must be stored in both ends, and it can either be
   learned by a provisioning protocol or by out of band means or it can
   be pre-provisioned, etc.  The way the context is learned on both
   sides is out of the scope of this document.

Sornin, et al.           Expires January 3, 2019                [Page 3]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

        Dev                                                 App
   +--------------+                                  +--------------+
   |APP1 APP2 APP3|                                  |APP1 APP2 APP3|
   |              |                                  |              |
   |      UDP     |                                  |     UDP      |
   |     IPv6     |                                  |    IPv6      |
   |              |                                  |              |
   |   SCHC C/D   |                                  |              |
   |   (context)  |                                  |              |
   +-------+------+                                  +-------+------+
            |   +--+     +----+     +---------+              .
            +˜˜ |RG| === |NGW | === |SCHC C/D |... Internet ..
                +--+     +----+     |(context)|
                                    +---------+

                          Figure 1: Architecture

   Figure 1 represents the architecture for compression/decompression,
   it is based on [I-D.ietf-lpwan-overview] terminology.  The Device is
   sending applications flows using IPv6 or IPv6/UDP protocols.  These
   flows are compressed by an Static Context Header Compression
   Compressor/Decompressor (SCHC C/D) to reduce headers size.  Resulting
   information is sent on a layer two (L2) frame to a LPWAN Radio
   Network (RG) which forwards the frame to a Network Gateway (NGW).
   The NGW sends the data to a SCHC C/D for decompression which shares
   the same rules with the Dev. The SCHC C/D can be located on the
   Network Gateway (NGW) or in another place as long as a tunnel is
   established between the NGW and the SCHC C/D.  The SCHC C/D in both
   sides must share the same set of Rules.  After decompression, the
   packet can be sent on the Internet to one or several LPWAN
   Application Servers (App).

   The SCHC C/D process is bidirectional, so the same principles can be
   applied in the other direction.

   In a LoRaWAN network, the RG is called a Gateway, the NGW is Network
   Server, and the SCHC C/D can be embedded in different places, for
   example in the Network Server and/or the Application Server.

   Next steps for this section: detailed overview of the LoRaWAN
   architecture and its mapping to the SCHC architecture.

4.  LoRaWAN Architecture

   An overview of LoRaWAN [lora-alliance-spec] protocol and architecture
   is described in [I-D.ietf-lpwan-overview].  Mapping between the LPWAN
   architecture entities as described in

Sornin, et al.           Expires January 3, 2019                [Page 4]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

   [I-D.ietf-lpwan-ipv6-static-context-hc] and the ones in
   [lora-alliance-spec] is as follows:

   o Devices (Dev) are the end-devices or hosts (e.g. sensors,
   actuators, etc.).  There can be a very high density of devices per
   radio gateway.  This entity maps to the LoRaWAN End-device.

   o The Radio Gateway (RGW), which is the end point of the constrained
   link.  This entity maps to the LoRaWAN Gateway.

   o The Network Gateway (NGW) is the interconnection node between the
   Radio Gateway and the Internet.  This entity maps to the LoRaWAN
   Network Server.

   o LPWAN-AAA Server, which controls the user authentication and the
   applications.  This entity maps to the LoRaWAN Join Server.

   o Application Server (App).  The same terminology is used in LoRaWAN.

   ()   ()   ()       |                      +------+
    ()  () () ()     / \       +---------+   | Join |
   () () () () ()   /   \======|    ^    |===|Server|  +-----------+
    () ()  ()      |           | <--|--> |   +------+  |Application|
   () ()  ()  ()  / \==========|    v    |=============|  Server   |
    ()  ()  ()   /   \         +---------+             +-----------+
   End-Devices  Gateways     Network Server

                      Figure 1: LPWAN/LoRaWAN Architecture

   SCHC C/D (Compressor/Decompressor) and SCHC Fragmentation are
   performed on the LoRaWAN End-device and the Application Server.
   While the point-to-point link between the End-device and the
   Application Server constitutes single IP hop, the ultimate end-point
   of the IP communication may be an Internet node beyond the
   Application Server.  In other words, the LoRaWAN Application Server
   acts as the first hop IP router for the End-device.  Note that the
   Application Server and Network Server may be co-located, which
   effectively turns the Network/Application Server into the first hop
   IP router.

4.1.  Device classes (A, B, C) and interactions

   TBD

Sornin, et al.           Expires January 3, 2019                [Page 5]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

4.2.  Device addressing

   TBD

4.3.  General Message Types

   TBD

4.4.  LoRaWAN MAC Frames

   TBD

5.  SCHC over LoRaWAN

5.1.  Rule ID management

   Rule ID can be stored and transported in the FPort field of the
   LoRaWAN MAC frame or as the first bytes of the payload.

   TBD

5.2.  IID computation

   TBD

5.3.  Fragmentation

   TBD

5.3.1.  Reliability options

5.3.1.1.  Uplinks: From device to gateway

   In that case the device is the fragmentation transmitter, and the
   SCHC gateway the fragmentation receiver.

   o  SCHC fragmentation reliability mode : "ACK_ALWAYS"

   o  Window size: 8, the FCN field is encoded on 3 bits

   o  DTag : 1bit. this field is used to clearly separate two
      consecutive fragmentation sessions.  A LoRaWAN device cannot
      interleave several fragmented SCHC datagrams.

   o  MIC calculation algorithm: CRC32 using 0xEDB88320 (i.e. the
      reverse representation of the polynomial used e.g. in the Ethernet
      standard [RFC3385])

Sornin, et al.           Expires January 3, 2019                [Page 6]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

   o  Retransmission Timer and inactivity Timer: LoRaWAN devices do not
      implement a "retransmission timer".  At the end of a window the
      ACK corresponding to this window is transmitted by the network
      gateway in the RX1 or RX2 receive slot of the device.  If this ACK
      is not received the device sends an all-0 (or an all-1) fragment
      with no payload to request an ACK retransmission.  The periodicity
      between retransmission of the all-0/all-1 fragments is device/
      application specific and may be different for each device (not
      specified).  The gateway implements an "inactivity timer".  The
      default recommended duration of this timer is 12h.  This value is
      mainly driven by application requirements and may be changed.

   | RuleID | DTag  | W     | FCN    | Payload |
   + ------ + ----- + ----- | ------ + ------- +
   | 3 bits | 1 bit | 1 bit | 3 bits |         |

    Figure 2: All fragment except the last one.  Header size is 8 bits.

   | RuleID | DTag  | W     | FCN    | MIC     | Payload |
   + ------ + ----- + ----- | ------ + ------- + ------- +
   | 3 bits | 1 bit | 1 bit | 3 bits | 32 bits |         |

      Figure 3: All-1 fragment detailed format for the last fragment.
                          Header size is 8 bits.

   The format of an all-0 or all-1 acknowledge is:

   | RuleID | DTag  | W     | Encoded bitmap | Padding (0s) |
   + ------ + ----- + ----- | -------------- + ------------ +
   | 3 bits | 1 bit | 1 bit | up to 8 bits   | 0 to 3 bits  |

   Figure 4: ACK format for All-0 windows.  Header size is 1 or 2 bytes.

| RuleID | DTag  | W     | C     | Encoded bitmap (if C = 0) | Padding (0s) |
+ ------ + ----- + ----- + ----- + ------------------------- + ------------ +
| 3 bits | 1 bit | 1 bit | 1 bit | up to 8 bits              | 0 to 2 bits  |

   Figure 5: ACK format for All-1 windows.  Header size is 1 or 2 bytes.

Sornin, et al.           Expires January 3, 2019                [Page 7]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

5.3.1.2.  Downlinks: From gateway to device

   In that case the device is the fragmentation receiver, and the SCHC
   gateway the fragmentation transmitter.  The following fields are
   common to all devices.

   o  SCHC fragmentation reliability mode : ACK_ALWAYS

   o  Window size : 1 , The FCN field is encoded on 1 bits

   o  DTag : 1bit.  This field is used to clearly separate two
      consecutive fragmentation sessions.  A LoRaWAN device cannot
      interleave several fragmented SCHC datagrams.

   o  MIC calculation algorithm: CRC32 using 0xEDB88320 (i.e. the
      reverse representation of the polynomial used e.g. in the Ethernet
      standard [RFC3385])

   o  MAX_ACK_REQUESTS : 8

   | RuleID | DTag  | W     | FCN    | Payload | Padding |
   + ------ + ----- + ----- | ------ + ------- + ------- +
   | 3 bits | 1 bit | 1 bit | 1 bits | X bytes | 2 bits  |

     Figure 6: All fragments but the last one.  Header size is 6 bits.

   | RuleID | DTag  | W     | FCN    | MIC     | Payload | Padding |
   + ------ + ----- + ----- | ------ + ------- + ------- + ------- +
   | 3 bits | 1 bit | 1 bit | 1 bits | 32 bits | X bytes | 2 bits  |

      Figure 7: All-1 Fragment Detailed Format for the Last Fragment.
                          Header size is 6 bits.

   The format of an all-0 or all-1 acknowledge is:

   | RuleID | DTag  | W     | Encoded bitmap | Padding (0s) |
   + ------ + ----- + ----- | -------------- + ------------ +
   | 3 bits | 1 bit | 1 bit | 1 bit          | 2 bits       |

      Figure 8: ACK format for All-0 windows.  Header size is 8 bits.

Sornin, et al.           Expires January 3, 2019                [Page 8]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

   | RuleID | DTag  | W     | C = 1 | Padding (0s) |
   + ------ + ----- + ----- + ----- + ------------ +
   | 3 bits | 1 bit | 1 bit | 1 bit | 2 bits       |

   Figure 9: ACK format for All-1 windows, MIC is correct.  Header size
                                is 8 bits.

   | RuleID | DTag  | W     | b’111  | 0xFF (all 1’s) |
   + ------ + ----- + ----- + ------ + -------------- +
   | 3 bits | 1 bit | 1 bit | 3 bits | 8 bits         |

     Figure 10: Receiver ABORT packet (following an all-1 packet with
                 incorrect MIC).  Header size is 16 bits.

   Class A and classB&C device do not manage retransmissions and timers
   in the same way.

5.3.1.2.1.  Class A devices

   Class A devices can only receive in an RX slot following the
   transmission of an uplink.  Therefore there cannot be a concept of
   "retransmission timer" for a gateway talking to classA devices for
   downlink fragmentation.

   The device replies with an ACK fragment to every single fragment
   received from the gateway (because the window size is 1).  Following
   the reception of a FCN=0 fragment (fragment that is not the last
   fragment of the packet or ACK-request), the device MUST transmit the
   ACK fragment until it receives the fragment of the next window.  The
   device shall transmit up to MAX_ACK_REQUESTS ACK fragments before
   aborting.  The device should transmit those ACK as soon as possible
   while taking into consideration eventual local radio regulation on
   duty-cycle, to progress the fragmentation session as quickly as
   possible.  The ACK bitmap is 1 bit long and is always 1.

   Following the reception of a FCN=1 fragment (the last fragment of a
   datagram) and if the MIC is correct, the device shall transmit the
   ACK with the "MIC is correct" indicator bit set.  This message might
   be lost therefore the gateway may request a retransmission of this
   ACK in the next downlink.  The device SHALL keep this ACK message in
   memory until it receives a downlink from the gateway different from
   an ACK-request indicating that the gateway has received the ACK
   message.

Sornin, et al.           Expires January 3, 2019                [Page 9]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

   Following the reception of a FCN=1 fragment (the last fragment of a
   datagram) and if the MIC is NOT correct, the device shall transmit a
   receiver-ABORT fragment.  The device SHALL keep this ABORT message in
   memory until it receives a downlink from the gateway different from
   an ACK-request indicating that the gateway has received the ABORT
   message.  The fragmentation receiver (device) does not implement
   retransmission timer and inactivity timer.

   The fragmentation sender (the gateway) implements an inactivity timer
   with default duration 12 hours.  Once a fragmentation session is
   started, if the gateway has not received any ACK or receiver-ABORT
   message 12 hours fater the last message from the device was received,
   the gateway may flush the fragmentation context.  For devices with
   very low transmission rates (example 1 packet a day in normal
   operation) , that duration may be extended, but this is application
   specific.

5.3.1.3.  Class B or C devices

   Class B&C devices can receive in scheduled RX slots or in RX slots
   following the transmission of an uplink.  The device replies with an
   ACK fragment to every single fragment received from the gateway
   (because the window size is 1).  Following the reception of a FCN=0
   fragment (fragment that is not the last fragment of the packet or
   ACK-request), the device MUST always transmit the corresponding ACK
   fragment even if that fragment has already been received.  The ACK
   bitmap is 1 bit long and is always 1.  If the gateway receives this
   ACK, it proceeds to send the next window fragment If the
   retransmission timer elapses and the gateway has not received the ACK
   of the current window it retransmits the last fragment.  The gateway
   tries retransmitting up to MAX_ACK_REQUESTS times before aborting.

   Following the reception of a FCN=1 fragment (the last fragment of a
   datagram) and if the MIC is correct, the device shall transmit the
   ACK with the "MIC is correct" indicator bit set.  If the gateway
   receives this ACK, the current fragmentation session has succeeded
   and its context can be cleared.

   If the retransmission timer elapses and the gateway has not received
   the all-1 ACK it retransmits the last fragment with the payload (not
   an ACK-request without payload).  The gateway tries retransmitting up
   to MAX_ACK_REQUESTS times before aborting.

   The device SHALL keep the all-1 ACK message in memory until it
   receives a downlink from the gateway different from the last (FCN=1)
   fragment indicating that the gateway has received the ACK message.
   Following the reception of a FCN=1 fragment (the last fragment of a
   datagram) and if the MIC is NOT correct, the device shall transmit a

Sornin, et al.           Expires January 3, 2019               [Page 10]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

   receiver-ABORT fragment.  The retransmission timer is used by the
   gateway (the sender), the optimal value is very much application
   specific but here are some recommended default values.  For classB
   devices, this timer trigger is a function of the periodicity of the
   classB ping slots.  The recommended value is equal to 3 times the
   classB ping slot periodicity. (modify 128sec) For classC devices
   which are nearly constantly receiving, the recommended value is 30
   seconds.  This means that the device shall try to transmit the ACK
   within 30 seconds of the reception of each fragment.  The inactivity
   timer is implemented by the device to flush the context in-case it
   receives nothing from the gateway over an extended period of time.
   The recommended value is 12 hours for both classB&C devices.

5.3.2.  Supporting multiple window sizes

   TBD

5.3.3.  Downlink fragment transmission

   TBD

5.3.4.  SCHC behavior for devices in class A, B and C

   TBD

6.  Security considerations

   TBD

7.  Acknowledgements

   TBD

8.  References

8.1.  Normative References

   [RFC3385]  Sheinwald, D., Satran, J., Thaler, P., and V. Cavanna,
              "Internet Protocol Small Computer System Interface (iSCSI)
              Cyclic Redundancy Check (CRC)/Checksum Considerations",
              RFC 3385, DOI 10.17487/RFC3385, September 2002,
              <https://www.rfc-editor.org/info/rfc3385>.

   [RFC4944]  Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
              "Transmission of IPv6 Packets over IEEE 802.15.4
              Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
              <https://www.rfc-editor.org/info/rfc4944>.

Sornin, et al.           Expires January 3, 2019               [Page 11]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

   [RFC5795]  Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
              Header Compression (ROHC) Framework", RFC 5795,
              DOI 10.17487/RFC5795, March 2010,
              <https://www.rfc-editor.org/info/rfc5795>.

   [RFC7136]  Carpenter, B. and S. Jiang, "Significance of IPv6
              Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136,
              February 2014, <https://www.rfc-editor.org/info/rfc7136>.

8.2.  Informative References

   [I-D.ietf-lpwan-ipv6-static-context-hc]
              Minaburo, A., Toutain, L., Gomez, C., and D. Barthel,
              "LPWAN Static Context Header Compression (SCHC) and
              fragmentation for IPv6 and UDP", draft-ietf-lpwan-ipv6-
              static-context-hc-16 (work in progress), June 2018.

   [I-D.ietf-lpwan-overview]
              Farrell, S., "LPWAN Overview", draft-ietf-lpwan-
              overview-10 (work in progress), February 2018.

   [lora-alliance-spec]
              Alliance, L., "LoRaWAN Specification Version V1.0.2",
              <http://portal.lora-
              alliance.org/DesktopModules/Inventures_Document/
              FileDownload.aspx?ContentID=1398>.

Appendix A.  Examples

Appendix B.  Note

Authors’ Addresses

   Nicolas Sornin (editor)
   Semtech
   14 Chemin des Clos
   Meylan
   France

   Email: nsornin@semtech.com

Sornin, et al.           Expires January 3, 2019               [Page 12]



Internet-Draft              SCHC-over-LoRaWAN                  July 2018

   Michael Coracin
   Semtech
   14 Chemin des Clos
   Meylan
   France

   Email: mcoracin@semtech.com

   Ivaylo Petrov
   Acklio
   2bis rue de la Chataigneraie
   35510 Cesson-Sevigne Cedex
   France

   Email: ivaylo@ackl.io

   Alper Yegin
   Actility
   .
   Paris, Paris
   France

   Email: alper.yegin@actility.com

   Julien Catalano
   Kerlink
   1 rue Jacqueline Auriol
   35235 Thorigne-Fouillard
   France

   Email: j.catalano@kerlink.fr

   Vincent AUDEBERT
   EDF R&D
   7 bd Gaspard Monge
   91120 PALAISEAU
   FRANCE

   Email: vincent.audebert@edf.fr

Sornin, et al.           Expires January 3, 2019               [Page 13]



Network Working Group                                        A. Minaburo
Internet-Draft                                                    Acklio
Intended status: Informational                                L. Toutain
Expires: April 29, 2018                Institut Mines Telecom Atlantique
                                                        October 26, 2017

                         CoAP Time Scale Option
                    draft-toutain-core-time-scale-00

Abstract

   SCHC compression mechanism for LPWAN network enables IPv6 on devices
   connected to a constrained network (LPWAN).  They can communicate
   with a CoAP server located anywhere in the Internet.  LPWAN network
   characteristics limits the number of exchanges and may impose a long
   RTT.  The CoAP server must be aware of these properties to manage
   correctly requests.  The Time Scale option allows a device to inform
   a CoAP server of the duration the message ID value should be kept in
   memory to manage correctly message duplication.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 29, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect

Minaburo & Toutain       Expires April 29, 2018                 [Page 1]



Internet-Draft           CoAP Time Scale Option             October 2017

   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

1.  CoAP Message ID

   Constraint Application Protocol (CoAP) [RFC7252] implements a simple
   reliable transport mechanism based on ARQ.  Each CoAP message
   contains a 16 bit Message ID (noted afterward MID).  A client selects
   a MID in a CON message and expects an ACK message containing the same
   MID value.  A timer makes the client resend the request if no ACK is
   received during a pre-defined period.

   To avoid a second process of duplicated requests by the server, a
   list of messages ID already acknowledged must be maintained for a
   period of time.  If the message ID is already in the list, the
   message is just acknowledged and not processed by upper layer.
   Therefore, the client cannot use this MID value in another request
   during the same period of time.

               client                              server
                 |           CON MID = XXXX          |
                 |---------------------------------->|=> process
    EXCHANGE   ^ |           ACK MID = XXXX          |  ^
    LIFETIME   | |                  <----------------|  | EXCHANGE
               | |                                   |  | LIFETIME
     XXXX      | |           CON MID = XXXX          |  |
     cannot    | |---------------------------------->|  | XXXX in
     be reused | |           ACK MID = XXXX          |  | memory
               | |<----------------------------------|  |
               | |                                   |  |
               v |                                   |  v
    XXXX can be  .                                   .
    reused       .                                   .
                 .                                   .
                 |           CON MID = XXXX          |
                 |---------------------------------->|=> process
               ^ |           ACK MID = XXXX          |  ^
               | |<----------------------------------|  |
                 .                                   .

                      Figure 1: Delayed transmission.

   [RFC7252] calls the period a MID is assigned to a request the
   EXCHANGE_LIFETIME.  The value is based on the worst case scenario

Minaburo & Toutain       Expires April 29, 2018                 [Page 2]



Internet-Draft           CoAP Time Scale Option             October 2017

   taking into account the propagation time, the number of
   retransmissions and the processing time.  The default value for
   EXCHANGE_LIFETIME is set to 247 seconds for MAX_RTT of 202 seconds.

2.  LPWAN networks

   Low Power Wide Area Network (LPWAN) family regroups networks
   dedicated to the Internet of Things.  They provide a large coverage
   with a limited energy consumption.  They mostly use the license-free
   ISM band.  The [I-D.ietf-lpwan-overview] gives an overview of the
   technology and the star oriented topology architecture.  A Network
   Gateway (NGW) is at the interconnection between the LPWAN and the
   Internet network.

   To ensure fairness among nodes, regulation imposes a duty cycle.  In
   practice, with a 1% duty cycle, a node sending a message of s seconds
   must wait 99 x s seconds before sending another message.  For
   instance, in some technologies sending a 50 bytes message takes 2
   seconds, forcing a silence of 198 seconds.

   The device sleeps most of the time to preserve energy.  If a device
   can use the uplink channel at any time, downlink channel is generally
   available during a short receiving window following the message
   emission.  Therefore a message sent to a device out of this receiving
   window will be lost.  Network Gateways are aware of this restriction
   and buffers downlink messages until an uplink message is received
   which opens the receiving window.

   Figure 2 illustrates this.  A CoAP client sends a request every hour.
   Even if the server replies immediately, the answer may be buffered by
   the Network GW until an new uplink message is sent.  In that case,
   the client will only receive the answer after one hour when the next
   request is sent.  The RTT is influenced by the message periodicity
   and the EXCHANGE_LIFTEIME value can be computed locally by client to
   dimension its timers.

Minaburo & Toutain       Expires April 29, 2018                 [Page 3]



Internet-Draft           CoAP Time Scale Option             October 2017

        client on LPWAN         NGW               server
               |                 |                 |
           ^   |---------------------------------->| CON MID = 1
           |   |                 |                 |
    1 hour |   |         delayed H<----------------| ACK MID = 1
           |   |                 H                 |
           |   |                 H                 |
           |   |                 H                 |
           v   |---------------------------------->| CON MID = 2
   ACK MID = 1 |<----------------|                 |
               |                 |                 |
               v                 v                 v

                      Figure 2: Delayed transmission.

   The server should remain as generic as possible and EXCHANGE_LIFETIME
   parameter has to be adapted to the client behavior.  If the period is
   too large, the server will have to memorize a longer list of MID for
   fast responding client.  On the other hand, if the EXCHANGE_LIFETIME
   is too short, this leads to misbehaviors as shown in Figure 3, a
   retransmission will be viewed as a new request.

        client on LPWAN         NGW               server
               |   CON MID = 1   |                 |
    Timer  -   |---------------------------------->| => process
           |   |         delayed H<----------------| ^
           |   |                 H   ACK MID = 1   | | EXCHANGE
           |   |                 H                 | v LIFETIME
           |   |   CON MID = 2   H                 |
           |   |---------------------------------->|
           |   |       X---------|                 |
           |   |                 |                 |
           |   |   CON MID = 1   |                 |
   Expire  O   |---------------------------------->| => process
               |                 |<----------------|
               .                 .   ACK MID = 1   .
               .                 .                 .

                         Figure 3: Retransmission.

   The Time Scale option, added into all the CoAP requests, informs the
   server of the duration a message ID should be memorized into the
   server and therefore the duration during which a client should not
   reuse the same message ID for a new request.  This way, the server
   can adapt its behavior to different environments.

Minaburo & Toutain       Expires April 29, 2018                 [Page 4]



Internet-Draft           CoAP Time Scale Option             October 2017

   It is important to notice that this option will not contribute to an
   DoS attack.  This option does not increase the number of message ID
   memorized by the server.  In fact, the Time Scale option can be
   viewed as a contract between the client and the server, which means
   that the client will send a reasonable number of request during that
   period.  The number of memorized message ID is independent of the
   duration of the exchange but linked to the number a simultaneous
   request a client can send.  If a client is sending a number of
   request larger than expected, they can be easily discarded by the
   server.

3.  Timescale Option

   Timescale is a new CoAP option that tells the server how many seconds
   the MID should be memorized by the server.  This option must be
   included in all the exchanges coming from a high latency device.

    +--------+---+---+---+---+-------------+--------+--------+---------+
    | Number | C | U | N | R |   Name      | Format | Length | Default |
    +--------+---+---+---+---+-------------+--------+--------+---------+
    |   259  | X |   |   |   | Time Scale  |  uint  |  1-4   |   3600  |
    +--------+---+---+---+---+-------------+--------+--------+---------+

                       Figure 4: Time Scale Option.

   This option is critical, if a server does not recognize it, it must
   inform the client that EXCHANGE_LIFETIME cannot be modified.  The
   option is Safe-to-forward so a proxy does not have to understand this
   option, since only the server is concerned with the MID management.
   The value (in seconds) contains the new EXCHANGE_LIFETIME set by the
   server for this request.  If the value is smaller than the default
   value, this option is discarded and the client receives an error
   message.

4.  Normative References

   [I-D.ietf-lpwan-overview]
              Farrell, S., "LPWAN Overview", draft-ietf-lpwan-
              overview-07 (work in progress), October 2017.

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.

Minaburo & Toutain       Expires April 29, 2018                 [Page 5]



Internet-Draft           CoAP Time Scale Option             October 2017

Authors’ Addresses

   Ana Minaburo
   Acklio
   2bis rue de la Chataigneraie
   35510 Cesson-Sevigne Cedex
   France

   Email: ana@ackl.io

   Laurent Toutain
   Institut Mines Telecom Atlantique
   2 rue de la Chataigneraie
   CS 17607
   35576 Cesson-Sevigne Cedex
   France

   Email: Laurent.Toutain@imt-atlantique.fr

Minaburo & Toutain       Expires April 29, 2018                 [Page 6]



lpwan Working Group                                           JC. Zuniga
Internet-Draft                                                    SIGFOX
Intended status: Informational                                  C. Gomez
Expires: January 3, 2019            Universitat Politecnica de Catalunya
                                                              L. Toutain
                                                          IMT-Atlantique
                                                           July 02, 2018

                         SCHC over Sigfox LPWAN
                 draft-zuniga-lpwan-schc-over-sigfox-03

Abstract

   The Static Context Header Compression (SCHC) specification describes
   a header compression scheme and fragmentation functionality for Low
   Power Wide Area Network (LPWAN) technologies.  SCHC offers a great
   level of flexibility that can be tailored for different LPWAN
   technologies.

   The present document provides the optimal parameters and modes of
   operation when SCHC is implemented over a Sigfox LPWAN.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 3, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of

Zuniga, et al.           Expires January 3, 2019                [Page 1]



Internet-Draft           SCHC over Sigfox LPWAN                July 2018

   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Static Context Header Compression . . . . . . . . . . . . . .   3
   4.  SCHC over Sigfox  . . . . . . . . . . . . . . . . . . . . . .   4
     4.1.  SCHC Rules  . . . . . . . . . . . . . . . . . . . . . . .   4
     4.2.  Packet processing . . . . . . . . . . . . . . . . . . . .   4
   5.  Fragmentation . . . . . . . . . . . . . . . . . . . . . . . .   4
     5.1.  Fragmentation headers . . . . . . . . . . . . . . . . . .   5
     5.2.  Uplink fragment transmissions . . . . . . . . . . . . . .   5
       5.2.1.  Uplink No-ACK mode  . . . . . . . . . . . . . . . . .   5
       5.2.2.  Uplink ACK-Always mode  . . . . . . . . . . . . . . .   6
       5.2.3.  Uplink ACK-on-Error mode  . . . . . . . . . . . . . .   6
     5.3.  Downlink fragment transmissions . . . . . . . . . . . . .   6
   6.  Padding . . . . . . . . . . . . . . . . . . . . . . . . . . .   7
   7.  Security considerations . . . . . . . . . . . . . . . . . . .   8
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   8
   9.  Informative References  . . . . . . . . . . . . . . . . . . .   8
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

   The Static Context Header Compression (SCHC) specification
   [I-D.ietf-lpwan-ipv6-static-context-hc] defines a header compression
   scheme and fragmentation functionality that can be used on top of all
   the LWPAN systems defined in [I-D.ietf-lpwan-overview].  These LPWAN
   systems have similar characteristics such as star-oriented
   topologies, network architecture, connected devices with built-in
   applications, etc.

   SCHC offers a great level of flexibility to accommodate all these
   LPWAN systems.  Even though there are a great number of similarities
   between LPWAN technologies, some differences exist with respect to
   the transmission characteristics, payload sizes, etc.  Hence, there
   are optimal parameters and modes of operation that can be used when
   SCHC is used on top of a specific LPWAN.

   This document describes the optimal parameters and modes of operation
   when SCHC is implemented over a Sigfox LPWAN.

Zuniga, et al.           Expires January 3, 2019                [Page 2]



Internet-Draft           SCHC over Sigfox LPWAN                July 2018

2.  Terminology

   The reader is assumed to be familiar with the terms and mechanisms
   defined in [I-D.ietf-lpwan-overview] and in
   [I-D.ietf-lpwan-ipv6-static-context-hc].

3.  Static Context Header Compression

   Static Context Header Compression (SCHC) avoids context
   synchronization because data flows are highly predictable in LPWAN
   networks.  Contexts must be stored and configured on both ends.  This
   can be done either by using a provisioning protocol, by out of band
   means, or by pre-provisioning them e.g. at manufacturing time.  The
   way the contexts are configured and stored on both ends is out of the
   scope of this document.

        Dev                                                 App
   +--------------+                                  +--------------+
   |APP1 APP2 APP3|                                  |APP1 APP2 APP3|
   |              |                                  |              |
   |      UDP     |                                  |     UDP      |
   |     IPv6     |                                  |    IPv6      |
   |              |                                  |              |
   |   SCHC C/D   |                                  |              |
   |   (context)  |                                  |              |
   +-------+------+                                  +-------+------+
            |   +--+     +----+     +---------+              .
            +˜˜ |RG| === |NGW | === |SCHC C/D |... Internet ..
                +--+     +----+     |(context)|
                                    +---------+

                          Figure 1: Architecture

   Figure 1 represents the architecture for compression/decompression
   and fragmentation, which is based on [I-D.ietf-lpwan-overview]
   terminology.

   The Device is sending applications flows that are compressed (and/or
   fragmented) by a Static Context Header Compression Compressor/
   Decompressor (SCHC C/D) to reduce headers size and/or fragment the
   packet.  The resulting information is sent over a layer two (L2)
   frame to a LPWAN Radio Gateway (RG) which forwards the frame to a
   Network Gateway (NGW).

Zuniga, et al.           Expires January 3, 2019                [Page 3]



Internet-Draft           SCHC over Sigfox LPWAN                July 2018

4.  SCHC over Sigfox

   In the case of the global Sigfox network, RGs (or base stations) are
   distributed over the multiple countries where the Sigfox LPWAN
   service is provided.  On the other hand, the NGW (or Cloud-based Core
   network) is a single entity that connects to all Sigfox base stations
   in the world.

   Uplink transmissions occur in repetitions over different times and
   frequencies.  Besides these time and frequency diversities, the
   Sigfox network also provides space diversity, as potentially an
   uplink message will be received by several base stations.  Since all
   messages are self-contained and base stations forward them all back
   to the same Core network (NGW), multiple input copies can be combined
   at the NGW and hence provide for extra reliability based on the
   triple diversity.

   The NGW communicates with the Network SCHC C/D for compression/
   decompression (and/or fragmentation/reassembly).  The Network SCHC C/
   D shares the same set of rules as the Dev SCHC C/D.  The Network SCHC
   C/D can be collocated with the NGW or in another place, as long as a
   tunnel is established between the NGW and the SCHC C/D.  After
   decompression (and/or reassembly), the packet can be forwarded over
   the Internet to one (or several) LPWAN Application Server(s) (App).

   The SCHC C/D process is bidirectional, so the same principles can be
   applied on both uplink and downlink.

4.1.  SCHC Rules

   The RuleID MUST be sent at the beginning of the SCHC header.  The
   total number of rules to be used affects directly the Rule ID field
   size, and therefore the total size of the fragmentation header.  For
   this reason, it is recommended to keep the number of rules that are
   defined for a specific device to the minimum possible.

4.2.  Packet processing

   TBD

5.  Fragmentation

   The SCHC specification [I-D.ietf-lpwan-ipv6-static-context-hc]
   defines a generic fragmentation functionality that allows sending
   data packets larger than the maximum size of a Sigfox data frame.
   The functionality also defines a mechanism to send reliably multiple
   frames, by allowing to resend selectively any lost frames.

Zuniga, et al.           Expires January 3, 2019                [Page 4]



Internet-Draft           SCHC over Sigfox LPWAN                July 2018

   The SCHC fragmentation supports several modes of operation.  These
   modes have different advantages and disadvantages depending on the
   specifics of the underlying LPWAN technology and Use Case.  This
   section describes how the SCHC fragmentation functionality should
   optimally be implemented when used over a Sigfox LPWAN for the most
   typical use case applications.

5.1.  Fragmentation headers

   A list of fragmentation header fields, their sizes as well as
   recommended modes for SCHC fragmentation over Sigfox are provided in
   this section.

5.2.  Uplink fragment transmissions

   Uplink transmissions are completely asynchronous and can take place
   in any random frequency of the allowed uplink bandwidth allocation.
   Hence, devices can go to deep sleep mode, and then wake up and
   transmit whenever there is a need to send any information to the
   network.  In that way, there is no need to perform any network
   attachment, synchronization, or other procedure before transmitting a
   data packet.  All data packets are self contained with all the
   required information for the network to process them accordingly.

   Since uplink transmissions occur asynchronously, an SCHC fragment can
   be transmitted at any given time by the Dev.

5.2.1.  Uplink No-ACK mode

   No-ACK is RECOMMENDED to be used for transmitting short, non-critical
   packets that require fragmentation.

   Fragmentation Header size: 8 bits

   The recommended Rule ID size is: 3 bits

   The recommended DTag size (T) is: 0 bits, as the number of available
   Rule IDs are sufficient to interleave fragmented packets.

   Fragment Compressed Number (FCN) size (N): 4 bits

   As per [REF SCHC], in the No-ACK mode the W (window) 1-bit field is
   not present.

   When fragmentation is used to transport IP frames, the Message
   Integrity Check (MIC) size, M: TBD bits

   The algorithm for computing the MIC field MUST be TBD.

Zuniga, et al.           Expires January 3, 2019                [Page 5]



Internet-Draft           SCHC over Sigfox LPWAN                July 2018

5.2.2.  Uplink ACK-Always mode

   TBD

5.2.3.  Uplink ACK-on-Error mode

   ACK-on-Error is RECOMMENDED for larger packets, since it leads to a
   reduced number of ACKs to be sent in the lower capacity downlink
   channel.

   The recommended Fragmentation Header size is: 8 bits

   The recommended Rule ID size is: 3 bits.

   The recommended DTag size (T) is: 0 bits, as the number of available
   Rule IDs are sufficient to interleave fragmented packets.

   Fragment Compressed Number (FCN) size (N): 4 bits.

   As per [REF SCHC], in the ACK-on-Error mode the Window (W) 1-bit
   field must be present.

   For the ACK-on-Error fragmentation mode(s), a single window size is
   RECOMMENDED.

   The value of MAX_ACK_REQUESTS SHOULD be 2, and the value of
   MAX_WIND_FCN SHOULD be 14 (which allows a maximum window size with 15
   fragments).

   When fragmentation is used to transport IP frames, the Message
   Integrity Check (MIC) size, M: TBD bits

   The algorithm for computing the MIC field MUST be TBD.

5.3.  Downlink fragment transmissions

   In some LPWAN technologies, as part of energy-saving techniques,
   downlink transmission is only possible immediately after an uplink
   transmission.  This allows the device to go in a very deep sleep mode
   and preserve battery, without the need to listen to any information
   from the network.  This is the case for Sigfox-enabled devices, which
   can only listen to downlink communications after performing an uplink
   transmission.

   When there are multiple fragments to be transmitted in the downlink,
   an uplink message is required to trigger the downlink communication.
   In order to avoid potentially high delay for fragmented datagram
   transmission in the downlink, the fragment receiver MAY perform an

Zuniga, et al.           Expires January 3, 2019                [Page 6]



Internet-Draft           SCHC over Sigfox LPWAN                July 2018

   uplink transmission as soon as possible after reception of a fragment
   that is not the last one.  Such uplink transmission MAY be triggered
   by sending a SCHC message, such as an ACK.  In this sense, ACK-Always
   is the preferred fragmentation mode for downlink communications.

   For downlink fragment transmission, the ACK-Always mode MUST be
   supported.

   The recommended Fragmentation Header size is: 8 bits

   The recommended Rule ID size is: 3 bits.

   The recommended DTag size (T) is: 0 bits, as the number of available
   Rule IDs are sufficient to interleave fragmented packets.

   Fragment Compressed Number (FCN) size (N): 4 bits.

   As per [REF SCHC], in the ACK-on-Error mode the Window (W) 1-bit
   field must be present.

   For the ACK-Always fragmentation mode(s), a single window size is
   RECOMMENDED.

   The value of MAX_ACK_REQUESTS SHOULD be 2, and the value of
   MAX_WIND_FCN SHOULD be 14 (which allows a maximum window size with 15
   fragments).

   When fragmentation is used to transport IP frames, the Message
   Integrity Check (MIC) size, M: TBD bits

   The algorithm for computing the MIC field MUST be TBD.

   Sigfox downlink frames have a fixed length of 8 bytes, which means
   that default SCHC algorithm for padding cannot be used.  Therefore,
   the 3 last bits of the fragmentation header are used to indicate in
   bytes the size of the padding.  A size of 000 means that the full
   ramaining frame is used to carry payload, a value of 001 indicates
   that the last byte contains padding, and so on.

6.  Padding

   The Sigfox payload fields have different characteristics in uplink
   and downlink.

   Uplink frames can contain a payload from 0 to 96 bits (i.e. 12
   bytes).  The radio protocol allows sending zero bits or one single
   bit of information for binary applications (e.g. status).  However,
   for 2 or more bits of payload it is required to add padding to the

Zuniga, et al.           Expires January 3, 2019                [Page 7]



Internet-Draft           SCHC over Sigfox LPWAN                July 2018

   next integer number of bytes.  The reason for this flexibility is to
   optimize transmission time and hence save battery consumption at the
   device.

   Downlink frames on the other hand have a fixed length.  The payload
   length must be 64 bits (i.e. 8 bytes).  Hence, if less information
   bits are to be transmitted padding would be necessary and it should
   be performed as described in the previous section.

7.  Security considerations

   The radio protocol authenticates and ensures the integrity of each
   message.  This is achieved by using a unique device ID and an AES-128
   based message authentication code, ensuring that the message has been
   generated and sent by the device with the ID claimed in the message.

   Application data can be encrypted at the application level or not,
   depending on the criticality of the use case, to provide a balance
   between cost and effort vs. risk.  AES-128 in counter mode is used
   for encryption.  Cryptographic keys are independent for each device.
   These keys are associated with the device ID and separate integrity
   and confidentiality keys are pre-provisioned.  A confidentiality key
   is only provisioned if confidentiality is to be used.

   The radio protocol has protections against reply attacks, and the
   cloud-based core network provides firewalling protection against
   undesired incoming communications.

8.  Acknowledgements

   Carles Gomez has been funded in part by the ERDF and the Spanish
   Government through project TEC2016-79988-P.

9.  Informative References

   [I-D.ietf-lpwan-ipv6-static-context-hc]
              Minaburo, A., Toutain, L., and C. Gomez, "LPWAN Static
              Context Header Compression (SCHC) and fragmentation for
              IPv6 and UDP", draft-ietf-lpwan-ipv6-static-context-hc-07
              (work in progress), October 2017.

   [I-D.ietf-lpwan-overview]
              Farrell, S., "LPWAN Overview", draft-ietf-lpwan-
              overview-07 (work in progress), October 2017.

Zuniga, et al.           Expires January 3, 2019                [Page 8]



Internet-Draft           SCHC over Sigfox LPWAN                July 2018

Authors’ Addresses

   Juan Carlos Zuniga
   SIGFOX
   425 rue Jean Rostand
   Labege  31670
   France

   Email: JuanCarlos.Zuniga@sigfox.com
   URI:   http://www.sigfox.com/

   Carles Gomez
   Universitat Politecnica de Catalunya
   C/Esteve Terradas, 7
   08860 Castelldefels
   Spain

   Email: carlesgo@entel.upc.edu

   Laurent Toutain
   IMT-Atlantique
   2 rue de la Chataigneraie
   CS 17607
   35576 Cesson-Sevigne Cedex
   France

   Email: Laurent.Toutain@imt-atlantique.fr

Zuniga, et al.           Expires January 3, 2019                [Page 9]


	draft-authors-lpwan-schc-802154-00
	draft-ietf-lpwan-coap-static-context-hc-04
	draft-ietf-lpwan-ipv6-static-context-hc-16
	draft-minaburo-lpwan-nbiot-hc-01
	draft-petrov-lpwan-ipv6-schc-over-lorawan-02
	draft-toutain-core-time-scale-00
	draft-zuniga-lpwan-schc-over-sigfox-03

