Net wor k Wor ki ng Group A. Keranen

I nternet-Draft Eri csson
I ntended status: |nformational M Kovat sch
Expi res: Novenber 5, 2018 ETH Zuri ch
K. Hartke

Uni versi taet Brenmen TZI

May 04, 2018

RESTf ul Design for Internet of Things Systens
draft-irtf-t2trg-rest-iot-01

Abst ract

Thi s docunment gives guidance for designing Internet of Things (IoT)
systens that follow the principles of the Representational State
Transfer (REST) architectural style.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Novenber 5, 2018.
Copyright Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of

Keranen, et al. Expi res Novenber 5, 2018 [Page 1]

I nt erne
t he
desc

Tabl e o

1.
2.
3

AOWWWwWarhwNE

rPAAMBRS

¢ aoan
W@@@.@'_\’!‘QPW!\J!—‘E.@P‘%W!\’!‘

oo

©oN

9
9.

Appe
Aut h

Ker anen,

t-Draft RESTful Design for 10T Systens

May 2018

Trust Legal Provisions and are provided without warranty as

ribed in the Sinplified BSD License.
f Contents

I ntroduction
Ter mi nol ogy .
Basi cs
Archrtecture
Syst em desi gn .
Uni f orm Resource Identrfrers (URIs)
Representations . . e
HTTP/ CoAP Met hods .
1. GET.
.2. PCST
.3. PUT . .
.4. DELETE . . .
HTTP/ CoAP Status/Response Codes
EST Constraints
dient-Server
St atel ess
Cache
Unrfornrlnterface .
Layered System
Code- on- Denmand
per medi a-driven Appli catl ons
Mot i vation
Know edge .
Interaction . . .
Hyper nedi a- drrven Desrgn GU|dance
sign Patterns . .
Col | ections . .
Calling a Procedure .
1 I nstantly Returning Procedures
2 Long-runni ng Procedures .
3. Conversion .
4 Events as State .

o101 0101

Server Push . .
Security Considerati ons .
Acknowl edgenent

Ref er ences

1. Normative Ref er ences

2. Informative References
ndi x A Future Work

ors’ Addresses

et al. Expi res Novenber 5, 2018

[Page 2]

Internet-Draft RESTful Design for 10T Systens May 2018

1. Introduction

The Representational State Transfer (REST) architectural style [REST]
is a set of guidelines and best practices for building distributed
hypermedi a systens. At its core is a set of constraints, which when
fulfilled enable desirable properties for distributed software
systems such as scalability and nodifiability. Wen REST principles
are applied to the design of a system the result is often called
RESTful and in particular an APl follow ng these principles is called
a RESTful API.

Different protocols can be used with RESTful systens, but at the tine
of witing the nost conmmon protocols are HITP [RFC7230] and CoAP

[RFC7252]. Since RESTful APIs are often sinple and |ightweight, they
are a good fit for various |oT applications. The goal of this
docunent is to give basic guidance for designing RESTful systens and
APl's for 10T applications and give pointers for nore infornation.
Desi gn of a good RESTful |oT system has naturally nany comonalities
with other Wb systens. Conpared to other systens, the key
characteristics of many |oT systens include:

0 data formats, interaction patterns, and other mechani sns that
m nimze, or preferably avoid, the need for human interaction

o preference for conpact and sinple data formats to facilitate
efficient transfer over (often) constrai ned networks and
I i ght wei ght processing in constrai ned nodes
2. Term nol ogy
This section explains sone of the common terminology that is used in
the context of RESTful design for |oT systenms. For term nol ogy of
constrai ned nodes and networks, see [RFC7228].

Cache: A local store of response nessages and the subsystemthat
controls storage, retrieval, and del etion of nmessages in it.

Client: A node that sends requests to servers and receives

responses. In RESTful 10T systens it’s common for nodes to have
nore than one role (e.g., both server and client; see
Section 3.1).

Q

ient State: The state kept by a client between requests. This
typically includes the currently processed representation, the set
of active requests, the history of requests, bookmarks (URI's
stored for later retrieval), and application-specific state (e.qg.
| ocal variables). (Note that this is called "Application State"
in [REST], which has sone anbiguity in nodern (10T) systens where

Keranen, et al. Expi res Novenber 5, 2018 [Page 3]

Internet-Draft RESTful Design for 10T Systens May 2018

the overall state of the distributed application (i.e.
application state) is reflected in the union of all Cient States
and Resource States of all clients and servers involved.)

Content Negotiation: The practice of determ ning the "best"
representation for a client when exanmining the current state of a
resource. The nost comon fornms of content negotiation are
Proactive Content Negotiation and Reactive Content Negotiation

Form A hypernedia control that enables a client to change the state
of a resource or to construct a query locally.

Forward Proxy: An internmediary that is selected by a client, usually
via local configuration rules, and that can be tasked to make
requests on behalf of the client. This may be useful, for
exanpl e, when the client lacks the capability to nmake the request
itself or to service the response froma cache in order to reduce
response tine, network bandwi dth, and energy consunpti on.

Gateway: A reverse proxy that provides an interface to a non- RESTfu
system such as | egacy systens or alternative technol ogi es such as
Bl uet ooth ATT/ GATT. See al so "Reverse Proxy"

Hypernedia Control: A conponent, such as a link or a form enbedded
in a representation that identifies a resource for future
hypernmedi a interactions. |If the client engages in an interaction

with the identified resource, the result may be a change to
resource state and/or client state.

| denpotent Method: A nethod where nultiple identical requests with
that nethod lead to the same visible resource state as a single
such request.

Link: A hypernedia control that enables a client to navigate between
resources and thereby change the client state.

Link Relation Type: An identifier that describes how the |ink target
resource relates to the current resource (see [RFC5988]).

Media Type: A string such as "text/htm " or "application/json" that
is used to |l abel representations so that it is known how the
representation should be interpreted and how it is encoded.

Met hod: An operation associated with a resource. Comon net hods
i nclude GET, PUT, POST, and DELETE (see Section 3.5 for details).

Origin Server: A server that is the definitive source for
representations of its resources and the ultimte recipient of any

Keranen, et al. Expi res Novenber 5, 2018 [Page 4]

Internet-Draft RESTful Design for 10T Systens May 2018

request that intends to nodify its resources. In contrast,
intermedi ari es (such as proxies caching a representation) can
assune the role of a server, but are not the source for
representations as these are acquired fromthe origin server

Proactive Content Negotiation: A content negotiation mechani sm where
the server selects a representation based on the expressed
preference of the client. For exanple, an |oT application could
send a request to a sensor with preferred nedia type "application/
senm +j son".

Reactive Content Negotiation: A content negotiation mechani smwhere
the client selects a representation froma list of available
representations. The list may, for exanple, be included by a
server in an initial response. |If the user agent is not satisfied
by the initial response representation, it can request one or nore
of the alternative representations, selected based on netadata
(e.g., available nedia types) included in the response.

Representation: A serialization that represents the current or
i ntended state of a resource and that can be transferred between
clients and servers. REST requires representations to be self-
descri bing, neaning that there nust be netadata that allows peers
to understand which representation format is used. Depending on
the protocol needs and capabilities, there can be additiona
metadata that is transmitted along with the representation

Representation Format: A set of rules for serializing resource
state. On the Wb, the nobst prevalent representation format is
HTM.. O her common formats include plain text and formats based
on JSON [RFC7159], XM., or RDF. Wthin |IoT systens, often conpact
formats based on JSON, CBOR [RFC7049], and EX
[WBC. REC- exi -20110310] are used.

Representational State Transfer (REST): An architectural style for
Internet-scale distributed hypermedi a systens.

Resource: An itemof interest identified by a URI. Anything that
can be naned can be a resource. A resource often encapsul ates a
piece of state in a system Typical resources in an |oT system
can be, e.g., a sensor, the current value of a sensor, the
| ocation of a device, or the current state of an actuator

Resource State: A nmpodel of a resource’s possible states that is
represented in a supported representation type, typically a nmedia
type. Resources can change state because of REST interactions
with them or they can change state for reasons outside of the
REST nodel .

Keranen, et al. Expi res Novenber 5, 2018 [Page 5]

Internet-Draft RESTful Design for 10T Systens May 2018

Resource Type: An identifier that annotates the application-
semantics of a resource (see Section 3.1 of [RFC6690]).

Reverse Proxy: An internediary that appears as a server towards the
client but satisfies the requests by forwarding themto the actua
server (possibly via one or nore other internmediaries). A reverse
proxy is often used to encapsul ate | egacy services, to inprove
server performance through caching, and to enable | oad bal anci ng
across nul tiple machi nes.

Saf e Method: A nethod that does not result in any state change on
the origin server when applied to a resource.

Server: A node that listens for requests, perfornms the requested
operation and sends responses back to the clients.

Uni form Resource ldentifier (URI): A global identifier for
resources. See Section 3.3 for nore details.

3. Basi cs
3.1. Architecture

The conponents of a RESTful system are assigned one or both of two
roles: client or server. Note that the terns "client" and "server”
refer only to the roles that the nodes assune for a particul ar
message exchange. The sane node might act as a client in some
conmmuni cations and a server in others. Cassic user agents (e.qg.
Web browsers) are always in the client role and have the initiative
to issue requests. Oigin servers always have the server role and
govern over the resources they host.

I I I I
| User (Q------------------- (S) Oigin |
| Agent | | Server |
|l I |l I
(Browser) (Wb Server)

Figure 1: dient-Server Conmunication

Internediaries (such as forward proxies, reverse proxies, and

gat eways) inplenment both roles, but only forward requests to other
intermediaries or origin servers. They can also translate requests
to different protocols, for instance, as CoAP-HTTP cross-proxies.

Keranen, et al. Expi res Novenber 5, 2018 [Page 6]

Internet-Draft RESTful Design for 10T Systens May 2018

I I I I I I
| User (O---(S) Inter- (Q-------------------- (S) Oigin |
| Agent | | rmediary | | Server |
|l I [I | I
(Browser) (Forward Proxy) (Wb Server)

Fi gure 2: Communication with Forward Proxy

Reverse proxies are usually inposed by the origin server. In
addition to the features of a forward proxy, they can al so provide an
interface for non-RESTful services such as | egacy systens or
alternative technol ogi es such as Bluetooth ATT/GATT. In this case,
reverse proxies are usually called gateways. This property is
enabl ed by the Layered System constraint of REST, which says that a
client cannot see beyond the server it is connected to (i.e., it is

| eft unaware of the protocol/paradi gm change).

I I I I I I
| User (O-------------------- (S) Inter- (x)---(x) Oigin |
| Agent | | mediary | | Server |
|l I | I l I
(Browser) (Gat eway) (Legacy Systen

Fi gure 3: Communication with Reverse Proxy

Nodes in | oT systens often inplenment both roles. Unlike

i ntermedi ari es, however, they can take the initiative as a client
(e.g., toregister with a directory, such as CoRE Resource Directory
[I-D.ietf-core-resource-directory], or to interact w th another
thing) and act as origin server at the sane tinme (e.g., to serve
sensor values or provide an actuator interface).

I I
| Thing (O -------- "= i oo (S) Oigin |
| (S) | Server |
l_ |\ |
(Sensor) - (Resource Directory)

\

(O Thing |

[
(Controller)

Fi gure 4: Constrai ned RESTful environnents

Keranen, et al. Expi res Novenber 5, 2018 [Page 7]

Internet-Draft RESTful Design for 10T Systens May 2018

3.2. System design

When designing a RESTful system the primary effort goes into
nodel i ng the state of the distributed application and assigning it to
the different conponents (i.e., clients and servers). How clients
can navi gate through the resources and nodify state to achieve their
goal s is defined through hypernedia controls, that is, links and
forns. Hypernedia controls span a kind of a state machi ne where the
nodes are resources and the transitions are links or forms. dients
run this state nachine (i.e., the application) by retrieving
representations, processing the data, and follow ng the included
hypermedi a controls. |In REST, renpte state is changed by submitting
forns. This is usually done by retrieving the current state,

nmodi fying the state on the client side, and transferring the new
state to the server in the formof new representations - rather than
calling a service and nodifying the state on the server side

Client state enconpasses the current state of the described state
machi ne and the possible next transitions derived fromthe hypernedia
controls within the currently processed representation (see

Section 2). Furthernore, clients can have part of the state of the
distributed application in |ocal variables.

Resource state includes the nore persistent data of an application
(i.e., independent of individual clients). This can be static data
such as devi ce descriptions, persistent data such as system
configurations, but also dynam c data such as the current value of a
sensor on a thing.

It is inmportant to distinguish between "client state" and "resource
state" and keep them separate. Followi ng the Statel ess constraint,
the client state must be kept only on clients. That is, there is no
est abli shnent of shared information about past and future

i nteractions between client and server (usually called a session).

On the one hand, this nakes requests a bit nore verbose since every
request must contain all the informati on necessary to process it. On
the other hand, this nakes servers efficient and scal able, since they
do not have to keep any state about their clients. Requests can
easily be distributed over nultiple worker threads or server
instances. For 10T systens, this constraint |lowers the nenory
requirenents for server inplenentations, which is particularly

i mportant for constrained servers (e.g., sensor nodes) and servers
serving large amount of clients (e.g., Resource Directory).

Keranen, et al. Expi res Novenber 5, 2018 [Page 8]

Internet-Draft RESTful Design for 10T Systens May 2018

3.3. Uniform Resource ldentifiers (URIS)

An inmportant part of RESTful APl design is to nodel the systemas a
set of resources whose state can be retrieved and/or nodified and
where resources can be potentially also created and/ or del et ed.

Uni form Resource ldentifiers (URIs) are used to indicate a resource
for interaction, to reference a resource from another resource, to

advertise or bookmark a resource, or to index a resource by search

engi nes.

foo://exanpl e. com 8042/ over/t her e?nane=f err et #nose
_/ \ A I\ I\N__/

schene aut hority pat h query f ragment

A URl is a sequence of characters that matches the syntax defined in
[RFC3986]. It consists of a hierarchical sequence of five
components: schenme, authority, path, query, and fragnment (from nost
significant to | east significant). A schene creates a namespace for
resources and defines how the foll owi ng components identify a
resource within that nanespace. The authority identifies an entity
that governs part of the nanespace, such as the server

"ww. exanple.org" in the "http" scheme. A host nane (e.g., a fully
qualified domain nane) or an | P address, potentially followed by a
transport layer port number, are usually used in the authority
component for the "http" and "coap"” schenes. The path and query
contain data to identify a resource within the scope of the URI's
schene and naning authority. The fragnent allows to refer to sone
portion of the resource, such as a Record in a SenM. Pack. However
fragments are processed only at client side and not sent on the wre.
[RFC7320] provides nore details on URI design and ownership wth best
current practices for establishing URI structures, conventions, and
formats.

For RESTful |oT applications, typical schenmes include "https"
"coaps", "http", and "coap". These refer to HTTP and CoAP, with and
wi t hout Transport Layer Security (TLS) [RFC5246]. (CoAP uses

Dat agram TLS (DTLS) [RFC6347], the variant of TLS for UDP.) These
four schenmes al so provide neans for |locating the resource; using the
HTTP protocol for "http" and "https", and with the CoAP protocol for
"coap" and "coaps". |If the scheme is different for two URIs (e.g.
"coap" vs. "coaps"), it is inmportant to note that even if the rest of
the URI is identical, these are two different resources, in two

di stinct nanespaces.

The query paraneters can be used to paranetrize the resource. For
exanpl e, a CET request may use query paraneters to request the server

Keranen, et al. Expi res Novenber 5, 2018 [Page 9]

Internet-Draft RESTful Design for 10T Systens May 2018

to send only certain kind data of the resource (i.e., filtering the
response). Query paranmeters in PUT and POST requests do not have
such established semantics and are not commonly used. Whether the
order of the query paraneters natters in URIs is unspecified and they
can be re-ordered e.g., by proxies. Therefore applications should
not rely on their order; see Section 3.3 of [RFC6943] for nore
details.

3.4. Representations

Clients can retrieve the resource state froman origin server or
mani pul ate resource state on the origin server by transferring
resource representations. Resource representations have a nedia type
that tells how the representati on should be interpreted by
identifying the representation format used.

Typical nedia types for 10T systens include:

o "text/plain" for sinple UTF-8 text

o "application/octet-streant for arbitrary binary data
o "application/json" for the JSON format [RFC7159]

o "application/senm +json" [I-D.ietf-core-sennl] for Sensor Markup
Language (SenM.) formatted data

o "application/cbor" for CBOR [RFC7049]
o "application/exi" for EXl [WBC. REC exi-20110310]

A full list of registered Internet Media Types is available at the

| ANA registry [I ANA-nedi a-types] and nunerical nedia types registered
for use with CoAP are listed at CoAP Content-Formats | ANA registry

[I ANA- CoAP- nedi a] .

3.5. HITP/ CoAP Met hods

Section 4.3 of [RFC7231] defines the set of methods in HITP;

Section 5.8 of [RFC7252] defines the set of nethods in CoAP. As part
of the UniformlInterface constraint, each nethod can have certain
properties that give guarantees to clients.

Saf e met hods do not cause any state change on the origin server when
applied to a resource. For exanple, the GET nethod only returns a
representation of the resource state but does not change the
resource. Thus, it is always safe for a client to retrieve a
representation without affecting server-side state.

Keranen, et al. Expi res Novenber 5, 2018 [Page 10]

Internet-Draft RESTful Design for 10T Systens May 2018

| denpot ent net hods can be applied nultiple tinmes to the same resource
whi |l e causing the sanme visible resource state as a single such
request. For exanple, the PUT nethod replaces the state of a
resource with a new state; replacing the state nultiple tinmes with
the same new state still results in the same state for the resource.
However, the response fromthe server can be different when the sane
i dempotent nmethod is used nultiple times. For exanple when DELETE is
used twi ce on an existing resource, the first request would renove
the association and return success acknow edgenent whereas the second
request would likely result in error response due to non-existing
resource.

The following lists the nost rel evant methods and gives a short
expl anation of their semantics.

3.5. 1. CET

The GET nethod requests a current representation for the target
resource, while the origin server nust ensure that there are no side-
effects on the resource state. Only the origin server needs to know
how each of its resource identifiers corresponds to an inplenmentation
and how each inplenentati on nanages to select and send a current
representation of the target resource in a response to CET.

A payload within a GET request nessage has no defined senmantics.
The GET nethod is safe and idenpotent.
3.5.2. PCST

The POST net hod requests that the target resource process the
representation enclosed in the request according to the resource’s
own specific semantics.

If one or nore resources has been created on the origin server as a
result of successfully processing a POST request, the origin server
sends a 201 (Created) response containing a Location header field
(with HTTP) or Location-Path and/or Location-Query Options (wth
CoAP) that provide an identifier for the resource created. The
server also includes a representation that describes the status of
the request while referring to the new resource(s).

The POST nmethod is not safe nor idenpotent.

Keranen, et al. Expi res Novenber 5, 2018 [Page 11]

Internet-Draft RESTful Design for 10T Systens May 2018

3.5.3. PUT

The PUT nethod requests that the state of the target resource be
created or replaced with the state defined by the representation

encl osed in the request nessage payload. A successful PUT of a given
representati on woul d suggest that a subsequent GET on that sane
target resource will result in an equivalent representati on being
sent.

The fundanental difference between the POST and PUT nethods is
highlighted by the different intent for the encl osed representation
The target resource in a POST request is intended to handle the

encl osed representation according to the resource’s own senanti cs,
whereas the encl osed representation in a PUT request is defined as
replacing the state of the target resource. Hence, the intent of PUT
is idenpotent and visible to internediaries, even though the exact
effect is only known by the origin server

The PUT nethod is not safe, but is idenpotent.
3.5.4. DELETE

The DELETE nethod requests that the origin server renove the
associ ation between the target resource and its current
functionality.

If the target resource has one or nore current representations, they
m ght or might not be destroyed by the origin server, and the

associ ated storage m ght or mght not be reclained, depending
entirely on the nature of the resource and its inplenmentation by the
origin server.

The DELETE nethod is not safe, but is idenpotent.
3.6. HITP/ CoAP St at us/ Response Codes

Section 6 of [RFC7231] defines a set of Status Codes in HITP that are
used by application to indicate whether a request was understood and
satisfied, and howto interpret the answer. Simlarly, Section 5.9
of [RFC7252] defines the set of Response Codes in CoAP.

The status codes consist of three digits (e.g., "404" with HTTP or
"4.04" with CoAP) where the first digit expresses the class of the
code. Inplenentations do not need to understand all status codes,

but the class of the code must be understood. Codes starting with 1
are informational; the request was received and bei ng processed.
Codes starting with 2 indicate a successful request. Codes starting
with 3 indicate redirection; further action is needed to conplete the

Keranen, et al. Expi res Novenber 5, 2018 [Page 12]

Internet-Draft RESTful Design for 10T Systens May 2018

request. Codes stating with 4 and 5 indicate errors. The codes
starting with 4 mean client error (e.g., bad syntax in the request)
whereas codes starting with 5 nmean server error; there was no
apparent problemw th the request, but server was not able to fulfill
t he request.

Responses may be stored in a cache to satisfy future, equival ent
requests. HITP and CoAP use two different patterns to deci de what

responses are cacheable. In HITP, the cacheability of a response
depends on the request nethod (e.g., responses returned in reply to a
GET request are cacheable). |In CoAP, the cacheability of a response

depends on the response code (e.g., responses with code 2.04 are
cacheable). This difference also leads to slightly different
semantics for the codes starting with 2; for exanple, CoAP does not
have a 2. 00 response code whereas 200 ("CK") is comonly used with
HTTP.

4. REST Constraints
The REST architectural style defines a set of constraints for the
system desi gn. When all constraints are applied correctly, REST
enabl es architectural properties of key interest [REST]:
0o Performance
0 Scalability
0 Reliability
o Sinplicity
o Mdifiability
o Visibility
o Portability

The follow ng sub-sections briefly sunmarize the REST constraints and
expl ain how they enable the listed properties.

4.1. dient-Server

As explained in the Architecture section, RESTful system conponents
have clear roles in every interaction. dients have the initiative
to issue requests, internediaries can only forward requests, and
servers respond requests, while origin servers are the ultimte
reci pient of requests that intent to nodify resource state.

Keranen, et al. Expi res Novenber 5, 2018 [Page 13]

Internet-Draft RESTful Design for 10T Systens May 2018

This inproves sinplicity and visibility, as it is clear which
component started an interaction. Furthernore, it inproves
nmodi fiability through a clear separation of concerns.

4.2. Statel ess

The Statel ess constraint requires nessages to be sel f-contained.

They must contain all the information to process it, independent from
previ ous nmessages. This allows to strictly separate the client state
fromthe resource state.

This inproves scalability and reliability, since servers or worker
threads can be replicated. It also inproves visibility because
message traces contain all the information to understand the | ogged
i nteractions.

Furthernore, the Statel ess constraint enabl es cachi ng.

4.3. Cache

This constraint requires responses to have inplicit or explicit
cache-control netadata. This enables clients and internediary to
store responses and re-use themto locally answer future requests.
The cache-control netadata is necessary to deci de whet her the
information in the cached response is still fresh or stale and needs
to be di scarded.

Cache inproves performance, as |less data needs to be transferred and
response tines can be reduced significantly. Less transfers also

i nproves scalability, as origin servers can be protected fromtoo
many requests. Local caches furthernmore inprove reliability, since
requests can be answered even if the origin server is tenporarily not
avail abl e.

4.4, UniformlInterface

Al'l RESTful APls use the sane, uniforminterface i ndependent of the
application. This sinple interaction nodel is enabled by exchanging
representations and nodifying state locally, which sinplifies the
interface between clients and servers to a small set of methods to
retrieve, update, and delete state - which applies to all
appl i cations.

In contrast, in a service-oriented RPC approach, all required ways to
nmodi fy state need to be nodeled explicitly in the interface resulting
in alarge set of methods - which differs fromapplication to
application. Mreover, it is also likely that different parties cone
up with different ways how to nodify state, including the nam ng of

Keranen, et al. Expi res Novenber 5, 2018 [Page 14]

Internet-Draft RESTful Design for 10T Systens May 2018

the procedures, while the state within an application is a bit easier
to agree on.

A REST interface is fully defined by:
o URIs to identify resources

0 representation formats to represent (and retrieve and mani pul at e)
resource state

o self-descriptive nmessages with a standard set of nethods (e.g.
GET, POST, PUT, DELETE with their guaranteed properties)

0 hypernmedia controls within representations

The concept of hypernedia controls is al so known as HATEOAS:
Hypernedi a As The Engine O Application State. The origin server
enbeds controls for the interface into its representations and
thereby informs the client about possible next requests. The nostly
used control for RESTful systems is Wb Linking [RFC5590].
Hypernedia fornms are nore powerful controls that describe howto
construct nore conpl ex requests, including representations to nodify
resource state.

While this is the nost conplex constraints (in particular the
hypernmedi a controls), it inproves many different key properties. It
improves sinplicity, as uniforminterfaces are easier to understand.
The sel f-descriptive nessages inprove visibility. The limtation to
a known set of representation formats fosters portability. Mst of
all, however, this constraint is the key to nodifiability, as
hyper medi a-driven, uniforminterfaces allow clients and servers to
evol ve i ndependently, and hence enable a systemto evol ve.

4.5, Layered System

This constraint enforces that a client cannot see beyond the server
with which it is interacting.

A layered systemis easier to nodify, as topol ogy changes becone
transparent. Furthernore, this helps scalability, as internediaries
such as | oad bal ancers can be introduced w t hout changing the client
side. The clean separation of concerns helps with sinplicity.

4.6. Code-on-Demand

This principle enables origin servers to ship code to clients.

Keranen, et al. Expi res Novenber 5, 2018 [Page 15]

Internet-Draft RESTful Design for 10T Systens May 2018

Code- on- Denand i nproves nodifiability, since new features can be
depl oyed during runtinme (e.g., support for a new representation
format). It also inproves performance, as the server can provide
code for |ocal pre-processing before transferring the data.

5. Hypermedi a-driven Applications

Hyper nedi a-dri ven applications take advantage of hypernedia controls,
i.e., links and fornms, enbedded in the resource representations. A
hypernmedia client is a client that is capable of processing these
hypernnmedi a controls. Hypernedia |inks can be used to give additiona
i nformati on about a resource representation (e.g., the source URl of
the representation) or pointing to other resources. The forns can be
used to describe the structure of the data that can be sent (e.g.
with a POST or PUT nethod) to a server, or how a data retrieval
(e.g., GET) request for a resource should be forned. In a
hyper medi a-dri ven application the client interacts with the server
using only the hypernmedia controls, instead of selecting nmethods and/
or constructing URIs based on out-of-band information, such as API
docunent at i on.

5.1. NMbdtivation

The advantage of this approach is increased evolvability and
extensibility. This is inportant in scenarios where servers exhibit
a range of feature variations, where it’'s expensive to keep evol ving
client know edge and server know edge in sync all the tine, or where
there are many different client and server inplenentations.
Hypernedia controls serve as indicators in capability negotiation

In particular, they describe avail abl e resources and possible
operations on these resources using links and forms, respectively.

There are nmultiple reasons why a server nmight introduce new |inks or
forns:

o The server inplenents a newer version of the application. qQ der
clients ignore the new links and fornms, while newer clients are
able to take advantage of the new features by foll owi ng the new
links and submtting the new forns.

0 The server offers links and forns depending on the current state.
The server can tell the client which operations are currently
valid and thus help the client navigate the application state
machi ne. The client does not have to have know edge which
operations are allowed in the current state or make a request just
to find out that the operation is not valid.

Keranen, et al. Expi res Novenber 5, 2018 [Page 16]

Internet-Draft RESTful Design for 10T Systens May 2018

5.

2

o0 The server offers links and fornms depending on the client’s access
control rights. If the client is unauthorized to performa
certain operation, then the server can sinply omt the |links and
forns for that operation.

Know edge

A client needs to have know edge of a couple of things for successfu
interaction with a server. This includes what resources are
avai | abl e, what representations of resource states are avail abl e,
what each representation describes, howto retrieve a representation
what state changi ng operations on a resource are possible, howto
performthese operations, and so on

Sone part of this know edge, such as howto retrieve the
representation of a resource state, is typically hard-coded in the
client software. For other parts, a choice can often be nade between
hard- codi ng the know edge or acquiring it on-demand. The key to
success in either case is the use in-band information for identifying
the know edge that is required. This enables the client to verify
that is has all required know edge and to acquire m ssing know edge
on- demand.

A hypernedi a-driven application typically uses the foll ow ng
i dentifiers:

o0 URlI schenes that identify communication protocols,
0 Internet Media Types that identify representation fornats,

o link relation types or resource types that identify link
semantics,

o formrelation types that identify formsemantics

o variable nanes that identify the semantics of variables in
tenpl ated |inks, and

o formfield names that identify the semantics of formfields in
forns.

The know edge about these identifiers as well as nmatching
i mpl ement ati ons have to be shared a priori in a RESTful system

Keranen, et al. Expi res Novenber 5, 2018 [Page 17]

Internet-Draft RESTful Design for 10T Systens May 2018

5.3. Interaction

A client begins interacting with an application through a GET request
on an entry point URI. The entry point URI is the only URI a client
is expected to know before interacting with an application. From
there, the client is expected to nake all requests by follow ng |inks
and subnmitting forns that are provided in previous responses. The
entry point URI can be obtained, for exanple, by manual configuration
or some discovery process (e.g., DNS-SD [RFC6763] or Resource
Directory [I-D.ietf-core-resource-directory]). For Constrained
RESTful environments "/.well-known/core" relative URI is defined as a
default entry point for requesting the links hosted by servers with
known or discovered addresses [RFC6690].

5.4. Hypernedi a-driven Design Gui dance

Assum ng sel f-describing representation formats (i.e., hunman-readabl e
with carefully chosen ternms or processible by a formatting tool) and
a client supporting the URI schene used, a good rule of thunb for a
good hypermedi a-driven design is the follow ng: A devel oper should
only need an entry point URI to drive the application. Al further

i nformati on how to navigate through the application (links) and how
to construct nore conplex requests (fornms) are published by the
server(s). There nust be no need for additional, out-of-band
information (e.g., APl specification).

For machines, a well-chosen set of information needs to be shared a
priori to agree on nachi ne-understandabl e semantics. Agreeing on the
exact semantics of terns for relation types and data el enents will of
course also help the devel oper.

6. Design Patterns

Certain kinds of design problens are often recurring in variety of
domai ns, and often re-usabl e design patterns can be applied to them
Al so some interactions with a RESTful 10T system are straightforward
to design; a classic exanple of reading a tenperature froma
thermoneter device is al npst always inplenmented as a GET request to a
resource that represents the current val ue of the thernoneter

However, certain interactions, for exanple data conversions or event
handl i ng, do not have as straightforward and well established ways to
represent the logic with resources and REST net hods.

The follow ng sections describe how common desi gn probl ens such as

different interactions can be nodeled with REST and what are the
benefits of different approaches.

Keranen, et al. Expi res Novenber 5, 2018 [Page 18]

Internet-Draft RESTful Design for 10T Systens May 2018

6.1. Collections

A common pattern in RESTful systens across different domains is the
collection. A collection can be used to conbine nultiple resources
toget her by providing resources that consist of set of (often
partial) representations of resources, called items, and links to
resources. The collection resource also defines hypernedia controls
for managi ng and searching the itenms in the collection

Exanpl es of the collection pattern in RESTful |0T systens are the
CoRE Resource Directory [I-D.ietf-core-resource-directory], CoAP pub/
sub broker [I-D.ietf-core-coap-pubsub], and resource discovery via
".well-known/core". Collection+JSON [CollectionJSON] is an exanple
of a generic collection Media Type.

6.2. Calling a Procedure

To nodify resource state, clients usually use GET to retrieve a
representation fromthe server, nodify that locally, and transfer the
resulting state back to the server with a PUT (see Section 4.4).
Sonetimes, however, the state can only be nodified on the server
side, for instance, because representations would be too large to
transfer or part of the required information shall not be accessible
to clients. In this case, resource state is nodified by calling a
procedure (or "function"). This is usually nodeled with a POST
request, as this nethod | eaves the behavi or semantics conpletely to
the server. Procedure calls can be divided into tw different

cl asses based on how long they are expected to execute: "instantly"
returni ng and | ong-runni ng.

6.2.1. Instantly Returning Procedures
When the procedure can return within the expected response tine of

the system the result can be directly returned in the response. The
result can either be actual content or just a confirmation that the

call was successful. In either case, the response does not contain a
representation of the resource, but a so-called action result.
Action results can still have hypermedia controls to provide the

possible transitions in the application state nachine.
6.2.2. Long-running Procedures

When the procedure takes | onger than the expected response tine of
the system or even longer than the response tinmeout, it is a good
pattern to create a new resource to track the "task” execution. The
server would respond instantly with a "Created" status (HTTP code 201
or CoAP 2.01) and indicate the |l ocation of the task resource in the
correspondi ng header field (or CoAP option) or as a link in the

Keranen, et al. Expi res Novenber 5, 2018 [Page 19]

Internet-Draft RESTful Design for 10T Systens May 2018

action result. The created resource can be used to nonitor the
progress, to potentially nodify queued tasks or cancel tasks, and to
eventually retrieve the result.

Monitoring informati on woul d be nodel ed as state of the task
resource, and hence be retrievable as representation. The result -
when avail able - can be enbedded in the representation or given as a
link to another sub-resource. Modifying tasks can be nodeled with
forns that either update sub-resources via PUT or do a partial wite
usi ng PATCH or PCST. Canceling a task would be nodeled with a form
that uses DELETE to renove the task resource

6.2.3. Conversion

A conversion service is a good exanpl e where REST resources need to
behave nore |ike a procedure call. The know edge of converting from
one representation to another is |located only at the server to
relieve clients from high processing or storing lots of data. There
are different approaches that all depend on the particul ar conversion
probl em

As nmentioned in the previous sections, POST request are a good way to
nodel functionality that does not necessarily affect resource state.
When the input data for the conversion is small and the conversion
result is deterministic, however, it can be better to use a GET
request with the input data in the URI query part. The query is
paraneterizing the conversion resource, so that it acts like a | ook-
up table. The benefit is that results can be cached also for HITP
(where responses to POST are not cacheable). In CoAP, cacheability
depends on the response code, so that also a response to a POST
request can be nade cacheabl e through a 2.05 Content code.

When the input data is large or has a binary encoding, it is better
to use POST requests with a proper Media Type for the input
representation. A POST request is also nore suitable, when the
result is time-dependent and the latest result is expected (e.qg.
exchange rates).

6.2. 4. Events as State

In event-centric paradi gns such as pub/sub, events are usually
represented by an incom ng nessage that mnight even be identical for
each occurrence. Since the nessages are queued, the receiver is
aware of each occurrence of the event and can react accordingly. For
instance, in an event-centric system ringing a door bell would
result in a nessage being sent that represents the event that it was
rung.

Keranen, et al. Expi res Novenber 5, 2018 [Page 20]

Internet-Draft RESTful Design for 10T Systens May 2018

In resource-oriented paradi gns such as REST, nessages usually carry
the current state of the renote resource, independent fromthe
changes (i.e., events) that have lead to that state. 1In a naive yet
natural design, a door bell could be nodeled as a resource that can
have the states unpressed and pressed. There are, however, a few
issues with this approach. Polling is not an option, as it is highly
unlikely to be able to observe the pressed state with any realistic
polling interval. Wen using CoAP Cbserve with Confirnmabl e
notifications, the server will usually send two notifications for the
event that the door bell was pressed: notification for changing from
unpressed to pressed and anot her one for changi ng back to unpressed.
If the tinme between the state changes is very short, the server night
drop the first notification, as Cbserve only guarantees only eventua
consi stency (see Section 1.3 of [RFC7641]).

The solution is to pick a state nbodel that fits better to the
application. In the case of the door bell - and many other event-
driven resources - the solution could be a counter that counts how
often the bell was pressed. The corresponding action is taken each
time the client observes a change in the received representation

In the case of a network outage, this could lead to a ringing sound
10 minutes after the bell was rung. Also including a tinestanp of
the last counter increnment in the state can help to suppress ringing
a sound when the event has becone obsol ete.

6.3. Server Push

Overall, a universal nechanismfor server push, that is, change-of-
state notifications and stand-al one event notifications, is still an
open issue that is being discussed in the Thing-to-Thing Research
Goup. It is connected to the state-event duality probl em and

custody transfer, that is, the transfer of the responsibility that a
message (e.g., event) is delivered successfully.

A proficient nechanismfor change-of-state notifications is currently
only avail able for CoAP: (Cbserving resources [RFC7/641]. It offers
envent ual consi stency, which guarantees "that if the resource does
not undergo a new change in state, eventually all registered
observers will have a current representation of the |l atest resource
state". It intrinsically deals with the challenges of |ossy

net wor ks, where notifications mght be | ost, and constrai ned

net wor ks, where there m ght not be enough bandwi dth to propagate al
changes.

For stand-al one event notifications, that is, where every single

notification contains an identifiable event that nust not be |ost,
observing resources is not a good fit. A better strategy is to node

Keranen, et al. Expi res Novenber 5, 2018 [Page 21]

Internet-Draft RESTful Design for 10T Systens May 2018

each event as a new resource, whose existence is notified through
change-of -state notifications of an index resource (cf. Collection
pattern). Large nunbers of events will cause the notification to
grow large, as it needs to contain a |arge nunber of Wb |inks.

Bl ockwi se transfers [RFC7959] can help here. Wen the |links are
ordered by freshness of the events, the first bl ock can already
contain all links to new events. Then, observers do not need to
retrieve the remaining bl ocks fromthe server, but only the
representations of the new event resources.

An alternative pattern is to exploit the dual roles of 0T devices,
in particular when using CoAP: they are usually client and server at
the sane tine. A client observer would subscribe to events by
registering a callback URI at the origin server, e.g., using a POST
request and receiving the location of a tenporary subscription
resource as handle. The origin server would then publish events by
sendi ng POST requests containing the event to the observer. The
cancel | ati on can be nodel ed through del eting the subscription
resource. This pattern makes the origin server responsible for
delivering the event notifications. This goes beyond retransm ssions
of messages; the origin server is usually supposed to queue al
undel i vered events and to retry until successful delivery or explicit
cancellation. In HITP, this pattern is known as REST Hooks.

In HTTP, there exist a number of workarounds to enable server push

e.g., long polling and stream ng [RFC6202] or server-sent events
[WBC. REC- ht ml 5-20141028]. Long polling as an extension that both
server and client need to be aware of. In 10T systens, long polling

can introduce a consi derable overhead, as the request has to be
repeated for each notification. Stream ng and server-sent events (in
fact an evol ved version of streanming) are nore efficient, as only one
request is sent. However, there is only one response header and
subsequent notifications can only have content. There are no means
for individual status and netadata, and hence no nmeans for proficient
error handling (e.g., when the resource is deleted).

7. Security Considerations
Thi s docunment does not define new functionality and therefore does
not introduce new security concerns. W assune that system designers
apply classic Wb security on top of the basic RESTful gui dance given
in this docunent. Thus, security protocols and considerations from
rel ated specifications apply to RESTful |oT design. These include:
o Transport Layer Security (TLS): [RFC5246] and [RFC6347]

0 Internet X 509 Public Key Infrastructure: [RFC5280]

Keranen, et al. Expi res Novenber 5, 2018 [Page 22]

Internet-Draft RESTful Design for 10T Systens May 2018

9.

9.

1.

0 HITP security: Section 9 of [RFC7230], Section 9 of [RFC7231],
etc.

0 CoAP security: Section 11 of [RFC7252]
o0 URI security: Section 7 of [RFC3986]

|l oT-specific security is mainly work in progress at the tine of
witing. First specifications include:

0 (D)TLS Profiles for the Internet of Things: [RFC7925]

Further 10T security considerations are available in
[I-D.irtf-t2trg-iot-seccons].

Acknowl edgenent

The authors would |ike to thank Mert Ccak, Heidi-Mria Back, Tero
Kauppi nen, M chael Koster, Robby Sinpson, Ravi Subranmani am Dave
Thaler, Erik Wlde, and N klas Wdell for the review and feedback.

Ref er ences
Nor mat i ve Ref erences

[I-D.ietf-core-object-security]
Sel ander, G, Mattsson, J., Palonbini, F., and L. Seitz,
"Obj ect Security for Constrai ned RESTful Environnents
(OSCORE) ", draft-ietf-core-object-security-12 (work in
progress), March 2018.

[I-D.ietf-core-resource-directory]
Shel by, Z., Koster, M, Bormann, C, Stok, P., and C
Ansuess, "CoRE Resource Directory", draft-ietf-core-
resource-directory-13 (work in progress), March 2018.

[REST] Fielding, R, "Architectural Styles and the Design of
Net wor k- based Software Architectures”, Ph.D. Dissertation,
University of California, Irvine , 2000.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66, RFC
3986, DA 10. 17487/ RFC3986, January 2005,
<https://www. rfc-editor.org/info/rfc3986>.

Keranen, et al. Expi res Novenber 5, 2018 [Page 23]

Internet-Draft RESTful Design for 10T Systens May 2018

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, DA 10.17487/
RFC5246, August 2008, <https://ww.rfc-editor.org/info/
rfcb5246>.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housl ey, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, DO 10.17487/ RFC5280, May 2008,
<https://ww.rfc-editor.org/info/rfc5280>.

[RFC5590] Harrington, D. and J. Schoenwael der, "Transport Subsystem
for the Sinple Network Managenent Protocol (SNWP)", STD
78, RFC 5590, DA 10.17487/ RFC5590, June 2009,
<https://www.rfc-editor.org/info/rfc5590>.

[RFC5988] Nottingham M, "Web Linking", RFC 5988, DO 10.17487/
RFC5988, OCctober 2010, <https://ww.rfc-editor.org/info/
rfc5988>.

[RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G WIKkins,
"Known |ssues and Best Practices for the Use of Long
Polling and Streaning in Bidirectional HTTP', RFC 6202,
DA 10.17487/ RFC6202, April 2011, <https://ww.rfc-
editor.org/infolrfc6202>.

[RFC6347] Rescorla, E. and N. Mdadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DO 10.17487/ RFC6347,
January 2012, <https://ww.rfc-editor.org/info/rfc6347>.

[RFC6690] Shel by, Z., "Constrained RESTful Environnents (CoRE) Link
Format", RFC 6690, DO 10.17487/RFC6690, August 2012,
<https://www. rfc-editor.org/info/rfc6690>.

[RFC7049] Bormann, C. and P. Hof frman, "Concise Binary bject
Representation (CBOR)", RFC 7049, DA 10.17487/ RFC7049,
Cct ober 2013, <https://www. rfc-editor.org/info/rfc7049>.

[RFC7230] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing", RFC
7230, DO 10.17487/ RFC7230, June 2014, <https://ww.rfc-
editor.org/infol/rfc7230>.

[RFC7231] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DO
10. 17487/ RFC7231, June 2014, <https://ww.rfc-
editor.org/infolrfc7231>.

Keranen, et al. Expi res Novenber 5, 2018 [Page 24]

Internet-Draft RESTful Design for 10T Systens May 2018

[RFC7641] Hartke, K., "Observing Resources in the Constrained
Application Protocol (CoAP)", RFC 7641, DO 10.17487/
RFC7641, Septenber 2015, <https://www. rfc-editor.org/info/
rfc7641>.

[RFC7959] Bormann, C. and Z. Shel by, Ed., "Block-Wse Transfers in
the Constrained Application Protocol (CoAP)", RFC 7959,
DO 10.17487/ RFC7959, August 2016, <https://wwrfc-
editor.org/infol/rfc7959>.

[WBC. REC- exi -20110310]
Schneider, J. and T. Kamiya, "Efficient XM |nterchange
(EXI') Format 1.0", World Wde Web Consortium
Recomendat i on REC- exi-20110310, March 2011,
<http://ww. w3. org/ TR/ 2011/ REC- exi - 20110310>.

[WBC. REC- ht ml 5-20141028]
Hi ckson, |., Berjon, R, Faulkner, S., Leithead, T.,
Navara, E., QO' Connor, T., and S. Pfeiffer, "HTM.5",
Wrld Wde Web Consorti um Recommendati on REC-
ht M 5-20141028, Cctober 2014,
<http://ww. w3. or g/ TR/ 2014/ REC- ht Ml 5- 20141028>.

9.2. Informative References

[Col | ecti onJSON|
Amundsen, M, "Collection+JSON - Docunent Format",
February 2013,
<http://amundsen. com nedi a-types/col | ection/format/>.

[I-D.ietf-core-coap-pubsub]
Koster, M, Keranen, A, and J. Jinenez, "Publish-
Subscri be Broker for the Constrained Application Protocol
(CoAP)", draft-ietf-core-coap-pubsub-04 (work in
progress), March 2018.

[I-D.ietf-core-senn]
Jenni ngs, C., Shelby, Z , Arkko, J., Keranen, A, and C
Bor mann, "Media Types for Sensor Measurenment Lists
(SenML)", draft-ietf-core-senm-14 (work in progress),
April 2018.

[I-Dirtf-t2trg-iot-seccons]
Garci a- Morchon, O, Kumar, S., and M Sethi, "State-of-
the-Art and Chall enges for the Internet of Things
Security", draft-irtf-t2trg-iot-seccons-14 (work in
progress), April 2018.

Keranen, et al. Expi res Novenber 5, 2018 [Page 25]

Internet-Draft RESTful Design for 10T Systens May 2018

[1 ANA- CoAP- nedi a]
" CoAP Content-Formats", n.d.,
<http://ww. i ana. or g/ assi gnnment s/ cor e- par anet er s/
cor e- par anet er s. xht nl #cont ent - f or nat s>.

[I ANA- nedi a- t ypes]
"Media Types", n.d., <http://ww.iana.org/assi gnnents/
medi a-t ypes/ nedi a-t ypes. xht m >.

[RFC6763] Cheshire, S. and M Krochnal, "DNS-Based Service
Di scovery", RFC 6763, DO 10.17487/ RFC6763, February 2013,
<https://ww. rfc-editor.org/info/rfc6763>.

[RFC6943] Thaler, D., Ed., "lssues in ldentifier Conparison for
Security Purposes", RFC 6943, DA 10.17487/ RFC6943, May
2013, <https://ww.rfc-editor.org/info/rfc6943>.

[RFC7159] Bray, T., Ed., "The JavaScript Ooject Notation (JSON) Data
I nterchange Format"”, RFC 7159, DA 10.17487/ RFC7159, March
2014, <https://www rfc-editor.org/info/rfc7159>.

[RFC7228] Bormann, C., Ersue, M, and A Keranen, "Term nology for
Const r ai ned- Node Networks", RFC 7228, DA 10.17487/
RFC7228, May 2014, <https://ww.rfc-editor.org/info/
rfc7228>.

[RFC7252] Shel by, Z., Hartke, K, and C. Bormann, "The Constrai ned
Application Protocol (CoAP)", RFC 7252, DO 10.17487/
RFC7252, June 2014, <https://ww. rfc-editor.org/info/
rfc7252>.

[RFC7320] Nottingham M, "URl Design and Oanership", BCP 190, RFC
7320, DA 10.17487/ RFC7320, July 2014, <https://ww.rfc-
editor.org/infolrfc7320>.

[RFC7925] Tschofenig, H, Ed. and T. Fossati, "Transport Layer
Security (TLS) / Datagram Transport Layer Security (DTLS)
Profiles for the Internet of Things", RFC 7925, DO
10. 17487/ RFC7925, July 2016, <https://ww.rfc-
editor.org/infolrfc7925>.

Appendi x A. Future Work
o Interface semantics: shared know edge anmong system conponents (UR

schenes, nedia types, relation types, well-known |ocations; see
cor e- apps)

Keranen, et al. Expi res Novenber 5, 2018 [Page 26]

Internet-Draft RESTful Design for 10T Systens May 2018
o0 Unreliable (best effort) conmunication, robust conmmunication in
network wi th high packet |oss, 3-way conmit
o Discuss directories, such as CoAP Resource Directory

o0 Mre information on how to design resources; choosing what is
nodel ed as a resource, etc.

Aut hors’ Addresses

Ari Keranen

Eri csson

Jorvas 02420

Fi nl and

Email : ari.keranen@ri csson.com

Mat t hi as Kovat sch
ETH Zuri ch

Uni versi taet strasse 6
Zurich CH 8092
Switzerl and

Emmi | : kovatsch@nf. ethz. ch
Kl aus Hartke

Uni versitaet Brenen TZI

Post f ach 330440

Bremen D-28359

Ger many

Emai | : hartke@zi.org

Keranen, et al. Expi res Novenber 5, 2018 [Page 27]

