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Abstract

   This document specifies Version 1.3 of the Datagram Transport Layer
   Security (DTLS) protocol.  DTLS 1.3 allows client/server applications
   to communicate over the Internet in a way that is designed to prevent
   eavesdropping, tampering, and message forgery.

   The DTLS 1.3 protocol is intentionally based on the Transport Layer
   Security (TLS) 1.3 protocol and provides equivalent security
   guarantees with the exception of order protection/non-replayability.
   Datagram semantics of the underlying transport are preserved by the
   DTLS protocol.

   This document obsoletes RFC 6347.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 1 November 2021.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.
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   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.
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1.  Introduction

   RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH

   The source for this draft is maintained in GitHub.  Suggested changes
   should be submitted as pull requests at https://github.com/tlswg/
   dtls13-spec.  Instructions are on that page as well.  Editorial
   changes can be managed in GitHub, but any substantive change should
   be discussed on the TLS mailing list.

   The primary goal of the TLS protocol is to establish an
   authenticated, confidentiality and integrity protected channel
   between two communicating peers.  The TLS protocol is composed of two
   layers: the TLS Record Protocol and the TLS Handshake Protocol.
   However, TLS must run over a reliable transport channel - typically
   TCP [RFC0793].

   There are applications that use UDP [RFC0768] as a transport and to
   offer communication security protection for those applications the
   Datagram Transport Layer Security (DTLS) protocol has been developed.
   DTLS is deliberately designed to be as similar to TLS as possible,
   both to minimize new security invention and to maximize the amount of
   code and infrastructure reuse.

   DTLS 1.0 [RFC4347] was originally defined as a delta from TLS 1.1
   [RFC4346] and DTLS 1.2 [RFC6347] was defined as a series of deltas to
   TLS 1.2 [RFC5246].  There is no DTLS 1.1; that version number was
   skipped in order to harmonize version numbers with TLS.  This
   specification describes the most current version of the DTLS protocol
   as a delta from TLS 1.3 [TLS13].  It obsoletes DTLS 1.2.

   Implementations that speak both DTLS 1.2 and DTLS 1.3 can
   interoperate with those that speak only DTLS 1.2 (using DTLS 1.2 of
   course), just as TLS 1.3 implementations can interoperate with TLS
   1.2 (see Appendix D of [TLS13] for details).  While backwards
   compatibility with DTLS 1.0 is possible the use of DTLS 1.0 is not
   recommended as explained in Section 3.1.2 of RFC 7525 [RFC7525] and
   [DEPRECATE].

2.  Conventions and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The following terms are used:
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   *  client: The endpoint initiating the DTLS connection.

   *  association: Shared state between two endpoints established with a
      DTLS handshake.

   *  connection: Synonym for association.

   *  endpoint: Either the client or server of the connection.

   *  epoch: one set of cryptographic keys used for encryption and
      decryption.

   *  handshake: An initial negotiation between client and server that
      establishes the parameters of the connection.

   *  peer: An endpoint.  When discussing a particular endpoint, "peer"
      refers to the endpoint that is remote to the primary subject of
      discussion.

   *  receiver: An endpoint that is receiving records.

   *  sender: An endpoint that is transmitting records.

   *  server: The endpoint which did not initiate the DTLS connection.

   *  CID: Connection ID

   *  MSL: Maximum Segment Lifetime

   The reader is assumed to be familiar with [TLS13].  As in TLS 1.3,
   the HelloRetryRequest has the same format as a ServerHello message,
   but for convenience we use the term HelloRetryRequest throughout this
   document as if it were a distinct message.

   DTLS 1.3 uses network byte order (big-endian) format for encoding
   messages based on the encoding format defined in [TLS13] and earlier
   (D)TLS specifications.

   The reader is also assumed to be familiar with
   [I-D.ietf-tls-dtls-connection-id] as this document applies the CID
   functionality to DTLS 1.3.

   Figures in this document illustrate various combinations of the DTLS
   protocol exchanges and the symbols have the following meaning:

   *  ’+’ indicates noteworthy extensions sent in the previously noted
      message.
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   *  ’*’ indicates optional or situation-dependent messages/extensions
      that are not always sent.

   *  ’{}’ indicates messages protected using keys derived from a
      [sender]_handshake_traffic_secret.

   *  ’[]’ indicates messages protected using keys derived from
      traffic_secret_N.

3.  DTLS Design Rationale and Overview

   The basic design philosophy of DTLS is to construct "TLS over
   datagram transport".  Datagram transport does not require nor provide
   reliable or in-order delivery of data.  The DTLS protocol preserves
   this property for application data.  Applications, such as media
   streaming, Internet telephony, and online gaming use datagram
   transport for communication due to the delay-sensitive nature of
   transported data.  The behavior of such applications is unchanged
   when the DTLS protocol is used to secure communication, since the
   DTLS protocol does not compensate for lost or reordered data traffic.
   Note that while low-latency streaming and gaming use DTLS to protect
   data (e.g. for protection of a WebRTC data channel), telephony
   utilizes DTLS for key establishment, and Secure Real-time Transport
   Protocol (SRTP) for protection of data [RFC5763].

   TLS cannot be used directly over datagram transports the following
   five reasons:

   1.  TLS relies on an implicit sequence number on records.  If a
       record is not received, then the recipient will use the wrong
       sequence number when attempting to remove record protection from
       subsequent records.  DTLS solves this problem by adding sequence
       numbers to records.

   2.  The TLS handshake is a lock-step cryptographic protocol.
       Messages must be transmitted and received in a defined order; any
       other order is an error.  The DTLS handshake includes message
       sequence numbers to enable fragmented message reassembly and in-
       order delivery in case datagrams are lost or reordered.

   3.  During the handshake, messages are implicitly acknowledged by
       other handshake messages.  Some handshake messages, such as the
       NewSessionTicket message, do not result in any direct response
       that would allow the sender to detect loss.  DTLS adds an
       acknowledgment message to enable better loss recovery.
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   4.  Handshake messages are potentially larger than can be contained
       in a single datagram.  DTLS adds fields to handshake messages to
       support fragmentation and reassembly.

   5.  Datagram transport protocols, like UDP, are susceptible to
       abusive behavior effecting denial of service attacks against
       nonparticipants.  DTLS adds a return-routability check and DTLS
       1.3 uses the TLS 1.3 HelloRetryRequest message (see Section 5.1
       for details).

3.1.  Packet Loss

   DTLS uses a simple retransmission timer to handle packet loss.
   Figure 1 demonstrates the basic concept, using the first phase of the
   DTLS handshake:

            Client                                   Server
            ------                                   ------
            ClientHello           ------>

                                    X<-- HelloRetryRequest
                                                     (lost)

            [Timer Expires]

            ClientHello           ------>
            (retransmit)

                   Figure 1: DTLS retransmission example

   Once the client has transmitted the ClientHello message, it expects
   to see a HelloRetryRequest or a ServerHello from the server.
   However, if the timer expires, the client knows that either the
   ClientHello or the response from the server has been lost, which
   causes the the client to retransmit the ClientHello.  When the server
   receives the retransmission, it knows to retransmit its
   HelloRetryRequest or ServerHello.

   The server also maintains a retransmission timer for messages it
   sends (other than HelloRetryRequest) and retransmits when that timer
   expires.  Not applying retransmissions to the HelloRetryRequest
   avoids the need to create state on the server.  The HelloRetryRequest
   is designed to be small enough that it will not itself be fragmented,
   thus avoiding concerns about interleaving multiple
   HelloRetryRequests.

   For more detail on timeouts and retransmission, see Section 5.8.
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3.2.  Reordering

   In DTLS, each handshake message is assigned a specific sequence
   number.  When a peer receives a handshake message, it can quickly
   determine whether that message is the next message it expects.  If it
   is, then it processes it.  If not, it queues it for future handling
   once all previous messages have been received.

3.3.  Fragmentation

   TLS and DTLS handshake messages can be quite large (in theory up to
   2^24-1 bytes, in practice many kilobytes).  By contrast, UDP
   datagrams are often limited to less than 1500 bytes if IP
   fragmentation is not desired.  In order to compensate for this
   limitation, each DTLS handshake message may be fragmented over
   several DTLS records, each of which is intended to fit in a single
   UDP datagram (see Section 4.4 for guidance).  Each DTLS handshake
   message contains both a fragment offset and a fragment length.  Thus,
   a recipient in possession of all bytes of a handshake message can
   reassemble the original unfragmented message.

3.4.  Replay Detection

   DTLS optionally supports record replay detection.  The technique used
   is the same as in IPsec AH/ESP, by maintaining a bitmap window of
   received records.  Records that are too old to fit in the window and
   records that have previously been received are silently discarded.
   The replay detection feature is optional, since packet duplication is
   not always malicious, but can also occur due to routing errors.
   Applications may conceivably detect duplicate packets and accordingly
   modify their data transmission strategy.

4.  The DTLS Record Layer

   The DTLS 1.3 record layer is different from the TLS 1.3 record layer
   and also different from the DTLS 1.2 record layer.

   1.  The DTLSCiphertext structure omits the superfluous version number
       and type fields.

   2.  DTLS adds an epoch and sequence number to the TLS record header.
       This sequence number allows the recipient to correctly verify the
       DTLS MAC.  However, the number of bits used for the epoch and
       sequence number fields in the DTLSCiphertext structure have been
       reduced from those in previous versions.

   3.  The DTLSCiphertext structure has a variable length header.
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   DTLSPlaintext records are used to send unprotected records and
   DTLSCiphertext records are used to send protected records.

   The DTLS record formats are shown below.  Unless explicitly stated
   the meaning of the fields is unchanged from previous TLS / DTLS
   versions.

       struct {
           ContentType type;
           ProtocolVersion legacy_record_version;
           uint16 epoch = 0
           uint48 sequence_number;
           uint16 length;
           opaque fragment[DTLSPlaintext.length];
       } DTLSPlaintext;

       struct {
            opaque content[DTLSPlaintext.length];
            ContentType type;
            uint8 zeros[length_of_padding];
       } DTLSInnerPlaintext;

       struct {
           opaque unified_hdr[variable];
           opaque encrypted_record[length];
       } DTLSCiphertext;

                     Figure 2: DTLS 1.3 Record Formats

   legacy_record_version  This value MUST be set to {254, 253} for all
      records other than the initial ClientHello (i.e., one not
      generated after a HelloRetryRequest), where it may also be {254,
      255} for compatibility purposes.  It MUST be ignored for all
      purposes.  See [TLS13]; Appendix D.1 for the rationale for this.

   unified_hdr:  The unified header (unified_hdr) is a structure of
      variable length, as shown in Figure 3.

   encrypted_record:  The AEAD-encrypted form of the serialized
      DTLSInnerPlaintext structure.
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       0 1 2 3 4 5 6 7
       +-+-+-+-+-+-+-+-+
       |0|0|1|C|S|L|E E|
       +-+-+-+-+-+-+-+-+
       | Connection ID |   Legend:
       | (if any,      |
       /  length as    /   C   - Connection ID (CID) present
       |  negotiated)  |   S   - Sequence number length
       +-+-+-+-+-+-+-+-+   L   - Length present
       |  8 or 16 bit  |   E   - Epoch
       |Sequence Number|
       +-+-+-+-+-+-+-+-+
       | 16 bit Length |
       | (if present)  |
       +-+-+-+-+-+-+-+-+

                     Figure 3: DTLS 1.3 Unified Header

   Fixed Bits:  The three high bits of the first byte of the unified
      header are set to 001.  This ensures that the value will fit
      within the DTLS region when multiplexing is performed as described
      in [RFC7983].  It also ensures that distinguishing encrypted DTLS
      1.3 records from encrypted DTLS 1.2 records is possible when they
      are carried on the same host/port quartet; such multiplexing is
      only possible when CIDs [I-D.ietf-tls-dtls-connection-id] are in
      use, in which case DTLS 1.2 records will have the content type
      tls12_cid (25).

   C:  The C bit (0x10) is set if the Connection ID is present.

   S:  The S bit (0x08) indicates the size of the sequence number. 0
      means an 8-bit sequence number, 1 means 16-bit.  Implementations
      MAY mix sequence numbers of different lengths on the same
      connection.

   L:  The L bit (0x04) is set if the length is present.

   E:  The two low bits (0x03) include the low order two bits of the
      epoch.

   Connection ID:  Variable length CID.  The CID functionality is
      described in [I-D.ietf-tls-dtls-connection-id].  An example can be
      found in Section 9.1.

   Sequence Number:  The low order 8 or 16 bits of the record sequence
      number.  This value is 16 bits if the S bit is set to 1, and 8
      bits if the S bit is 0.
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   Length:  Identical to the length field in a TLS 1.3 record.

   As with previous versions of DTLS, multiple DTLSPlaintext and
   DTLSCiphertext records can be included in the same underlying
   transport datagram.

   Figure 4 illustrates different record headers.

    0 1 2 3 4 5 6 7       0 1 2 3 4 5 6 7       0 1 2 3 4 5 6 7
   +-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+
   | Content Type  |     |0|0|1|1|1|1|E E|     |0|0|1|0|0|0|E E|
   +-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+
   |   16 bit      |     |               |     |8-bit Seq. No. |
   |   Version     |     / Connection ID /     +-+-+-+-+-+-+-+-+
   +-+-+-+-+-+-+-+-+     |               |     |               |
   |   16 bit      |     +-+-+-+-+-+-+-+-+     |   Encrypted   |
   |    Epoch      |     |    16 bit     |     /   Record      /
   +-+-+-+-+-+-+-+-+     |Sequence Number|     |               |
   |               |     +-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+
   |               |     |   16 bit      |
   |   48 bit      |     |   Length      |       DTLSCiphertext
   |Sequence Number|     +-+-+-+-+-+-+-+-+         Structure
   |               |     |               |         (minimal)
   |               |     |  Encrypted    |
   +-+-+-+-+-+-+-+-+     /  Record       /
   |    16 bit     |     |               |
   |    Length     |     +-+-+-+-+-+-+-+-+
   +-+-+-+-+-+-+-+-+
   |               |      DTLSCiphertext
   |               |        Structure
   /   Fragment    /          (full)
   |               |
   +-+-+-+-+-+-+-+-+

    DTLSPlaintext
      Structure

                     Figure 4: DTLS 1.3 Header Examples

   The length field MAY be omitted by clearing the L bit, which means
   that the record consumes the entire rest of the datagram in the lower
   level transport.  In this case it is not possible to have multiple
   DTLSCiphertext format records without length fields in the same
   datagram.  Omitting the length field MUST only be used for the last
   record in a datagram.  Implementations MAY mix records with and
   without length fields on the same connection.

Rescorla, et al.         Expires 1 November 2021               [Page 11]



Internet-Draft                  DTLS 1.3                      April 2021

   If a Connection ID is negotiated, then it MUST be contained in all
   datagrams.  Sending implementations MUST NOT mix records from
   multiple DTLS associations in the same datagram.  If the second or
   later record has a connection ID which does not correspond to the
   same association used for previous records, the rest of the datagram
   MUST be discarded.

   When expanded, the epoch and sequence number can be combined into an
   unpacked RecordNumber structure, as shown below:

       struct {
           uint16 epoch;
           uint48 sequence_number;
       } RecordNumber;

   This 64-bit value is used in the ACK message as well as in the
   "record_sequence_number" input to the AEAD function.

   The entire header value shown in Figure 4 (but prior to record number
   encryption, see Section 4.2.3) is used as as the additional data
   value for the AEAD function.  For instance, if the minimal variant is
   used, the AAD is 2 octets long.  Note that this design is different
   from the additional data calculation for DTLS 1.2 and for DTLS 1.2
   with Connection ID.

4.1.  Demultiplexing DTLS Records

   DTLS 1.3 uses a variable length record format and hence the
   demultiplexing process is more complex since more header formats need
   to be distinguished.  Implementations can demultiplex DTLS 1.3
   records by examining the first byte as follows:

   *  If the first byte is alert(21), handshake(22), or ack(proposed,
      26), the record MUST be interpreted as a DTLSPlaintext record.

   *  If the first byte is any other value, then receivers MUST check to
      see if the leading bits of the first byte are 001.  If so, the
      implementation MUST process the record as DTLSCiphertext; the true
      content type will be inside the protected portion.

   *  Otherwise, the record MUST be rejected as if it had failed
      deprotection, as described in Section 4.5.2.

   Figure 5 shows this demultiplexing procedure graphically taking DTLS
   1.3 and earlier versions of DTLS into account.
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                +----------------+
                | Outer Content  |
                |   Type (OCT)   |
                |                |
                |   OCT == 20   -+--> ChangeCipherSpec (DTLS <1.3)
                |   OCT == 21   -+--> Alert (Plaintext)
                |   OCT == 22   -+--> Handshake (Plaintext)
                |   OCT == 23   -+--> Application Data (DTLS <1.3)
                |   OCT == 24   -+--> Heartbeat (DTLS <1.3)
   packet  -->  |   OCT == 25   -+--> DTLSCipherText with CID (DTLS 1.2)
                |   OCT == 26   -+--> ACK (DTLS 1.3, Plaintext)
                |                |
                |                |   /+----------------+\
                | 31 < OCT < 64 -+--> |DTLS Ciphertext |
                |                |    |(header bits    |
                |      else      |    | start with 001)|
                |       |        |   /+-------+--------+\
                +-------+--------+            |
                        |                     |
                        v          Decryption |
                  +---------+          +------+
                  |  Reject |          |
                  +---------+          v
                               +----------------+
                               | Decrypted      |
                               | Content Type   |
                               | (DCT)          |
                               |                |
                               |     DCT == 21 -+--> Alert
                               |     DCT == 22 -+--> Handshake
                               |     DCT == 23 -+--> Application Data
                               |     DCT == 24 -+--> Heartbeat
                               |     DCT == 26 -+--> ACK
                               |                |
                               +----------------+

           Figure 5: Demultiplexing DTLS 1.2 and DTLS 1.3 Records
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   Note: The optimized DTLS header format shown in Figure 3, which does
   not carry the Content Type in the Unified Header format, requires a
   different demultilexing strategy compared to what was used in
   previous DTLS versions where the Content Type was conveyed in every
   record.  As described in Figure 5, the first byte determines how an
   incoming DTLS record is demultiplexed.  The first 3 bits of the first
   byte distinguish a DTLS 1.3 encrypted record from record types used
   in previous DTLS versions and plaintext DTLS 1.3 record types.
   Hence, the range 32 (0b0010 0000) to 63 (0b0011 1111) needs to be
   excluded from future allocations by IANA to avoid problems while
   demultiplexing; see Section 14.

4.2.  Sequence Number and Epoch

   DTLS uses an explicit or partly explicit sequence number, rather than
   an implicit one, carried in the sequence_number field of the record.
   Sequence numbers are maintained separately for each epoch, with each
   sequence_number initially being 0 for each epoch.

   The epoch number is initially zero and is incremented each time
   keying material changes and a sender aims to rekey.  More details are
   provided in Section 6.1.

4.2.1.  Processing Guidelines

   Because DTLS records could be reordered, a record from epoch M may be
   received after epoch N (where N > M) has begun.  Implementations
   SHOULD discard records from earlier epochs, but MAY choose to retain
   keying material from previous epochs for up to the default MSL
   specified for TCP [RFC0793] to allow for packet reordering.  (Note
   that the intention here is that implementers use the current guidance
   from the IETF for MSL, as specified in [RFC0793] or successors, not
   that they attempt to interrogate the MSL that the system TCP stack is
   using.)

   Conversely, it is possible for records that are protected with the
   new epoch to be received prior to the completion of a handshake.  For
   instance, the server may send its Finished message and then start
   transmitting data.  Implementations MAY either buffer or discard such
   records, though when DTLS is used over reliable transports (e.g.,
   SCTP [RFC4960]), they SHOULD be buffered and processed once the
   handshake completes.  Note that TLS’s restrictions on when records
   may be sent still apply, and the receiver treats the records as if
   they were sent in the right order.

   Implementations MUST send retransmissions of lost messages using the
   same epoch and keying material as the original transmission.
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   Implementations MUST either abandon an association or re-key prior to
   allowing the sequence number to wrap.

   Implementations MUST NOT allow the epoch to wrap, but instead MUST
   establish a new association, terminating the old association.

4.2.2.  Reconstructing the Sequence Number and Epoch

   When receiving protected DTLS records, the recipient does not have a
   full epoch or sequence number value in the record and so there is
   some opportunity for ambiguity.  Because the full epoch and sequence
   number are used to compute the per-record nonce, failure to
   reconstruct these values leads to failure to deprotect the record,
   and so implementations MAY use a mechanism of their choice to
   determine the full values.  This section provides an algorithm which
   is comparatively simple and which implementations are RECOMMENDED to
   follow.

   If the epoch bits match those of the current epoch, then
   implementations SHOULD reconstruct the sequence number by computing
   the full sequence number which is numerically closest to one plus the
   sequence number of the highest successfully deprotected record in the
   current epoch.

   During the handshake phase, the epoch bits unambiguously indicate the
   correct key to use.  After the handshake is complete, if the epoch
   bits do not match those from the current epoch implementations SHOULD
   use the most recent past epoch which has matching bits, and then
   reconstruct the sequence number for that epoch as described above.

4.2.3.  Record Number Encryption

   In DTLS 1.3, when records are encrypted, record sequence numbers are
   also encrypted.  The basic pattern is that the underlying encryption
   algorithm used with the AEAD algorithm is used to generate a mask
   which is then XORed with the sequence number.

   When the AEAD is based on AES, then the Mask is generated by
   computing AES-ECB on the first 16 bytes of the ciphertext:

     Mask = AES-ECB(sn_key, Ciphertext[0..15])

   When the AEAD is based on ChaCha20, then the mask is generated by
   treating the first 4 bytes of the ciphertext as the block counter and
   the next 12 bytes as the nonce, passing them to the ChaCha20 block
   function (Section 2.3 of [CHACHA]):

     Mask = ChaCha20(sn_key, Ciphertext[0..3], Ciphertext[4..15])
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   The sn_key is computed as follows:

     [sender]_sn_key  = HKDF-Expand-Label(Secret, "sn" , "", key_length)

   [sender] denotes the sending side.  The Secret value to be used is
   described in Section 7.3 of [TLS13].  Note that a new key is used for
   each epoch: because the epoch is sent in the clear, this does not
   result in ambiguity.

   The encrypted sequence number is computed by XORing the leading bytes
   of the Mask with the on-the-wire representation of the sequence
   number.  Decryption is accomplished by the same process.

   This procedure requires the ciphertext length be at least 16 bytes.
   Receivers MUST reject shorter records as if they had failed
   deprotection, as described in Section 4.5.2.  Senders MUST pad short
   plaintexts out (using the conventional record padding mechanism) in
   order to make a suitable-length ciphertext.  Note most of the DTLS
   AEAD algorithms have a 16-byte authentication tag and need no
   padding.  However, some algorithms such as TLS_AES_128_CCM_8_SHA256
   have a shorter authentication tag and may require padding for short
   inputs.

   Future cipher suites, which are not based on AES or ChaCha20, MUST
   define their own record sequence number encryption in order to be
   used with DTLS.

   Note that sequence number encryption is only applied to the
   DTLSCiphertext structure and not to the DTLSPlaintext structure,
   which also contains a sequence number.

4.3.  Transport Layer Mapping

   DTLS messages MAY be fragmented into multiple DTLS records.  Each
   DTLS record MUST fit within a single datagram.  In order to avoid IP
   fragmentation, clients of the DTLS record layer SHOULD attempt to
   size records so that they fit within any Path MTU (PMTU) estimates
   obtained from the record layer.  For more information about PMTU
   issues see Section 4.4.

   Multiple DTLS records MAY be placed in a single datagram.  Records
   are encoded consecutively.  The length field from DTLS records
   containing that field can be used to determine the boundaries between
   records.  The final record in a datagram can omit the length field.
   The first byte of the datagram payload MUST be the beginning of a
   record.  Records MUST NOT span datagrams.
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   DTLS records without CIDs do not contain any association identifiers
   and applications must arrange to multiplex between associations.
   With UDP, the host/port number is used to look up the appropriate
   security association for incoming records without CIDs.

   Some transports, such as DCCP [RFC4340], provide their own sequence
   numbers.  When carried over those transports, both the DTLS and the
   transport sequence numbers will be present.  Although this introduces
   a small amount of inefficiency, the transport layer and DTLS sequence
   numbers serve different purposes; therefore, for conceptual
   simplicity, it is superior to use both sequence numbers.

   Some transports provide congestion control for traffic carried over
   them.  If the congestion window is sufficiently narrow, DTLS
   handshake retransmissions may be held rather than transmitted
   immediately, potentially leading to timeouts and spurious
   retransmission.  When DTLS is used over such transports, care should
   be taken not to overrun the likely congestion window.  [RFC5238]
   defines a mapping of DTLS to DCCP that takes these issues into
   account.

4.4.  PMTU Issues

   In general, DTLS’s philosophy is to leave PMTU discovery to the
   application.  However, DTLS cannot completely ignore PMTU for three
   reasons:

   *  The DTLS record framing expands the datagram size, thus lowering
      the effective PMTU from the application’s perspective.

   *  In some implementations, the application may not directly talk to
      the network, in which case the DTLS stack may absorb ICMP
      [RFC1191] "Datagram Too Big" indications or ICMPv6 [RFC4443]
      "Packet Too Big" indications.

   *  The DTLS handshake messages can exceed the PMTU.

   In order to deal with the first two issues, the DTLS record layer
   SHOULD behave as described below.

   If PMTU estimates are available from the underlying transport
   protocol, they should be made available to upper layer protocols.  In
   particular:

   *  For DTLS over UDP, the upper layer protocol SHOULD be allowed to
      obtain the PMTU estimate maintained in the IP layer.
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   *  For DTLS over DCCP, the upper layer protocol SHOULD be allowed to
      obtain the current estimate of the PMTU.

   *  For DTLS over TCP or SCTP, which automatically fragment and
      reassemble datagrams, there is no PMTU limitation.  However, the
      upper layer protocol MUST NOT write any record that exceeds the
      maximum record size of 2^14 bytes.

   The DTLS record layer SHOULD also allow the upper layer protocol to
   discover the amount of record expansion expected by the DTLS
   processing; alternately it MAY report PMTU estimates minus the
   estimated expansion from the transport layer and DTLS record framing.

   Note that DTLS does not defend against spoofed ICMP messages;
   implementations SHOULD ignore any such messages that indicate PMTUs
   below the IPv4 and IPv6 minimums of 576 and 1280 bytes respectively.

   If there is a transport protocol indication that the PMTU was
   exceeded (either via ICMP or via a refusal to send the datagram as in
   Section 14 of [RFC4340]), then the DTLS record layer MUST inform the
   upper layer protocol of the error.

   The DTLS record layer SHOULD NOT interfere with upper layer protocols
   performing PMTU discovery, whether via [RFC1191] and [RFC4821] for
   IPv4 or via [RFC8201] for IPv6.  In particular:

   *  Where allowed by the underlying transport protocol, the upper
      layer protocol SHOULD be allowed to set the state of the DF bit
      (in IPv4) or prohibit local fragmentation (in IPv6).

   *  If the underlying transport protocol allows the application to
      request PMTU probing (e.g., DCCP), the DTLS record layer SHOULD
      honor this request.

   The final issue is the DTLS handshake protocol.  From the perspective
   of the DTLS record layer, this is merely another upper layer
   protocol.  However, DTLS handshakes occur infrequently and involve
   only a few round trips; therefore, the handshake protocol PMTU
   handling places a premium on rapid completion over accurate PMTU
   discovery.  In order to allow connections under these circumstances,
   DTLS implementations SHOULD follow the following rules:

   *  If the DTLS record layer informs the DTLS handshake layer that a
      message is too big, the handshake layer SHOULD immediately attempt
      to fragment the message, using any existing information about the
      PMTU.

Rescorla, et al.         Expires 1 November 2021               [Page 18]



Internet-Draft                  DTLS 1.3                      April 2021

   *  If repeated retransmissions do not result in a response, and the
      PMTU is unknown, subsequent retransmissions SHOULD back off to a
      smaller record size, fragmenting the handshake message as
      appropriate.  This specification does not specify an exact number
      of retransmits to attempt before backing off, but 2-3 seems
      appropriate.

4.5.  Record Payload Protection

   Like TLS, DTLS transmits data as a series of protected records.  The
   rest of this section describes the details of that format.

4.5.1.  Anti-Replay

   Each DTLS record contains a sequence number to provide replay
   protection.  Sequence number verification SHOULD be performed using
   the following sliding window procedure, borrowed from Section 3.4.3
   of [RFC4303].  Because each epoch resets the sequence number space, a
   separate sliding window is needed for each epoch.

   The received record counter for an epoch MUST be initialized to zero
   when that epoch is first used.  For each received record, the
   receiver MUST verify that the record contains a sequence number that
   does not duplicate the sequence number of any other record received
   in that epoch during the lifetime of the association.  This check
   SHOULD happen after deprotecting the record; otherwise the record
   discard might itself serve as a timing channel for the record number.
   Note that computing the full record number from the partial is still
   a potential timing channel for the record number, though a less
   powerful one than whether the record was deprotected.

   Duplicates are rejected through the use of a sliding receive window.
   (How the window is implemented is a local matter, but the following
   text describes the functionality that the implementation must
   exhibit.)  The receiver SHOULD pick a window large enough to handle
   any plausible reordering, which depends on the data rate.  (The
   receiver does not notify the sender of the window size.)

   The "right" edge of the window represents the highest validated
   sequence number value received in the epoch.  Records that contain
   sequence numbers lower than the "left" edge of the window are
   rejected.  Records falling within the window are checked against a
   list of received records within the window.  An efficient means for
   performing this check, based on the use of a bit mask, is described
   in Section 3.4.3 of [RFC4303].  If the received record falls within
   the window and is new, or if the record is to the right of the
   window, then the record is new.
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   The window MUST NOT be updated until the record has been deprotected
   successfully.

4.5.2.  Handling Invalid Records

   Unlike TLS, DTLS is resilient in the face of invalid records (e.g.,
   invalid formatting, length, MAC, etc.).  In general, invalid records
   SHOULD be silently discarded, thus preserving the association;
   however, an error MAY be logged for diagnostic purposes.
   Implementations which choose to generate an alert instead, MUST
   generate fatal alerts to avoid attacks where the attacker repeatedly
   probes the implementation to see how it responds to various types of
   error.  Note that if DTLS is run over UDP, then any implementation
   which does this will be extremely susceptible to denial-of-service
   (DoS) attacks because UDP forgery is so easy.  Thus, generating fatal
   alerts is NOT RECOMMENDED for such transports, both to increase the
   reliability of DTLS service and to avoid the risk of spoofing attacks
   sending traffic to unrelated third parties.

   If DTLS is being carried over a transport that is resistant to
   forgery (e.g., SCTP with SCTP-AUTH), then it is safer to send alerts
   because an attacker will have difficulty forging a datagram that will
   not be rejected by the transport layer.

   Note that because invalid records are rejected at a layer lower than
   the handshake state machine, they do not affect pending
   retransmission timers.

4.5.3.  AEAD Limits

   Section 5.5 of TLS [TLS13] defines limits on the number of records
   that can be protected using the same keys.  These limits are specific
   to an AEAD algorithm, and apply equally to DTLS.  Implementations
   SHOULD NOT protect more records than allowed by the limit specified
   for the negotiated AEAD.  Implementations SHOULD initiate a key
   update before reaching this limit.

   [TLS13] does not specify a limit for AEAD_AES_128_CCM, but the
   analysis in Appendix B shows that a limit of 2^23 packets can be used
   to obtain the same confidentiality protection as the limits specified
   in TLS.
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   The usage limits defined in TLS 1.3 exist for protection against
   attacks on confidentiality and apply to successful applications of
   AEAD protection.  The integrity protections in authenticated
   encryption also depend on limiting the number of attempts to forge
   packets.  TLS achieves this by closing connections after any record
   fails an authentication check.  In comparison, DTLS ignores any
   packet that cannot be authenticated, allowing multiple forgery
   attempts.

   Implementations MUST count the number of received packets that fail
   authentication with each key.  If the number of packets that fail
   authentication exceed a limit that is specific to the AEAD in use, an
   implementation SHOULD immediately close the connection.
   Implementations SHOULD initiate a key update with update_requested
   before reaching this limit.  Once a key update has been initiated,
   the previous keys can be dropped when the limit is reached rather
   than closing the connection.  Applying a limit reduces the
   probability that an attacker is able to successfully forge a packet;
   see [AEBounds] and [ROBUST].

   For AEAD_AES_128_GCM, AEAD_AES_256_GCM, and AEAD_CHACHA20_POLY1305,
   the limit on the number of records that fail authentication is 2^36.
   Note that the analysis in [AEBounds] supports a higher limit for the
   AEAD_AES_128_GCM and AEAD_AES_256_GCM, but this specification
   recommends a lower limit.  For AEAD_AES_128_CCM, the limit on the
   number of records that fail authentication is 2^23.5; see Appendix B.

   The AEAD_AES_128_CCM_8 AEAD, as used in TLS_AES_128_CCM_8_SHA256,
   does not have a limit on the number of records that fail
   authentication that both limits the probability of forgery by the
   same amount and does not expose implementations to the risk of denial
   of service; see Appendix B.3.  Therefore, TLS_AES_128_CCM_8_SHA256
   MUST NOT be used in DTLS without additional safeguards against
   forgery.  Implementations MUST set usage limits for
   AEAD_AES_128_CCM_8 based on an understanding of any additional
   forgery protections that are used.

   Any TLS cipher suite that is specified for use with DTLS MUST define
   limits on the use of the associated AEAD function that preserves
   margins for both confidentiality and integrity.  That is, limits MUST
   be specified for the number of packets that can be authenticated and
   for the number of packets that can fail authentication before a key
   update is required.  Providing a reference to any analysis upon which
   values are based - and any assumptions used in that analysis - allows
   limits to be adapted to varying usage conditions.
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5.  The DTLS Handshake Protocol

   DTLS 1.3 re-uses the TLS 1.3 handshake messages and flows, with the
   following changes:

   1.  To handle message loss, reordering, and fragmentation
       modifications to the handshake header are necessary.

   2.  Retransmission timers are introduced to handle message loss.

   3.  A new ACK content type has been added for reliable message
       delivery of handshake messages.

   Note that TLS 1.3 already supports a cookie extension, which is used
   to prevent denial-of-service attacks.  This DoS prevention mechanism
   is described in more detail below since UDP-based protocols are more
   vulnerable to amplification attacks than a connection-oriented
   transport like TCP that performs return-routability checks as part of
   the connection establishment.

   DTLS implementations do not use the TLS 1.3 "compatibility mode"
   described in Section D.4 of [TLS13].  DTLS servers MUST NOT echo the
   "legacy_session_id" value from the client and endpoints MUST NOT send
   ChangeCipherSpec messages.

   With these exceptions, the DTLS message formats, flows, and logic are
   the same as those of TLS 1.3.

5.1.  Denial-of-Service Countermeasures

   Datagram security protocols are extremely susceptible to a variety of
   DoS attacks.  Two attacks are of particular concern:

   1.  An attacker can consume excessive resources on the server by
       transmitting a series of handshake initiation requests, causing
       the server to allocate state and potentially to perform expensive
       cryptographic operations.

   2.  An attacker can use the server as an amplifier by sending
       connection initiation messages with a forged source address that
       belongs to a victim.  The server then sends its response to the
       victim machine, thus flooding it.  Depending on the selected
       parameters this response message can be quite large, as is the
       case for a Certificate message.

   In order to counter both of these attacks, DTLS borrows the stateless
   cookie technique used by Photuris [RFC2522] and IKE [RFC7296].  When
   the client sends its ClientHello message to the server, the server
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   MAY respond with a HelloRetryRequest message.  The HelloRetryRequest
   message, as well as the cookie extension, is defined in TLS 1.3.  The
   HelloRetryRequest message contains a stateless cookie (see [TLS13];
   Section 4.2.2).  The client MUST send a new ClientHello with the
   cookie added as an extension.  The server then verifies the cookie
   and proceeds with the handshake only if it is valid.  This mechanism
   forces the attacker/client to be able to receive the cookie, which
   makes DoS attacks with spoofed IP addresses difficult.  This
   mechanism does not provide any defense against DoS attacks mounted
   from valid IP addresses.

   The DTLS 1.3 specification changes how cookies are exchanged compared
   to DTLS 1.2.  DTLS 1.3 re-uses the HelloRetryRequest message and
   conveys the cookie to the client via an extension.  The client
   receiving the cookie uses the same extension to place the cookie
   subsequently into a ClientHello message.  DTLS 1.2 on the other hand
   used a separate message, namely the HelloVerifyRequest, to pass a
   cookie to the client and did not utilize the extension mechanism.
   For backwards compatibility reasons, the cookie field in the
   ClientHello is present in DTLS 1.3 but is ignored by a DTLS 1.3
   compliant server implementation.

   The exchange is shown in Figure 6.  Note that the figure focuses on
   the cookie exchange; all other extensions are omitted.

         Client                                   Server
         ------                                   ------
         ClientHello           ------>

                               <----- HelloRetryRequest
                                       + cookie

         ClientHello           ------>
          + cookie

         [Rest of handshake]

       Figure 6: DTLS exchange with HelloRetryRequest containing the
                             "cookie" extension

   The cookie extension is defined in Section 4.2.2 of [TLS13].  When
   sending the initial ClientHello, the client does not have a cookie
   yet.  In this case, the cookie extension is omitted and the
   legacy_cookie field in the ClientHello message MUST be set to a zero-
   length vector (i.e., a zero-valued single byte length field).
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   When responding to a HelloRetryRequest, the client MUST create a new
   ClientHello message following the description in Section 4.1.2 of
   [TLS13].

   If the HelloRetryRequest message is used, the initial ClientHello and
   the HelloRetryRequest are included in the calculation of the
   transcript hash.  The computation of the message hash for the
   HelloRetryRequest is done according to the description in
   Section 4.4.1 of [TLS13].

   The handshake transcript is not reset with the second ClientHello and
   a stateless server-cookie implementation requires the content or hash
   of the initial ClientHello (and HelloRetryRequest) to be stored in
   the cookie.  The initial ClientHello is included in the handshake
   transcript as a synthetic "message_hash" message, so only the hash
   value is needed for the handshake to complete, though the complete
   HelloRetryRequest contents are needed.

   When the second ClientHello is received, the server can verify that
   the cookie is valid and that the client can receive packets at the
   given IP address.  If the client’s apparent IP address is embedded in
   the cookie, this prevents an attacker from generating an acceptable
   ClientHello apparently from another user.

   One potential attack on this scheme is for the attacker to collect a
   number of cookies from different addresses where it controls
   endpoints and then reuse them to attack the server.  The server can
   defend against this attack by changing the secret value frequently,
   thus invalidating those cookies.  If the server wishes to allow
   legitimate clients to handshake through the transition (e.g., a
   client received a cookie with Secret 1 and then sent the second
   ClientHello after the server has changed to Secret 2), the server can
   have a limited window during which it accepts both secrets.
   [RFC7296] suggests adding a key identifier to cookies to detect this
   case.  An alternative approach is simply to try verifying with both
   secrets.  It is RECOMMENDED that servers implement a key rotation
   scheme that allows the server to manage keys with overlapping
   lifetime.

   Alternatively, the server can store timestamps in the cookie and
   reject cookies that were generated outside a certain interval of
   time.

   DTLS servers SHOULD perform a cookie exchange whenever a new
   handshake is being performed.  If the server is being operated in an
   environment where amplification is not a problem, the server MAY be
   configured not to perform a cookie exchange.  The default SHOULD be
   that the exchange is performed, however.  In addition, the server MAY
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   choose not to do a cookie exchange when a session is resumed or, more
   generically, when the DTLS handshake uses a PSK-based key exchange
   and the IP address matches one associated with the PSK.  Servers
   which process 0-RTT requests and send 0.5-RTT responses without a
   cookie exchange risk being used in an amplification attack if the
   size of outgoing messages greatly exceeds the size of those that are
   received.  A server SHOULD limit the amount of data it sends toward a
   client address to three times the amount of data sent by the client
   before it verifies that the client is able to receive data at that
   address.  A client address is valid after a cookie exchange or
   handshake completion.  Clients MUST be prepared to do a cookie
   exchange with every handshake.  Note that cookies are only valid for
   the existing handshake and cannot be stored for future handshakes.

   If a server receives a ClientHello with an invalid cookie, it MUST
   terminate the handshake with an "illegal_parameter" alert.  This
   allows the client to restart the connection from scratch without a
   cookie.

   As described in Section 4.1.4 of [TLS13], clients MUST abort the
   handshake with an "unexpected_message" alert in response to any
   second HelloRetryRequest which was sent in the same connection (i.e.,
   where the ClientHello was itself in response to a HelloRetryRequest).

   DTLS clients which do not want to receive a Connection ID SHOULD
   still offer the "connection_id" extension unless there is an
   application profile to the contrary.  This permits a server which
   wants to receive a CID to negotiate one.

5.2.  DTLS Handshake Message Format

   In order to support message loss, reordering, and message
   fragmentation, DTLS modifies the TLS 1.3 handshake header:
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       enum {
           client_hello(1),
           server_hello(2),
           new_session_ticket(4),
           end_of_early_data(5),
           encrypted_extensions(8),
           certificate(11),
           certificate_request(13),
           certificate_verify(15),
           finished(20),
           key_update(24),
           message_hash(254),
           (255)
       } HandshakeType;

       struct {
           HandshakeType msg_type;    /* handshake type */
           uint24 length;             /* bytes in message */
           uint16 message_seq;        /* DTLS-required field */
           uint24 fragment_offset;    /* DTLS-required field */
           uint24 fragment_length;    /* DTLS-required field */
           select (msg_type) {
               case client_hello:          ClientHello;
               case server_hello:          ServerHello;
               case end_of_early_data:     EndOfEarlyData;
               case encrypted_extensions:  EncryptedExtensions;
               case certificate_request:   CertificateRequest;
               case certificate:           Certificate;
               case certificate_verify:    CertificateVerify;
               case finished:              Finished;
               case new_session_ticket:    NewSessionTicket;
               case key_update:            KeyUpdate;
           } body;
       } Handshake;

   The first message each side transmits in each association always has
   message_seq = 0.  Whenever a new message is generated, the
   message_seq value is incremented by one.  When a message is
   retransmitted, the old message_seq value is re-used, i.e., not
   incremented.  From the perspective of the DTLS record layer, the
   retransmission is a new record.  This record will have a new
   DTLSPlaintext.sequence_number value.
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   Note: In DTLS 1.2 the message_seq was reset to zero in case of a
   rehandshake (i.e., renegotiation).  On the surface, a rehandshake in
   DTLS 1.2 shares similarities with a post-handshake message exchange
   in DTLS 1.3.  However, in DTLS 1.3 the message_seq is not reset to
   allow distinguishing a retransmission from a previously sent post-
   handshake message from a newly sent post-handshake message.

   DTLS implementations maintain (at least notionally) a
   next_receive_seq counter.  This counter is initially set to zero.
   When a handshake message is received, if its message_seq value
   matches next_receive_seq, next_receive_seq is incremented and the
   message is processed.  If the sequence number is less than
   next_receive_seq, the message MUST be discarded.  If the sequence
   number is greater than next_receive_seq, the implementation SHOULD
   queue the message but MAY discard it.  (This is a simple space/
   bandwidth tradeoff).

   In addition to the handshake messages that are deprecated by the TLS
   1.3 specification, DTLS 1.3 furthermore deprecates the
   HelloVerifyRequest message originally defined in DTLS 1.0.  DTLS
   1.3-compliant implements MUST NOT use the HelloVerifyRequest to
   execute a return-routability check.  A dual-stack DTLS 1.2/DTLS 1.3
   client MUST, however, be prepared to interact with a DTLS 1.2 server.

5.3.  ClientHello Message

   The format of the ClientHello used by a DTLS 1.3 client differs from
   the TLS 1.3 ClientHello format as shown below.

       uint16 ProtocolVersion;
       opaque Random[32];

       uint8 CipherSuite[2];    /* Cryptographic suite selector */

       struct {
           ProtocolVersion legacy_version = { 254,253 }; // DTLSv1.2
           Random random;
           opaque legacy_session_id<0..32>;
           opaque legacy_cookie<0..2^8-1>;                  // DTLS
           CipherSuite cipher_suites<2..2^16-2>;
           opaque legacy_compression_methods<1..2^8-1>;
           Extension extensions<8..2^16-1>;
       } ClientHello;

   legacy_version:  In previous versions of DTLS, this field was used
      for version negotiation and represented the highest version number
      supported by the client.  Experience has shown that many servers
      do not properly implement version negotiation, leading to "version
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      intolerance" in which the server rejects an otherwise acceptable
      ClientHello with a version number higher than it supports.  In
      DTLS 1.3, the client indicates its version preferences in the
      "supported_versions" extension (see Section 4.2.1 of [TLS13]) and
      the legacy_version field MUST be set to {254, 253}, which was the
      version number for DTLS 1.2.  The supported_versions entries for
      DTLS 1.0 and DTLS 1.2 are 0xfeff and 0xfefd (to match the wire
      versions).  The value 0xfefc is used to indicate DTLS 1.3.

   random:  Same as for TLS 1.3, except that the downgrade sentinels
      described in Section 4.1.3 of [TLS13] when TLS 1.2 and TLS 1.1 and
      below are negotiated apply to DTLS 1.2 and DTLS 1.0 respectively.

   legacy_session_id:  Versions of TLS and DTLS before version 1.3
      supported a "session resumption" feature which has been merged
      with pre-shared keys in version 1.3.  A client which has a cached
      session ID set by a pre-DTLS 1.3 server SHOULD set this field to
      that value.  Otherwise, it MUST be set as a zero-length vector
      (i.e., a zero-valued single byte length field).

   legacy_cookie:  A DTLS 1.3-only client MUST set the legacy_cookie
      field to zero length.  If a DTLS 1.3 ClientHello is received with
      any other value in this field, the server MUST abort the handshake
      with an "illegal_parameter" alert.

   cipher_suites:  Same as for TLS 1.3; only suites with DTLS-OK=Y may
      be used.

   legacy_compression_methods:  Same as for TLS 1.3.

   extensions:  Same as for TLS 1.3.

5.4.  ServerHello Message

   The DTLS 1.3 ServerHello message is the same as the TLS 1.3
   ServerHello message, except that the legacy_version field is set to
   0xfefd, indicating DTLS 1.2.

5.5.  Handshake Message Fragmentation and Reassembly

   As described in Section 4.3 one or more handshake messages may be
   carried in a single datagram.  However, handshake messages are
   potentially bigger than the size allowed by the underlying datagram
   transport.  DTLS provides a mechanism for fragmenting a handshake
   message over a number of records, each of which can be transmitted in
   separate datagrams, thus avoiding IP fragmentation.
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   When transmitting the handshake message, the sender divides the
   message into a series of N contiguous data ranges.  The ranges MUST
   NOT overlap.  The sender then creates N handshake messages, all with
   the same message_seq value as the original handshake message.  Each
   new message is labeled with the fragment_offset (the number of bytes
   contained in previous fragments) and the fragment_length (the length
   of this fragment).  The length field in all messages is the same as
   the length field of the original message.  An unfragmented message is
   a degenerate case with fragment_offset=0 and fragment_length=length.
   Each handshake message fragment that is placed into a record MUST be
   delivered in a single UDP datagram.

   When a DTLS implementation receives a handshake message fragment
   corresponding to the next expected handshake message sequence number,
   it MUST buffer it until it has the entire handshake message.  DTLS
   implementations MUST be able to handle overlapping fragment ranges.
   This allows senders to retransmit handshake messages with smaller
   fragment sizes if the PMTU estimate changes.  Senders MUST NOT change
   handshake message bytes upon retransmission.  Receivers MAY check
   that retransmitted bytes are identical and SHOULD abort the handshake
   with an "illegal_parameter" alert if the value of a byte changes.

   Note that as with TLS, multiple handshake messages may be placed in
   the same DTLS record, provided that there is room and that they are
   part of the same flight.  Thus, there are two acceptable ways to pack
   two DTLS handshake messages into the same datagram: in the same
   record or in separate records.

5.6.  End Of Early Data

   The DTLS 1.3 handshake has one important difference from the TLS 1.3
   handshake: the EndOfEarlyData message is omitted both from the wire
   and the handshake transcript: because DTLS records have epochs,
   EndOfEarlyData is not necessary to determine when the early data is
   complete, and because DTLS is lossy, attackers can trivially mount
   the deletion attacks that EndOfEarlyData prevents in TLS.  Servers
   SHOULD NOT accept records from epoch 1 indefinitely once they are
   able to process records from epoch 3.  Though reordering of IP
   packets can result in records from epoch 1 arriving after records
   from epoch 3, this is not likely to persist for very long relative to
   the round trip time.  Servers could discard epoch 1 keys after the
   first epoch 3 data arrives, or retain keys for processing epoch 1
   data for a short period.  (See Section 6.1 for the definitions of
   each epoch.)
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5.7.  DTLS Handshake Flights

   DTLS handshake messages are grouped into a series of message flights.
   A flight starts with the handshake message transmission of one peer
   and ends with the expected response from the other peer.  Table 1
   contains a complete list of message combinations that constitute
   flights.

      +======+========+========+===================================+
      | Note | Client | Server | Handshake Messages                |
      +======+========+========+===================================+
      |      | x      |        | ClientHello                       |
      +------+--------+--------+-----------------------------------+
      |      |        | x      | HelloRetryRequest                 |
      +------+--------+--------+-----------------------------------+
      |      |        | x      | ServerHello, EncryptedExtensions, |
      |      |        |        | CertificateRequest, Certificate,  |
      |      |        |        | CertificateVerify, Finished       |
      +------+--------+--------+-----------------------------------+
      | 1    | x      |        | Certificate, CertificateVerify,   |
      |      |        |        | Finished                          |
      +------+--------+--------+-----------------------------------+
      | 1    |        | x      | NewSessionTicket                  |
      +------+--------+--------+-----------------------------------+

             Table 1: Flight Handshake Message Combinations.

   Remarks:

   *  Table 1 does not highlight any of the optional messages.

   *  Regarding note (1): When a handshake flight is sent without any
      expected response, as it is the case with the client’s final
      flight or with the NewSessionTicket message, the flight must be
      acknowledged with an ACK message.

   Below are several example message exchange illustrating the flight
   concept.  The notational conventions from [TLS13] are used.

Rescorla, et al.         Expires 1 November 2021               [Page 30]



Internet-Draft                  DTLS 1.3                      April 2021

  Client                                             Server

                                                              +--------+
   ClientHello                                                | Flight |
                          -------->                           +--------+

                                                              +--------+
                          <--------        HelloRetryRequest  | Flight |
                                            + cookie          +--------+

                                                              +--------+
  ClientHello                                                 | Flight |
   + cookie               -------->                           +--------+

                                                 ServerHello
                                       {EncryptedExtensions}  +--------+
                                       {CertificateRequest*}  | Flight |
                                              {Certificate*}  +--------+
                                        {CertificateVerify*}
                                                  {Finished}
                          <--------      [Application Data*]

   {Certificate*}                                             +--------+
   {CertificateVerify*}                                       | Flight |
   {Finished}             -------->                           +--------+
   [Application Data]

                                                              +--------+
                          <--------                    [ACK]  | Flight |
                                         [Application Data*]  +--------+

   [Application Data]     <------->      [Application Data]

     Figure 7: Message flights for a full DTLS Handshake (with cookie
                                exchange)
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    ClientHello                                              +--------+
     + pre_shared_key                                        | Flight |
     + psk_key_exchange_modes                                +--------+
     + key_share*         -------->

                                                ServerHello
                                           + pre_shared_key  +--------+
                                               + key_share*  | Flight |
                                      {EncryptedExtensions}  +--------+
                          <--------              {Finished}
                                        [Application Data*]
                                                             +--------+
    {Finished}            -------->                          | Flight |
    [Application Data*]                                      +--------+

                                                             +--------+
                          <--------                   [ACK]  | Flight |
                                        [Application Data*]  +--------+

    [Application Data]    <------->      [Application Data]

         Figure 8: Message flights for resumption and PSK handshake
                         (without cookie exchange)
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   Client                                            Server

    ClientHello
     + early_data
     + psk_key_exchange_modes                                +--------+
     + key_share*                                            | Flight |
     + pre_shared_key                                        +--------+
    (Application Data*)     -------->

                                                ServerHello
                                           + pre_shared_key
                                               + key_share*  +--------+
                                      {EncryptedExtensions}  | Flight |
                                                 {Finished}  +--------+
                          <--------     [Application Data*]

                                                             +--------+
    {Finished}            -------->                          | Flight |
    [Application Data*]                                      +--------+

                                                             +--------+
                          <--------                   [ACK]  | Flight |
                                        [Application Data*]  +--------+

    [Application Data]    <------->      [Application Data]

            Figure 9: Message flights for the Zero-RTT handshake

   Client                                            Server

                                                             +--------+
                          <--------       [NewSessionTicket] | Flight |
                                                             +--------+

                                                             +--------+
   [ACK]                  -------->                          | Flight |
                                                             +--------+

        Figure 10: Message flights for the NewSessionTicket message

   KeyUpdate, NewConnectionId and RequestConnectionId follow a similar
   pattern to NewSessionTicket: a single message sent by one side
   followed by an ACK by the other.

Rescorla, et al.         Expires 1 November 2021               [Page 33]



Internet-Draft                  DTLS 1.3                      April 2021

5.8.  Timeout and Retransmission

5.8.1.  State Machine

   DTLS uses a simple timeout and retransmission scheme with the state
   machine shown in Figure 11.
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                                +-----------+
                                | PREPARING |
                   +----------> |           |
                   |            |           |
                   |            +-----------+
                   |                  |
                   |                  | Buffer next flight
                   |                  |
                   |                 \|/
                   |            +-----------+
                   |            |           |
                   |            |  SENDING  |<------------------+
                   |            |           |                   |
                   |            +-----------+                   |
           Receive |                  |                         |
              next |                  | Send flight or partial  |
            flight |                  | flight                  |
                   |                  |                         |
                   |                  | Set retransmit timer    |
                   |                 \|/                        |
                   |            +-----------+                   |
                   |            |           |                   |
                   +------------|  WAITING  |-------------------+
                   |     +----->|           |   Timer expires   |
                   |     |      +-----------+                   |
                   |     |          |  |   |                    |
                   |     |          |  |   |                    |
                   |     +----------+  |   +--------------------+
                   |    Receive record |   Read retransmit or ACK
           Receive |  (Maybe Send ACK) |
              last |                   |
            flight |                   | Receive ACK
                   |                   | for last flight
                  \|/                  |
                                       |
               +-----------+           |
               |           | <---------+
               | FINISHED  |
               |           |
               +-----------+
                   |  /|\
                   |   |
                   |   |
                   +---+

             Server read retransmit
                 Retransmit ACK
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          Figure 11: DTLS timeout and retransmission state machine

   The state machine has four basic states: PREPARING, SENDING, WAITING,
   and FINISHED.

   In the PREPARING state, the implementation does whatever computations
   are necessary to prepare the next flight of messages.  It then
   buffers them up for transmission (emptying the transmission buffer
   first) and enters the SENDING state.

   In the SENDING state, the implementation transmits the buffered
   flight of messages.  If the implementation has received one or more
   ACKs (see Section 7) from the peer, then it SHOULD omit any messages
   or message fragments which have already been ACKed.  Once the
   messages have been sent, the implementation then sets a retransmit
   timer and enters the WAITING state.

   There are four ways to exit the WAITING state:

   1.  The retransmit timer expires: the implementation transitions to
       the SENDING state, where it retransmits the flight, adjusts and
       re-arms the retransmit timer (see Section 5.8.2), and returns to
       the WAITING state.

   2.  The implementation reads an ACK from the peer: upon receiving an
       ACK for a partial flight (as mentioned in Section 7.1), the
       implementation transitions to the SENDING state, where it
       retransmits the unacked portion of the flight, adjusts and re-
       arms the retransmit timer, and returns to the WAITING state.
       Upon receiving an ACK for a complete flight, the implementation
       cancels all retransmissions and either remains in WAITING, or, if
       the ACK was for the final flight, transitions to FINISHED.

   3.  The implementation reads a retransmitted flight from the peer:
       the implementation transitions to the SENDING state, where it
       retransmits the flight, adjusts and re-arms the retransmit timer,
       and returns to the WAITING state.  The rationale here is that the
       receipt of a duplicate message is the likely result of timer
       expiry on the peer and therefore suggests that part of one’s
       previous flight was lost.

   4.  The implementation receives some or all of the next flight of
       messages: if this is the final flight of messages, the
       implementation transitions to FINISHED.  If the implementation
       needs to send a new flight, it transitions to the PREPARING
       state.  Partial reads (whether partial messages or only some of
       the messages in the flight) may also trigger the implementation
       to send an ACK, as described in Section 7.1.
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   Because DTLS clients send the first message (ClientHello), they start
   in the PREPARING state.  DTLS servers start in the WAITING state, but
   with empty buffers and no retransmit timer.

   In addition, for at least twice the default MSL defined for
   [RFC0793], when in the FINISHED state, the server MUST respond to
   retransmission of the client’s final flight with a retransmit of its
   ACK.

   Note that because of packet loss, it is possible for one side to be
   sending application data even though the other side has not received
   the first side’s Finished message.  Implementations MUST either
   discard or buffer all application data records for epoch 3 and above
   until they have received the Finished message from the peer.
   Implementations MAY treat receipt of application data with a new
   epoch prior to receipt of the corresponding Finished message as
   evidence of reordering or packet loss and retransmit their final
   flight immediately, shortcutting the retransmission timer.

5.8.2.  Timer Values

   The configuration of timer settings varies with implementations, and
   certain deployment environments require timer value adjustments.
   Mishandling of the timer can lead to serious congestion problems, for
   example if many instances of a DTLS time out early and retransmit too
   quickly on a congested link.

   Unless implementations have deployment-specific and/or external
   information about the round trip time, implementations SHOULD use an
   initial timer value of 1000 ms and double the value at each
   retransmission, up to no less than 60 seconds (the RFC 6298 [RFC6298]
   maximum).  Application specific profiles MAY recommend shorter or
   longer timer values.  For instance:

   *  Profiles for specific deployment environments, such as in low-
      power, multi-hop mesh scenarios as used in some Internet of Things
      (IoT) networks, MAY specify longer timeouts.  See
      [I-D.ietf-uta-tls13-iot-profile] for more information about one
      such DTLS 1.3 IoT profile.

   *  Real-time protocols MAY specify shorter timeouts.  It is
      RECOMMENDED that for DTLS-SRTP [RFC5764], a default timeout of
      400ms be used; because customer experience degrades with one-way
      latencies of greater than 200ms, real-time deployments are less
      likely to have long latencies.

Rescorla, et al.         Expires 1 November 2021               [Page 37]



Internet-Draft                  DTLS 1.3                      April 2021

   In settings where there is external information (for instance from an
   ICE [RFC8445] handshake, or from previous connections to the same
   server) about the RTT, implementations SHOULD use 1.5 times that RTT
   estimate as the retransmit timer.

   Implementations SHOULD retain the current timer value until a message
   is transmitted and acknowledged without having to be retransmitted,
   at which time the value SHOULD be adjusted to 1.5 times the measured
   round trip time for that message.  After a long period of idleness,
   no less than 10 times the current timer value, implementations MAY
   reset the timer to the initial value.

   Note that because retransmission is for the handshake and not
   dataflow, the effect on congestion of shorter timeouts is smaller
   than in generic protocols such as TCP or QUIC.  Experience with DTLS
   1.2, which uses a simpler "retransmit everything on timeout"
   approach, has not shown serious congestion problems in practice.

5.8.3.  Large Flight Sizes

   DTLS does not have any built-in congestion control or rate control;
   in general this is not an issue because messages tend to be small.
   However, in principle, some messages - especially Certificate - can
   be quite large.  If all the messages in a large flight are sent at
   once, this can result in network congestion.  A better strategy is to
   send out only part of the flight, sending more when messages are
   acknowledged.  Several extensions have been standardized to reduce
   the size of the certificate message, for example the cached
   information extension [RFC7924], certificate compression [RFC8879]
   and [RFC6066], which defines the "client_certificate_url" extension
   allowing DTLS clients to send a sequence of Uniform Resource Locators
   (URLs) instead of the client certificate.

   DTLS stacks SHOULD NOT send more than 10 records in a single
   transmission.

5.8.4.  State machine duplication for post-handshake messages

   DTLS 1.3 makes use of the following categories of post-handshake
   messages:

   1.  NewSessionTicket

   2.  KeyUpdate

   3.  NewConnectionId

   4.  RequestConnectionId
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   5.  Post-handshake client authentication

   Messages of each category can be sent independently, and reliability
   is established via independent state machines each of which behaves
   as described in Section 5.8.1.  For example, if a server sends a
   NewSessionTicket and a CertificateRequest message, two independent
   state machines will be created.

   As explained in the corresponding sections, sending multiple
   instances of messages of a given category without having completed
   earlier transmissions is allowed for some categories, but not for
   others.  Specifically, a server MAY send multiple NewSessionTicket
   messages at once without awaiting ACKs for earlier NewSessionTicket
   first.  Likewise, a server MAY send multiple CertificateRequest
   messages at once without having completed earlier client
   authentication requests before.  In contrast, implementations MUST
   NOT send KeyUpdate, NewConnectionId or RequestConnectionId messages
   if an earlier message of the same type has not yet been acknowledged.

   Note: Except for post-handshake client authentication, which involves
   handshake messages in both directions, post-handshake messages are
   single-flight, and their respective state machines on the sender side
   reduce to waiting for an ACK and retransmitting the original message.
   In particular, note that a RequestConnectionId message does not force
   the receiver to send a NewConnectionId message in reply, and both
   messages are therefore treated independently.

   Creating and correctly updating multiple state machines requires
   feedback from the handshake logic to the state machine layer,
   indicating which message belongs to which state machine.  For
   example, if a server sends multiple CertificateRequest messages and
   receives a Certificate message in response, the corresponding state
   machine can only be determined after inspecting the
   certificate_request_context field.  Similarly, a server sending a
   single CertificateRequest and receiving a NewConnectionId message in
   response can only decide that the NewConnectionId message should be
   treated through an independent state machine after inspecting the
   handshake message type.
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5.9.  CertificateVerify and Finished Messages

   CertificateVerify and Finished messages have the same format as in
   TLS 1.3.  Hash calculations include entire handshake messages,
   including DTLS-specific fields: message_seq, fragment_offset, and
   fragment_length.  However, in order to remove sensitivity to
   handshake message fragmentation, the CertificateVerify and the
   Finished messages MUST be computed as if each handshake message had
   been sent as a single fragment following the algorithm described in
   Section 4.4.3 and Section 4.4.4 of [TLS13], respectively.

5.10.  Cryptographic Label Prefix

   Section 7.1 of [TLS13] specifies that HKDF-Expand-Label uses a label
   prefix of "tls13 ".  For DTLS 1.3, that label SHALL be "dtls13".
   This ensures key separation between DTLS 1.3 and TLS 1.3.  Note that
   there is no trailing space; this is necessary in order to keep the
   overall label size inside of one hash iteration because "DTLS" is one
   letter longer than "TLS".

5.11.  Alert Messages

   Note that Alert messages are not retransmitted at all, even when they
   occur in the context of a handshake.  However, a DTLS implementation
   which would ordinarily issue an alert SHOULD generate a new alert
   message if the offending record is received again (e.g., as a
   retransmitted handshake message).  Implementations SHOULD detect when
   a peer is persistently sending bad messages and terminate the local
   connection state after such misbehavior is detected.  Note that
   alerts are not reliably transmitted; implementation SHOULD NOT depend
   on receiving alerts in order to signal errors or connection closure.

5.12.  Establishing New Associations with Existing Parameters

   If a DTLS client-server pair is configured in such a way that
   repeated connections happen on the same host/port quartet, then it is
   possible that a client will silently abandon one connection and then
   initiate another with the same parameters (e.g., after a reboot).
   This will appear to the server as a new handshake with epoch=0.  In
   cases where a server believes it has an existing association on a
   given host/port quartet and it receives an epoch=0 ClientHello, it
   SHOULD proceed with a new handshake but MUST NOT destroy the existing
   association until the client has demonstrated reachability either by
   completing a cookie exchange or by completing a complete handshake
   including delivering a verifiable Finished message.  After a correct
   Finished message is received, the server MUST abandon the previous
   association to avoid confusion between two valid associations with
   overlapping epochs.  The reachability requirement prevents off-path/
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   blind attackers from destroying associations merely by sending forged
   ClientHellos.

   Note: it is not always possible to distinguish which association a
   given record is from.  For instance, if the client performs a
   handshake, abandons the connection, and then immediately starts a new
   handshake, it may not be possible to tell which connection a given
   protected record is for.  In these cases, trial decryption may be
   necessary, though implementations could use CIDs to avoid the 5-
   tuple-based ambiguity.

6.  Example of Handshake with Timeout and Retransmission

   The following is an example of a handshake with lost packets and
   retransmissions.  Note that the client sends an empty ACK message
   because it can only acknowledge Record 2 sent by the server once it
   has processed messages in Record 0 needed to establish epoch 2 keys,
   which are needed to encrypt or decrypt messages found in Record 2.
   Section 7 provides the necessary background details for this
   interaction.  Note: for simplicity we are not re-setting record
   numbers in this diagram, so "Record 1" is really "Epoch 2, Record 0,
   etc.".

   Client                                                Server
   ------                                                ------

    Record 0                  -------->
    ClientHello
    (message_seq=0)

                                X<-----                 Record 0
                                (lost)               ServerHello
                                                 (message_seq=0)
                                                        Record 1
                                             EncryptedExtensions
                                                 (message_seq=1)
                                                     Certificate
                                                 (message_seq=2)

                              <--------                 Record 2
                                               CertificateVerify
                                                 (message_seq=3)
                                                        Finished
                                                 (message_seq=4)

    Record 1                  -------->
    ACK []
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                              <--------                 Record 3
                                                     ServerHello
                                                 (message_seq=0)
                                             EncryptedExtensions
                                                 (message_seq=1)
                                                     Certificate
                                                 (message_seq=2)

                              <--------                 Record 4
                                               CertificateVerify
                                                 (message_seq=3)
                                                        Finished
                                                 (message_seq=4)

    Record 2                  -------->
    Certificate
    (message_seq=1)
    CertificateVerify
    (message_seq=2)
    Finished
    (message_seq=3)

                              <--------               Record 5
                                                       ACK [2]

         Figure 12: Example DTLS exchange illustrating message loss

6.1.  Epoch Values and Rekeying

   A recipient of a DTLS message needs to select the correct keying
   material in order to process an incoming message.  With the
   possibility of message loss and re-ordering, an identifier is needed
   to determine which cipher state has been used to protect the record
   payload.  The epoch value fulfills this role in DTLS.  In addition to
   the TLS 1.3-defined key derivation steps, see Section 7 of [TLS13], a
   sender may want to rekey at any time during the lifetime of the
   connection.  It therefore needs to indicate that it is updating its
   sending cryptographic keys.

   This version of DTLS assigns dedicated epoch values to messages in
   the protocol exchange to allow identification of the correct cipher
   state:

   *  epoch value (0) is used with unencrypted messages.  There are
      three unencrypted messages in DTLS, namely ClientHello,
      ServerHello, and HelloRetryRequest.
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   *  epoch value (1) is used for messages protected using keys derived
      from client_early_traffic_secret.  Note this epoch is skipped if
      the client does not offer early data.

   *  epoch value (2) is used for messages protected using keys derived
      from [sender]_handshake_traffic_secret.  Messages transmitted
      during the initial handshake, such as EncryptedExtensions,
      CertificateRequest, Certificate, CertificateVerify, and Finished
      belong to this category.  Note, however, post-handshake are
      protected under the appropriate application traffic key and are
      not included in this category.

   *  epoch value (3) is used for payloads protected using keys derived
      from the initial [sender]_application_traffic_secret_0.  This may
      include handshake messages, such as post-handshake messages (e.g.,
      a NewSessionTicket message).

   *  epoch value (4 to 2^16-1) is used for payloads protected using
      keys from the [sender]_application_traffic_secret_N (N>0).

   Using these reserved epoch values a receiver knows what cipher state
   has been used to encrypt and integrity protect a message.
   Implementations that receive a record with an epoch value for which
   no corresponding cipher state can be determined SHOULD handle it as a
   record which fails deprotection.

   Note that epoch values do not wrap.  If a DTLS implementation would
   need to wrap the epoch value, it MUST terminate the connection.

   The traffic key calculation is described in Section 7.3 of [TLS13].

   Figure 13 illustrates the epoch values in an example DTLS handshake.

   Client                                             Server
   ------                                             ------

    Record 0
    ClientHello
    (epoch=0)
                               -------->
                                                        Record 0
                               <--------       HelloRetryRequest
                                                       (epoch=0)
    Record 1
    ClientHello                -------->
    (epoch=0)
                                                        Record 1
                               <--------             ServerHello
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                                                       (epoch=0)
                                           {EncryptedExtensions}
                                                       (epoch=2)
                                                   {Certificate}
                                                       (epoch=2)
                                             {CertificateVerify}
                                                       (epoch=2)
                                                      {Finished}
                                                       (epoch=2)
    Record 2
    {Certificate}              -------->
    (epoch=2)
    {CertificateVerify}
    (epoch=2)
    {Finished}
    (epoch=2)
                                                        Record 2
                               <--------                   [ACK]
                                                       (epoch=3)
    Record 3
    [Application Data]         -------->
    (epoch=3)
                                                        Record 3
                               <--------      [Application Data]
                                                       (epoch=3)

                            Some time later ...
                    (Post-Handshake Message Exchange)
                                                        Record 4
                               <--------      [NewSessionTicket]
                                                       (epoch=3)
    Record 4
    [ACK]                      -------->
    (epoch=3)

                            Some time later ...
                              (Rekeying)
                                                        Record 5
                               <--------      [Application Data]
                                                       (epoch=4)
    Record 5
    [Application Data]         -------->
    (epoch=4)

          Figure 13: Example DTLS exchange with epoch information
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7.  ACK Message

   The ACK message is used by an endpoint to indicate which handshake
   records it has received and processed from the other side.  ACK is
   not a handshake message but is rather a separate content type, with
   code point TBD (proposed, 25).  This avoids having ACK being added to
   the handshake transcript.  Note that ACKs can still be sent in the
   same UDP datagram as handshake records.

       struct {
           RecordNumber record_numbers<0..2^16-1>;
       } ACK;

   record_numbers:  a list of the records containing handshake messages
      in the current flight which the endpoint has received and either
      processed or buffered, in numerically increasing order.

   Implementations MUST NOT acknowledge records containing handshake
   messages or fragments which have not been processed or buffered.
   Otherwise, deadlock can ensue.  As an example, implementations MUST
   NOT send ACKs for handshake messages which they discard because they
   are not the next expected message.

   During the handshake, ACKs only cover the current outstanding flight
   (this is possible because DTLS is generally a lockstep protocol).  In
   particular, receiving a message from a handshake flight implicitly
   acknowledges all messages from the previous flight(s).  Accordingly,
   an ACK from the server would not cover both the ClientHello and the
   client’s Certificate, because the ClientHello and client Certificate
   are in different flights.  Implementations can accomplish this by
   clearing their ACK list upon receiving the start of the next flight.

   After the handshake, ACKs SHOULD be sent once for each received and
   processed handshake record (potentially subject to some delay) and
   MAY cover more than one flight.  This includes records containing
   messages which are discarded because a previous copy has been
   received.

   During the handshake, ACK records MUST be sent with an epoch that is
   equal to or higher than the record which is being acknowledged.  Note
   that some care is required when processing flights spanning multiple
   epochs.  For instance, if the client receives only the Server Hello
   and Certificate and wishes to ACK them in a single record, it must do
   so in epoch 2, as it is required to use an epoch greater than or
   equal to 2 and cannot yet send with any greater epoch.
   Implementations SHOULD simply use the highest current sending epoch,
   which will generally be the highest available.  After the handshake,
   implementations MUST use the highest available sending epoch.
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7.1.  Sending ACKs

   When an implementation detects a disruption in the receipt of the
   current incoming flight, it SHOULD generate an ACK that covers the
   messages from that flight which it has received and processed so far.
   Implementations have some discretion about which events to treat as
   signs of disruption, but it is RECOMMENDED that they generate ACKs
   under two circumstances:

   *  When they receive a message or fragment which is out of order,
      either because it is not the next expected message or because it
      is not the next piece of the current message.

   *  When they have received part of a flight and do not immediately
      receive the rest of the flight (which may be in the same UDP
      datagram).  "Immediately" is hard to define.  One approach is to
      set a timer for 1/4 the current retransmit timer value when the
      first record in the flight is received and then send an ACK when
      that timer expires.  Note: the 1/4 value here is somewhat
      arbitrary.  Given that the round trip estimates in the DTLS
      handshake are generally very rough (or the default), any value
      will be an approximation, and there is an inherent compromise due
      to competition between retransmision due to over-agressive ACKing
      and over-aggressive timeout-based retransmission.  As a comparison
      point, QUIC’s loss-based recovery algorithms
      ([I-D.ietf-quic-recovery]; Section 6.1.2) work out to a delay of
      about 1/3 of the retransmit timer.

   In general, flights MUST be ACKed unless they are implicitly
   acknowledged.  In the present specification the following flights are
   implicitly acknowledged by the receipt of the next flight, which
   generally immediately follows the flight,

   1.  Handshake flights other than the client’s final flight of the
       main handshake.

   2.  The server’s post-handshake CertificateRequest.

   ACKs SHOULD NOT be sent for these flights unless the responding
   flight cannot be generated immediately.  In this case,
   implementations MAY send explicit ACKs for the complete received
   flight even though it will eventually also be implicitly acknowledged
   through the responding flight.  A notable example for this is the
   case of client authentication in constrained environments, where
   generating the CertificateVerify message can take considerable time
   on the client.  All other flights MUST be ACKed.  Implementations MAY
   acknowledge the records corresponding to each transmission of each
   flight or simply acknowledge the most recent one.  In general,
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   implementations SHOULD ACK as many received packets as can fit into
   the ACK record, as this provides the most complete information and
   thus reduces the chance of spurious retransmission; if space is
   limited, implementations SHOULD favor including records which have
   not yet been acknowledged.

   Note: While some post-handshake messages follow a request/response
   pattern, this does not necessarily imply receipt.  For example, a
   KeyUpdate sent in response to a KeyUpdate with request_update set to
   ’update_requested’ does not implicitly acknowledge the earlier
   KeyUpdate message because the two KeyUpdate messages might have
   crossed in flight.

   ACKs MUST NOT be sent for other records of any content type other
   than handshake or for records which cannot be unprotected.

   Note that in some cases it may be necessary to send an ACK which does
   not contain any record numbers.  For instance, a client might receive
   an EncryptedExtensions message prior to receiving a ServerHello.
   Because it cannot decrypt the EncryptedExtensions, it cannot safely
   acknowledge it (as it might be damaged).  If the client does not send
   an ACK, the server will eventually retransmit its first flight, but
   this might take far longer than the actual round trip time between
   client and server.  Having the client send an empty ACK shortcuts
   this process.

7.2.  Receiving ACKs

   When an implementation receives an ACK, it SHOULD record that the
   messages or message fragments sent in the records being ACKed were
   received and omit them from any future retransmissions.  Upon receipt
   of an ACK that leaves it with only some messages from a flight having
   been acknowledged an implementation SHOULD retransmit the
   unacknowledged messages or fragments.  Note that this requires
   implementations to track which messages appear in which records.
   Once all the messages in a flight have been acknowledged, the
   implementation MUST cancel all retransmissions of that flight.
   Implementations MUST treat a record as having been acknowledged if it
   appears in any ACK; this prevents spurious retransmission in cases
   where a flight is very large and the receiver is forced to elide
   acknowledgements for records which have already been ACKed.  As noted
   above, the receipt of any record responding to a given flight MUST be
   taken as an implicit acknowledgement for the entire flight to which
   it is responding.
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7.3.  Design Rationale

   ACK messages are used in two circumstances, namely :

   *  on sign of disruption, or lack of progress, and

   *  to indicate complete receipt of the last flight in a handshake.

   In the first case the use of the ACK message is optional because the
   peer will retransmit in any case and therefore the ACK just allows
   for selective or early retransmission, as opposed to the timeout-
   based whole flight retransmission in previous versions of DTLS.  When
   DTLS 1.3 is used in deployments with lossy networks, such as low-
   power, long range radio networks as well as low-power mesh networks,
   the use of ACKs is recommended.

   The use of the ACK for the second case is mandatory for the proper
   functioning of the protocol.  For instance, the ACK message sent by
   the client in Figure 13, acknowledges receipt and processing of
   record 4 (containing the NewSessionTicket message) and if it is not
   sent the server will continue retransmission of the NewSessionTicket
   indefinitely until its maximum retransmission count is reached.

8.  Key Updates

   As with TLS 1.3, DTLS 1.3 implementations send a KeyUpdate message to
   indicate that they are updating their sending keys.  As with other
   handshake messages with no built-in response, KeyUpdates MUST be
   acknowledged.  In order to facilitate epoch reconstruction
   Section 4.2.2 implementations MUST NOT send records with the new keys
   or send a new KeyUpdate until the previous KeyUpdate has been
   acknowledged (this avoids having too many epochs in active use).

   Due to loss and/or re-ordering, DTLS 1.3 implementations may receive
   a record with an older epoch than the current one (the requirements
   above preclude receiving a newer record).  They SHOULD attempt to
   process those records with that epoch (see Section 4.2.2 for
   information on determining the correct epoch), but MAY opt to discard
   such out-of-epoch records.

   Due to the possibility of an ACK message for a KeyUpdate being lost
   and thereby preventing the sender of the KeyUpdate from updating its
   keying material, receivers MUST retain the pre-update keying material
   until receipt and successful decryption of a message using the new
   keys.
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   Figure 14 shows an example exchange illustrating that a successful
   ACK processing updates the keys of the KeyUpdate message sender,
   which is reflected in the change of epoch values.

   Client                                             Server

         /-------------------------------------------\
        |                                             |
        |             Initial Handshake               |
         \-------------------------------------------/

    [Application Data]         -------->
    (epoch=3)

                               <--------      [Application Data]
                                                       (epoch=3)

         /-------------------------------------------\
        |                                             |
        |              Some time later ...            |
         \-------------------------------------------/

    [Application Data]         -------->
    (epoch=3)

    [KeyUpdate]
    (+ update_requested        -------->
    (epoch 3)

                               <--------      [Application Data]
                                                       (epoch=3)

                                                           [Ack]
                               <--------               (epoch=3)

    [Application Data]
    (epoch=4)                  -------->

                               <--------             [KeyUpdate]
                                                       (epoch=3)
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    [Ack]                      -------->
    (epoch=4)

                               <--------      [Application Data]
                                                       (epoch=4)

                     Figure 14: Example DTLS Key Update

9.  Connection ID Updates

   If the client and server have negotiated the "connection_id"
   extension [I-D.ietf-tls-dtls-connection-id], either side can send a
   new CID which it wishes the other side to use in a NewConnectionId
   message.

       enum {
           cid_immediate(0), cid_spare(1), (255)
       } ConnectionIdUsage;

       opaque ConnectionId<0..2^8-1>;

       struct {
           ConnectionIds cids<0..2^16-1>;
           ConnectionIdUsage usage;
       } NewConnectionId;

   cid  Indicates the set of CIDs which the sender wishes the peer to
      use.

   usage  Indicates whether the new CIDs should be used immediately or
      are spare.  If usage is set to "cid_immediate", then one of the
      new CID MUST be used immediately for all future records.  If it is
      set to "cid_spare", then either existing or new CID MAY be used.

   Endpoints SHOULD use receiver-provided CIDs in the order they were
   provided.  Implementations which receive more spare CIDs than they
   wish to maintain MAY simply discard any extra CIDs.  Endpoints MUST
   NOT have more than one NewConnectionId message outstanding.

   Implementations which either did not negotiate the "connection_id"
   extension or which have negotiated receiving an empty CID MUST NOT
   send NewConnectionId.  Implementations MUST NOT send
   RequestConnectionId when sending an empty Connection ID.
   Implementations which detect a violation of these rules MUST
   terminate the connection with an "unexpected_message" alert.
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   Implementations SHOULD use a new CID whenever sending on a new path,
   and SHOULD request new CIDs for this purpose if path changes are
   anticipated.

       struct {
         uint8 num_cids;
       } RequestConnectionId;

   num_cids  The number of CIDs desired.

   Endpoints SHOULD respond to RequestConnectionId by sending a
   NewConnectionId with usage "cid_spare" containing num_cid CIDs soon
   as possible.  Endpoints MUST NOT send a RequestConnectionId message
   when an existing request is still unfulfilled; this implies that
   endpoints needs to request new CIDs well in advance.  An endpoint MAY
   handle requests, which it considers excessive, by responding with a
   NewConnectionId message containing fewer than num_cid CIDs, including
   no CIDs at all.  Endpoints MAY handle an excessive number of
   RequestConnectionId messages by terminating the connection using a
   "too_many_cids_requested" (alert number 52) alert.

   Endpoints MUST NOT send either of these messages if they did not
   negotiate a CID.  If an implementation receives these messages when
   CIDs were not negotiated, it MUST abort the connection with an
   unexpected_message alert.

9.1.  Connection ID Example

   Below is an example exchange for DTLS 1.3 using a single CID in each
   direction.

   Note: The connection_id extension is defined in
   [I-D.ietf-tls-dtls-connection-id], which is used in ClientHello and
   ServerHello messages.
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   Client                                             Server
   ------                                             ------

   ClientHello
   (connection_id=5)
                               -------->

                               <--------       HelloRetryRequest
                                                        (cookie)

   ClientHello                 -------->
   (connection_id=5)
     +cookie

                               <--------             ServerHello
                                             (connection_id=100)
                                             EncryptedExtensions
                                                         (cid=5)
                                                     Certificate
                                                         (cid=5)
                                               CertificateVerify
                                                         (cid=5)
                                                        Finished
                                                         (cid=5)

   Certificate                -------->
   (cid=100)
   CertificateVerify
   (cid=100)
   Finished
   (cid=100)
                              <--------                      Ack
                                                         (cid=5)

   Application Data           ========>
   (cid=100)
                              <========         Application Data
                                                         (cid=5)

               Figure 15: Example DTLS 1.3 Exchange with CIDs

   If no CID is negotiated, then the receiver MUST reject any records it
   receives that contain a CID.
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10.  Application Data Protocol

   Application data messages are carried by the record layer and are
   split into records and encrypted based on the current connection
   state.  The messages are treated as transparent data to the record
   layer.

11.  Security Considerations

   Security issues are discussed primarily in [TLS13].

   The primary additional security consideration raised by DTLS is that
   of denial of service by excessive resource consumption.  DTLS
   includes a cookie exchange designed to protect against denial of
   service.  However, implementations that do not use this cookie
   exchange are still vulnerable to DoS.  In particular, DTLS servers
   that do not use the cookie exchange may be used as attack amplifiers
   even if they themselves are not experiencing DoS.  Therefore, DTLS
   servers SHOULD use the cookie exchange unless there is good reason to
   believe that amplification is not a threat in their environment.
   Clients MUST be prepared to do a cookie exchange with every
   handshake.

   Some key properties required of the cookie for the cookie-exchange
   mechanism to be functional are described in Section 3.3 of [RFC2522]:

   *  the cookie MUST depend on the client’s address.

   *  it MUST NOT be possible for anyone other than the issuing entity
      to generate cookies that are accepted as valid by that entity.
      This typically entails an integrity check based on a secret key.

   *  cookie generation and verification are triggered by
      unauthenticated parties, and as such their resource consumption
      needs to be restrained in order to avoid having the cookie-
      exchange mechanism itself serve as a DoS vector.

   Although the cookie must allow the server to produce the right
   handshake transcript, it SHOULD be constructed so that knowledge of
   the cookie is insufficient to reproduce the ClientHello contents.
   Otherwise, this may create problems with future extensions such as
   [I-D.ietf-tls-esni].

   When cookies are generated using a keyed authentication mechanism it
   should be possible to rotate the associated secret key, so that
   temporary compromise of the key does not permanently compromise the
   integrity of the cookie-exchange mechanism.  Though this secret is
   not as high-value as, e.g., a session-ticket-encryption key, rotating
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   the cookie-generation key on a similar timescale would ensure that
   the key-rotation functionality is exercised regularly and thus in
   working order.

   The cookie exchange provides address validation during the initial
   handshake.  DTLS with Connection IDs allows for endpoint addresses to
   change during the association; any such updated addresses are not
   covered by the cookie exchange during the handshake.  DTLS
   implementations MUST NOT update the address they send to in response
   to packets from a different address unless they first perform some
   reachability test; no such test is defined in this specification.
   Even with such a test, an active on-path adversary can also black-
   hole traffic or create a reflection attack against third parties
   because a DTLS peer has no means to distinguish a genuine address
   update event (for example, due to a NAT rebinding) from one that is
   malicious.  This attack is of concern when there is a large asymmetry
   of request/response message sizes.

   With the exception of order protection and non-replayability, the
   security guarantees for DTLS 1.3 are the same as TLS 1.3.  While TLS
   always provides order protection and non-replayability, DTLS does not
   provide order protection and may not provide replay protection.

   Unlike TLS implementations, DTLS implementations SHOULD NOT respond
   to invalid records by terminating the connection.

   TLS 1.3 requires replay protection for 0-RTT data (or rather, for
   connections that use 0-RTT data; see Section 8 of [TLS13]).  DTLS
   provides an optional per-record replay-protection mechanism, since
   datagram protocols are inherently subject to message reordering and
   replay.  These two replay-protection mechanisms are orthogonal, and
   neither mechanism meets the requirements for the other.

   The security and privacy properties of the CID for DTLS 1.3 builds on
   top of what is described for DTLS 1.2 in
   [I-D.ietf-tls-dtls-connection-id].  There are, however, several
   differences:

   *  In both versions of DTLS extension negotiation is used to agree on
      the use of the CID feature and the CID values.  In both versions
      the CID is carried in the DTLS record header (if negotiated).
      However, the way the CID is included in the record header differs
      between the two versions.

   *  The use of the Post-Handshake message allows the client and the
      server to update their CIDs and those values are exchanged with
      confidentiality protection.

Rescorla, et al.         Expires 1 November 2021               [Page 54]



Internet-Draft                  DTLS 1.3                      April 2021

   *  The ability to use multiple CIDs allows for improved privacy
      properties in multi-homed scenarios.  When only a single CID is in
      use on multiple paths from such a host, an adversary can correlate
      the communication interaction across paths, which adds further
      privacy concerns.  In order to prevent this, implementations
      SHOULD attempt to use fresh CIDs whenever they change local
      addresses or ports (though this is not always possible to detect).
      The RequestConnectionId message can be used by a peer to ask for
      new CIDs to ensure that a pool of suitable CIDs is available.

   *  The mechanism for encrypting sequence numbers (Section 4.2.3)
      prevents trivial tracking by on-path adversaries that attempt to
      correlate the pattern of sequence numbers received on different
      paths; such tracking could occur even when different CIDs are used
      on each path, in the absence of sequence number encryption.
      Switching CIDs based on certain events, or even regularly, helps
      against tracking by on-path adversaries.  Note that sequence
      number encryption is used for all encrypted DTLS 1.3 records
      irrespective of whether a CID is used or not.  Unlike the sequence
      number, the epoch is not encrypted because it acts as a key
      identifier, which may improve correlation of packets from a single
      connection across different network paths.

   *  DTLS 1.3 encrypts handshake messages much earlier than in previous
      DTLS versions.  Therefore, less information identifying the DTLS
      client, such as the client certificate, is available to an on-path
      adversary.

12.  Changes since DTLS 1.2

   Since TLS 1.3 introduces a large number of changes with respect to
   TLS 1.2, the list of changes from DTLS 1.2 to DTLS 1.3 is equally
   large.  For this reason this section focuses on the most important
   changes only.

   *  New handshake pattern, which leads to a shorter message exchange

   *  Only AEAD ciphers are supported.  Additional data calculation has
      been simplified.

   *  Removed support for weaker and older cryptographic algorithms

   *  HelloRetryRequest of TLS 1.3 used instead of HelloVerifyRequest

   *  More flexible ciphersuite negotiation

   *  New session resumption mechanism
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   *  PSK authentication redefined

   *  New key derivation hierarchy utilizing a new key derivation
      construct

   *  Improved version negotiation

   *  Optimized record layer encoding and thereby its size

   *  Added CID functionality

   *  Sequence numbers are encrypted.

13.  Updates affecting DTLS 1.2

   This document defines several changes that optionally affect
   implementations of DTLS 1.2, including those which do not also
   support DTLS 1.3.

   *  A version downgrade protection mechanism as described in [TLS13];
      Section 4.1.3 and applying to DTLS as described in Section 5.3.

   *  The updates described in [TLS13]; Section 3.

   *  The new compliance requirements described in [TLS13]; Section 9.3.

14.  IANA Considerations

   IANA is requested to allocate a new value in the "TLS ContentType"
   registry for the ACK message, defined in Section 7, with content type
   26.  The value for the "DTLS-OK" column is "Y".  IANA is requested to
   reserve the content type range 32-63 so that content types in this
   range are not allocated.

   IANA is requested to allocate "the too_many_cids_requested" alert in
   the "TLS Alerts" registry with value 52.

   IANA is requested to allocate two values in the "TLS Handshake Type"
   registry, defined in [TLS13], for RequestConnectionId (TBD), and
   NewConnectionId (TBD), as defined in this document.  The value for
   the "DTLS-OK" columns are "Y".

   IANA is requested to add this RFC as a reference to the TLS Cipher
   Suite Registry along with the following Note:
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   Any TLS cipher suite that is specified for use with DTLS MUST
   define limits on the use of the associated AEAD function that
   preserves margins for both confidentiality and integrity,
   as specified in [THIS RFC; Section TODO]
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Appendix A.  Protocol Data Structures and Constant Values

   This section provides the normative protocol types and constants
   definitions.

A.1.  Record Layer
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   struct {
       ContentType type;
       ProtocolVersion legacy_record_version;
       uint16 epoch = 0
       uint48 sequence_number;
       uint16 length;
       opaque fragment[DTLSPlaintext.length];
   } DTLSPlaintext;

   struct {
        opaque content[DTLSPlaintext.length];
        ContentType type;
        uint8 zeros[length_of_padding];
   } DTLSInnerPlaintext;

   struct {
       opaque unified_hdr[variable];
       opaque encrypted_record[length];
   } DTLSCiphertext;

   0 1 2 3 4 5 6 7
   +-+-+-+-+-+-+-+-+
   |0|0|1|C|S|L|E E|
   +-+-+-+-+-+-+-+-+
   | Connection ID |   Legend:
   | (if any,      |
   /  length as    /   C   - Connection ID (CID) present
   |  negotiated)  |   S   - Sequence number length
   +-+-+-+-+-+-+-+-+   L   - Length present
   |  8 or 16 bit  |   E   - Epoch
   |Sequence Number|
   +-+-+-+-+-+-+-+-+
   | 16 bit Length |
   | (if present)  |
   +-+-+-+-+-+-+-+-+

   struct {
       uint16 epoch;
       uint48 sequence_number;
   } RecordNumber;

A.2.  Handshake Protocol
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   enum {
       hello_request_RESERVED(0),
       client_hello(1),
       server_hello(2),
       hello_verify_request_RESERVED(3),
       new_session_ticket(4),
       end_of_early_data(5),
       hello_retry_request_RESERVED(6),
       encrypted_extensions(8),
       certificate(11),
       server_key_exchange_RESERVED(12),
       certificate_request(13),
       server_hello_done_RESERVED(14),
       certificate_verify(15),
       client_key_exchange_RESERVED(16),
       finished(20),
       certificate_url_RESERVED(21),
       certificate_status_RESERVED(22),
       supplemental_data_RESERVED(23),
       key_update(24),
       message_hash(254),
       (255)
   } HandshakeType;

   struct {
       HandshakeType msg_type;    /* handshake type */
       uint24 length;             /* bytes in message */
       uint16 message_seq;        /* DTLS-required field */
       uint24 fragment_offset;    /* DTLS-required field */
       uint24 fragment_length;    /* DTLS-required field */
       select (msg_type) {
           case client_hello:          ClientHello;
           case server_hello:          ServerHello;
           case end_of_early_data:     EndOfEarlyData;
           case encrypted_extensions:  EncryptedExtensions;
           case certificate_request:   CertificateRequest;
           case certificate:           Certificate;
           case certificate_verify:    CertificateVerify;
           case finished:              Finished;
           case new_session_ticket:    NewSessionTicket;
           case key_update:            KeyUpdate;
       } body;
   } Handshake;

   uint16 ProtocolVersion;
   opaque Random[32];

   uint8 CipherSuite[2];    /* Cryptographic suite selector */
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   struct {
       ProtocolVersion legacy_version = { 254,253 }; // DTLSv1.2
       Random random;
       opaque legacy_session_id<0..32>;
       opaque legacy_cookie<0..2^8-1>;                  // DTLS
       CipherSuite cipher_suites<2..2^16-2>;
       opaque legacy_compression_methods<1..2^8-1>;
       Extension extensions<8..2^16-1>;
   } ClientHello;

A.3.  ACKs

   struct {
       RecordNumber record_numbers<0..2^16-1>;
   } ACK;

A.4.  Connection ID Management

   enum {
       cid_immediate(0), cid_spare(1), (255)
   } ConnectionIdUsage;

   opaque ConnectionId<0..2^8-1>;

   struct {
       ConnectionIds cids<0..2^16-1>;
       ConnectionIdUsage usage;
   } NewConnectionId;

   struct {
     uint8 num_cids;
   } RequestConnectionId;

Appendix B.  Analysis of Limits on CCM Usage

   TLS [TLS13] and [AEBounds] do not specify limits on key usage for
   AEAD_AES_128_CCM.  However, any AEAD that is used with DTLS requires
   limits on use that ensure that both confidentiality and integrity are
   preserved.  This section documents that analysis for
   AEAD_AES_128_CCM.

   [CCM-ANALYSIS] is used as the basis of this analysis.  The results of
   that analysis are used to derive usage limits that are based on those
   chosen in [TLS13].

   This analysis uses symbols for multiplication (*), division (/), and
   exponentiation (^), plus parentheses for establishing precedence.
   The following symbols are also used:
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   t:  The size of the authentication tag in bits.  For this cipher, t
      is 128.

   n:  The size of the block function in bits.  For this cipher, n is
      128.

   l:  The number of blocks in each packet (see below).

   q:  The number of genuine packets created and protected by endpoints.
      This value is the bound on the number of packets that can be
      protected before updating keys.

   v:  The number of forged packets that endpoints will accept.  This
      value is the bound on the number of forged packets that an
      endpoint can reject before updating keys.

   The analysis of AEAD_AES_128_CCM relies on a count of the number of
   block operations involved in producing each message.  For simplicity,
   and to match the analysis of other AEAD functions in [AEBounds], this
   analysis assumes a packet length of 2^10 blocks and a packet size
   limit of 2^14 bytes.

   For AEAD_AES_128_CCM, the total number of block cipher operations is
   the sum of: the length of the associated data in blocks, the length
   of the ciphertext in blocks, and the length of the plaintext in
   blocks, plus 1.  In this analysis, this is simplified to a value of
   twice the maximum length of a record in blocks (that is, "2l =
   2^11").  This simplification is based on the associated data being
   limited to one block.

B.1.  Confidentiality Limits

   For confidentiality, Theorem 2 in [CCM-ANALYSIS] establishes that an
   attacker gains a distinguishing advantage over an ideal pseudorandom
   permutation (PRP) of no more than:

   (2l * q)^2 / 2^n

   For a target advantage of 2^-60, which matches that used by [TLS13],
   this results in the relation:

   q <= 2^23

   That is, endpoints cannot protect more than 2^23 packets with the
   same set of keys without causing an attacker to gain an larger
   advantage than the target of 2^-60.
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B.2.  Integrity Limits

   For integrity, Theorem 1 in [CCM-ANALYSIS] establishes that an
   attacker gains an advantage over an ideal PRP of no more than:

   v / 2^t + (2l * (v + q))^2 / 2^n

   The goal is to limit this advantage to 2^-57, to match the target in
   [TLS13].  As "t" and "n" are both 128, the first term is negligible
   relative to the second, so that term can be removed without a
   significant effect on the result.  This produces the relation:

   v + q <= 2^24.5

   Using the previously-established value of 2^23 for "q" and rounding,
   this leads to an upper limit on "v" of 2^23.5.  That is, endpoints
   cannot attempt to authenticate more than 2^23.5 packets with the same
   set of keys without causing an attacker to gain an larger advantage
   than the target of 2^-57.

B.3.  Limits for AEAD_AES_128_CCM_8

   The TLS_AES_128_CCM_8_SHA256 cipher suite uses the AEAD_AES_128_CCM_8
   function, which uses a short authentication tag (that is, t=64).

   The confidentiality limits of AEAD_AES_128_CCM_8 are the same as
   those for AEAD_AES_128_CCM, as this does not depend on the tag
   length; see Appendix B.1.

   The shorter tag length of 64 bits means that the simplification used
   in Appendix B.2 does not apply to AEAD_AES_128_CCM_8.  If the goal is
   to preserve the same margins as other cipher suites, then the limit
   on forgeries is largely dictated by the first term of the advantage
   formula:

   v <= 2^7

   As this represents attempts to fail authentication, applying this
   limit might be feasible in some environments.  However, applying this
   limit in an implementation intended for general use exposes
   connections to an inexpensive denial of service attack.
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   This analysis supports the view that TLS_AES_128_CCM_8_SHA256 is not
   suitable for general use.  Specifically, TLS_AES_128_CCM_8_SHA256
   cannot be used without additional measures to prevent forgery of
   records, or to mitigate the effect of forgeries.  This might require
   understanding the constraints that exist in a particular deployment
   or application.  For instance, it might be possible to set a
   different target for the advantage an attacker gains based on an
   understanding of the constraints imposed on a specific usage of DTLS.

Appendix C.  Implementation Pitfalls

   In addition to the aspects of TLS that have been a source of
   interoperability and security problems (Section C.3 of [TLS13]), DTLS
   presents a few new potential sources of issues, noted here.

   *  Do you correctly handle messages received from multiple epochs
      during a key transition?  This includes locating the correct key
      as well as performing replay detection, if enabled.

   *  Do you retransmit handshake messages that are not (implicitly or
      explicitly) acknowledged (Section 5.8)?

   *  Do you correctly handle handshake message fragments received,
      including when they are out of order?

   *  Do you correctly handle handshake messages received out of order?
      This may include either buffering or discarding them.

   *  Do you limit how much data you send to a peer before its address
      is validated?

   *  Do you verify that the explicit record length is contained within
      the datagram in which it is contained?

Appendix D.  History

   RFC EDITOR: PLEASE REMOVE THE THIS SECTION

   (*) indicates a change that may affect interoperability.

   IETF Drafts draft-42

   *  SHOULD level requirement for the client to offer CID extension.

   *  Change the default retransmission timer to 1s and allow people to
      do otherwise if they have side knowledge.

   *  Cap any given flight to 10 records
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   *  Don’t re-set the timer to the initial value but to 1.5 times the
      measured RTT.

   *  A bunch more clarity about the reliability algorithms and timers
      (including changing reset to re-arm)

   *  Update IANA considerations

   draft-40

   - Clarified encrypted_record structure in DTLS 1.3 record layer
   - Added description of the demultiplexing process
   - Added text about the DTLS 1.2 and DTLS 1.3 CID mechanism
   - Forbid going from an empty CID to a non-empty CID (*)
   - Add warning about certificates and congestion
   - Use DTLS style version values, even for DTLS 1.3 (*)
   - Describe how to distinguish DTLS 1.2 and DTLS 1.3 connections
   - Updated examples
   - Included editorial improvements from Ben Kaduk
   - Removed stale text about out-of-epoch records
   - Added clarifications around when ACKs are sent
   - Noted that alerts are unreliable
   - Clarify when you can reset the timer
   - Indicated that records with bogus epochs should be discarded
   - Relax age out text
   - Updates to cookie text
   - Require that cipher suites define a record number encryption algorithm
   - Clean up use of connection and association
   - Reference tls-old-versions-deprecate

   draft-39 - Updated Figure 4 due to misalignment with Figure 3 content

   draft-38 - Ban implicit Connection IDs (*) - ACKs are processed as
   the union.

   draft-37: - Fix the other place where we have ACK.

   draft-36: - Some editorial changes. - Changed the content type to not
   conflict with existing allocations (*)

   draft-35: - I-D.ietf-tls-dtls-connection-id became a normative
   reference - Removed duplicate reference to I-D.ietf-tls-dtls-
   connection-id. - Fix figure 11 to have the right numbers andno cookie
   in message 1. - Clarify when you can ACK. - Clarify additional data
   computation.

   draft-33: - Key separation between TLS and DTLS.  Issue #72.
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   draft-32: - Editorial improvements and clarifications.

   draft-31: - Editorial improvements in text and figures. - Added
   normative reference to ChaCha20 and Poly1305.

   draft-30: - Changed record format - Added text about end of early
   data - Changed format of the Connection ID Update message - Added
   Appendix A "Protocol Data Structures and Constant Values"

   draft-29: - Added support for sequence number encryption - Update to
   new record format - Emphasize that compatibility mode isn’t used.

   draft-28: - Version bump to align with TLS 1.3 pre-RFC version.

   draft-27: - Incorporated unified header format. - Added support for
   CIDs.

   draft-04 - 26: - Submissions to align with TLS 1.3 draft versions

   draft-03 - Only update keys after KeyUpdate is ACKed.

   draft-02 - Shorten the protected record header and introduce an
   ultra-short version of the record header. - Reintroduce KeyUpdate,
   which works properly now that we have ACK. - Clarify the ACK rules.

   draft-01 - Restructured the ACK to contain a list of records and also
   be a record rather than a handshake message.

   draft-00 - First IETF Draft

   Personal Drafts draft-01 - Alignment with version -19 of the TLS 1.3
   specification

   draft-00

   *  Initial version using TLS 1.3 as a baseline.

   *  Use of epoch values instead of KeyUpdate message

   *  Use of cookie extension instead of cookie field in ClientHello and
      HelloVerifyRequest messages

   *  Added ACK message

   *  Text about sequence number handling
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Appendix E.  Working Group Information

   RFC EDITOR: PLEASE REMOVE THIS SECTION.

   The discussion list for the IETF TLS working group is located at the
   e-mail address tls@ietf.org (mailto:tls@ietf.org).  Information on
   the group and information on how to subscribe to the list is at
   https://www1.ietf.org/mailman/listinfo/tls
   (https://www1.ietf.org/mailman/listinfo/tls)

   Archives of the list can be found at: https://www.ietf.org/mail-
   archive/web/tls/current/index.html (https://www.ietf.org/mail-
   archive/web/tls/current/index.html)
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