
tls E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Experimental K. Oku
Expires: January 3, 2019 Fastly
 N. Sullivan
 Cloudflare
 C. Wood
 Apple, Inc.
 July 02, 2018

 Encrypted Server Name Indication for TLS 1.3
 draft-rescorla-tls-esni-00

Abstract

 This document defines a simple mechanism for encrypting the Server
 Name Indication for TLS 1.3.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Rescorla, et al. Expires January 3, 2019 [Page 1]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions and Definitions 4
 3. Overview . 4
 3.1. Topologies . 4
 3.2. SNI Encryption . 5
 4. Publishing the SNI Encryption Key 5
 5. The "encrypted_server_name" extension 7
 5.1. Client Behavior . 8
 5.2. Client-Facing Server Behavior 9
 5.3. Shared Mode Server Behavior 10
 5.4. Split Mode Server Behavior 10
 6. Compatibility Issues . 10
 6.1. Misconfiguration . 11
 6.2. Middleboxes . 11
 7. Security Considerations 11
 7.1. Why is cleartext DNS OK? 12
 7.2. Comparison Against Criteria 12
 7.2.1. Mitigate against replay attacks 12
 7.2.2. Avoid widely-deployed shared secrets 12
 7.2.3. Prevent SNI-based DoS attacks 13
 7.2.4. Do not stick out 13
 7.2.5. Forward secrecy 13
 7.2.6. Proper security context 13
 7.2.7. Split server spoofing 13
 7.2.8. Supporting multiple protocols 13
 7.3. Misrouting . 14
 8. IANA Considerations . 14
 8.1. Update of the TLS ExtensionType Registry 14
 9. References . 14
 9.1. Normative References 14
 9.2. Informative References 15
 Appendix A. Communicating SNI to Backend Server 16
 Appendix B. Alternative SNI Protection Designs 16
 B.1. TLS-layer . 16
 B.1.1. TLS in Early Data 16
 B.1.2. Combined Tickets 17
 B.2. Application-layer . 17
 B.2.1. HTTP/2 CERTIFICATE Frames 17
 Appendix C. Total Client Hello Encryption 17
 Appendix D. Acknowledgments 18
 Authors’ Addresses . 18

Rescorla, et al. Expires January 3, 2019 [Page 2]

Internet-Draft TLS 1.3 SNI Encryption July 2018

1. Introduction

 DISCLAIMER: This is very early a work-in-progress design and has not
 yet seen significant (or really any) security analysis. It should
 not be used as a basis for building production systems.

 Although TLS 1.3 [I-D.ietf-tls-tls13] encrypts most of the handshake,
 including the server certificate, there are several other channels
 that allow an on-path attacker to determine the domain name the
 client is trying to connect to, including:

 o Cleartext client DNS queries.

 o Visible server IP addresses, assuming the the server is not doing
 domain-based virtual hosting.

 o Cleartext Server Name Indication (SNI) [RFC6066] in ClientHello
 messages.

 DoH [I-D.ietf-doh-dns-over-https] and DPRIVE [RFC7858] [RFC8094]
 provide mechanisms for clients to conceal DNS lookups from network
 inspection, and many TLS servers host multiple domains on the same IP
 address. In such environments, SNI is an explicit signal used to
 determine the server’s identity. Indirect mechanisms such as traffic
 analysis also exist.

 The TLS WG has extensively studied the problem of protecting SNI, but
 has been unable to develop a completely generic solution.
 [I-D.ietf-tls-sni-encryption] provides a description of the problem
 space and some of the proposed techniques. One of the more difficult
 problems is "Do not stick out" ([I-D.ietf-tls-sni-encryption];
 Section 3.4): if only sensitive/private services use SNI encryption,
 then SNI encryption is a signal that a client is going to such a
 service. For this reason, much recent work has focused on concealing
 the fact that SNI is being protected. Unfortunately, the result
 often has undesirable performance consequences, incomplete coverage,
 or both.

 The design in this document takes a different approach: it assumes
 that private origins will co-locate with or hide behind a provider
 (CDN, app server, etc.) which is able to activate encrypted SNI
 (ESNI) for all of the domains it hosts. Thus, the use of encrypted
 SNI does not indicate that the client is attempting to reach a
 private origin, but only that it is going to a particular service
 provider, which the observer could already tell from the IP address.

Rescorla, et al. Expires January 3, 2019 [Page 3]

Internet-Draft TLS 1.3 SNI Encryption July 2018

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Overview

 This document is designed to operate in one of two primary topologies
 shown below, which we call "Shared Mode" and "Split Mode"

3.1. Topologies

 +---------------------+
 | |
 | 2001:DB8::1111 |
 | |
 Client <-----> | private.example.org |
 | |
 | public.example.com |
 | |
 +---------------------+
 Server

 Figure 1: Shared Mode Topology

 In Shared Mode, the provider is the origin server for all the domains
 whose DNS records point to it and clients form a TLS connection
 directly to that provider, which has access to the plaintext of the
 connection.

 +--------------------+ +---------------------+
 | | | |
 | 2001:DB8::1111 | | 2001:DB8::EEEE |
 Client <------------------------------------>| |
 | public.example.com | | private.example.com |
 | | | |
 +--------------------+ +---------------------+
 Client-Facing Server Backend Server

 Figure 2: Split Mode Topology

 In Split Mode, the provider is _not_ the origin server for private
 domains. Rather the DNS records for private domains point to the
 provider, but the provider’s server just relays the connection back
 to the backend server, which is the true origin server. The provider

Rescorla, et al. Expires January 3, 2019 [Page 4]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 does not have access to the plaintext of the connection. In
 principle, the provider might not be the origin for any domains, but
 as a practical matter, it is probably the origin for a large set of
 innocuous domains, but is also providing protection for some private
 domains. Note that the backend server can be an unmodified TLS 1.3
 server.

3.2. SNI Encryption

 The protocol designed in this document is quite straightforward.

 First, the provider publishes a public key which is used for SNI
 encryption for all the domains for which it serves directly or
 indirectly (via Split mode). This document defines a publication
 mechanism using DNS, but other mechanisms are also possible. In
 particular, if some of the clients of a private server are
 applications rather than Web browsers, those applications might have
 the public key preconfigured.

 When a client wants to form a TLS connection to any of the domains
 served by an ESNI-supporting provider, it replaces the "server_name"
 extension in the ClientHello with an "encrypted_server_name"
 extension, which contains the true extension encrypted under the
 provider’s public key. The provider can then decrypt the extension
 and either terminate the connection (in Shared Mode) or forward it to
 the backend server (in Split Mode).

4. Publishing the SNI Encryption Key

 SNI Encryption keys can be published in the DNS using the ESNIKeys
 structure, defined below.

 // Copied from TLS 1.3
 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

 struct {
 uint8 checksum[4];
 KeyShareEntry keys<4..2^16-1>;
 CipherSuite cipher_suites<2..2^16-2>;
 uint16 padded_length;
 uint64 not_before;
 uint64 not_after;
 Extension extensions<0..2^16-1>;
 } ESNIKeys;

Rescorla, et al. Expires January 3, 2019 [Page 5]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 checksum The first four (4) octets of the SHA-256 message digest
 [RFC6234] of the ESNIKeys structure starting from the first octet
 of "keys" to the end of the structure.

 keys The list of keys which can be used by the client to encrypt the
 SNI. Every key being listed MUST belong to a different group.

 padded_length : The length to pad the ServerNameList value to prior
 to encryption. This value SHOULD be set to the largest
 ServerNameList the server expects to support rounded up the nearest
 multiple of 16. If the server supports wildcard names, it SHOULD set
 this value to 260.

 not_before The moment when the keys become valid for use. The value
 is represented as seconds from 00:00:00 UTC on Jan 1 1970, not
 including leap seconds.

 not_after The moment when the keys become invalid. Uses the same
 unit as not_before.

 extensions A list of extensions that the client can take into
 consideration when generating a Client Hello message. The format
 is defined in [I-D.ietf-tls-tls13]; Section 4.2. The purpose of
 the field is to provide room for additional features in the
 future; this document does not define any extension.

 The semantics of this structure are simple: any of the listed keys
 may be used to encrypt the SNI for the associated domain name. The
 cipher suite list is orthogonal to the list of keys, so each key may
 be used with any cipher suite.

 This structure is placed in the RRData section of a TXT record as a
 base64-encoded string. If this encoding exceeds the 255 octet limit
 of TXT strings, it must be split across multiple concatenated strings
 as per Section 3.1.3 of [RFC4408].

 The name of each TXT record MUST match the name composed of _esni and
 the query domain name. That is, if a client queries example.com, the
 ESNI TXT Resource Record might be:

 _esni.example.com. 60S IN TXT "..." "..."

 Servers MUST ensure that if multiple A or AAAA records are returned
 for a domain with ESNI support, all the servers pointed to by those
 records are able to handle the keys returned as part of a ESNI TXT
 record for that domain.

Rescorla, et al. Expires January 3, 2019 [Page 6]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 Clients obtain these records by querying DNS for ESNI-enabled server
 domains. Thus, servers operating in Split Mode SHOULD have DNS
 configured to return the same A (or AAAA) record for all ESNI-enabled
 servers they service. This yields an anonymity set of cardinality
 equal to the number of ESNI-enabled server domains supported by a
 given client-facing server. Thus, even with SNI encryption, an
 attacker which can enumerate the set of ESNI-enabled domains
 supported by a client-facing server can guess the correct SNI with
 probability at least 1/K, where K is the size of this ESNI-enabled
 server anonymity set. This probability may be increased via traffic
 analysis or other mechanisms.

 The "checksum" field provides protection against transmission errors,
 including those caused by intermediaries such as a DNS proxy running
 on a home router.

 "not_before" and "not_after" fields represent the validity period of
 the published ESNI keys. Clients MUST NOT use ESNI keys that was
 covered by an invalid checksum or beyond the published period.
 Servers SHOULD set the Resource Record TTL small enough so that the
 record gets discarded by the cache before the ESNI keys reach the end
 of their validity period. Note that servers MAY need to retain the
 decryption key for some time after "not_after", and will need to
 consider clock skew, internal caches and the like, when selecting the
 "not_before" and "not_after" values.

 Client MAY cache the ESNIKeys for a particular domain based on the
 TTL of the Resource Record, but SHOULD NOT cache it based on the
 not_after value, to allow servers to rotate the keys often and
 improve forward secrecy.

 Note that the length of this structure MUST NOT exceed 2^16 - 1, as
 the RDLENGTH is only 16 bits [RFC1035].

5. The "encrypted_server_name" extension

 The encrypted SNI is carried in an "encrypted_server_name" extension,
 which contains an EncryptedSNI structure:

 struct {
 CipherSuite suite;
 opaque record_digest<0..2^16-1>;
 opaque encrypted_sni<0..2^16-1>;
 } EncryptedSNI;

 record_digest A cryptographic hash of the ESNIKeys structure from
 which the ESNI key was obtained, i.e., from the first byte of

Rescorla, et al. Expires January 3, 2019 [Page 7]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 "checksum" to the end of the structure. This hash is computed
 using the hash function associated with "suite".

 suite The cipher suite used to encrypt the SNI.

 encrypted_sni The original ServerNameList from the "server_name"
 extension, padded and AEAD-encrypted using cipher suite "suite"
 and with the key generated as described below.

5.1. Client Behavior

 In order to send an encrypted SNI, the client MUST first select one
 of the server ESNIKeyShareEntry values and generate an (EC)DHE share
 in the matching group. This share is then used for the client’s
 "key_share" extension and will be used to derive both the SNI
 encryption key and the (EC)DHE shared secret which is used in the TLS
 key schedule. This has two important implications:

 o The client MUST only provide one KeyShareEntry

 o The server is committing to support every group in the ESNIKeys
 list (see below for server behavior).

 The SNI encryption key is computed from the DH shared secret Z as
 follows:

 Zx = HKDF-Extract(0, Z)
 key = HKDF-Expand-Label(Zx, "esni key", Hash(ClientHello.Random), key_length)
 iv = HKDF-Expand-Label(Zx, "esni iv", Hash(ClientHello.Random), iv_length)

 The client then creates a PaddedServerNameList:

 struct {
 ServerNameList sni;
 opaque zeros[ESNIKeys.padded_length - length(sni)];
 } PaddedServerNameList;

 This value consists of the serialized ServerNameList padded with
 enough zeroes to make the total structure ESNIKeys.padded_length
 bytes long. The purpose of the padding is to prevent attackers from
 using the length of the "encrypted_server_name" extension to
 determine the true SNI. If the serialized ServerNameList is longer
 than ESNIKeys.padded_length, the client MUST NOT use the
 "encrypted_server_name" extension.

 The EncryptedSNI.encrypted_sni value is then computed using the usual
 TLS 1.3 AEAD:

Rescorla, et al. Expires January 3, 2019 [Page 8]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 encrypted_sni = AEAD-Encrypt(key, iv, "", PaddedServerNameList)

 Note: future extensions may end up reusing the server’s
 ESNIKeyShareEntry for other purposes within the same message (e.g.,
 encrypting other values). Those usages MUST have their own HKDF
 labels to avoid reuse.

 [[OPEN ISSUE: If in future you were to reuse these keys for 0-RTT
 priming, then you would have to worry about potentially expanding
 twice of Z_extracted. We should think about how to harmonize these
 to make sure that we maintain key separation. Similarly, if the
 server uses the same key for ESNI as it does in ServerKeyShare, this
 is going to involve re-use of Z in some hard to analyze ways. Of
 course, this would also involve abandoning PFS.]]

 This value is placed in an "encrypted_server_name" extension.

 The client MAY either omit the "server_name" extension or provide an
 innocuous dummy one (this is required for technical conformance with
 [RFC7540]; Section 9.2.)

5.2. Client-Facing Server Behavior

 Upon receiving an "encrypted_server_name" extension, the client-
 facing server MUST first perform the following checks:

 o If it is unable to negotiate TLS 1.3 or greater, it MUST abort the
 connection with a "handshake_failure" alert.

 o If the EncryptedSNI.record_digest value does not match the
 cryptographic hash of any known ENSIKeys structure, it MUST abort
 the connection with an "illegal_parameter" alert. This is
 necessary to prevent downgrade attacks. [[OPEN ISSUE: We looked
 at ignoring the extension but concluded this was better.]]

 o If more than one KeyShareEntry has been provided, or if that
 share’s group does not match that for the SNI encryption key, it
 MUST abort the connection with an "illegal_parameter" alert.

 o If the length of the "encrypted_server_name" extension is
 inconsistent with the advertised padding length (plus AEAD
 expansion) the server MAY abort the connection with an
 "illegal_parameter" alert without attempting to decrypt.

 Assuming these checks succeed, the server then computes K_sni and
 decrypts the ServerName value. If decryption fails, the server MUST
 abort the connection with a "decrypt_error" alert.

Rescorla, et al. Expires January 3, 2019 [Page 9]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 If the decrypted value’s length is different from the advertised
 ESNIKeys.padded_length or the padding consists of any value other
 than 0, then the server MUST abort the connection with an
 illegal_parameter alert. Otherwise, the server uses the
 PaddedServerNameList.sni value as if it were the "server_name"
 extension. Any actual "server_name" extension is ignored.

 Upon determining the true SNI, the client-facing server then either
 serves the connection directly (if in Shared Mode), in which case it
 executes the steps in the following section, or forwards the TLS
 connection to the backend server (if in Split Mode). In the latter
 case, it does not make any changes to the TLS messages, but just
 blindly forwards them.

5.3. Shared Mode Server Behavior

 A server operating in Shared Mode uses PaddedServerNameList.sni as if
 it were the "server_name" extension to finish the handshake. It
 SHOULD pad the Certificate message, via padding at the record layer,
 such that its length equals the size of the largest possible
 Certificate (message) covered by the same ESNI key.

5.4. Split Mode Server Behavior

 The backend Server ignores both the "encrypted_server_name" and the
 "server_name" (if any) and completes the handshake as usual. If in
 Shared Mode, the server will still know the true SNI, and can use it
 for certificate selection. In Split Mode, it may not know the true
 SNI and so will generally be configured to use a single certificate.
 Appendix A describes a mechanism for communicating the true SNI to
 the backend server.

 Similar to the Shared Mode behavior, the backend server in Split Mode
 SHOULD pad the Certificate message, via padding at the record layer
 such that its length equals the size of the largest possible
 Certificate (message) covered by the same ESNI key.

 [[OPEN ISSUE: Do we want "encrypted_server_name" in EE? It’s clearer
 communication, but would make it so you could not operate a current
 TLS 1.3 server as a backend server.]]

6. Compatibility Issues

 In general, this mechanism is designed only to be used with servers
 which have opted in, thus minimizing compatibility issues. However,
 there are two scenarios where that does not apply, as detailed below.

Rescorla, et al. Expires January 3, 2019 [Page 10]

Internet-Draft TLS 1.3 SNI Encryption July 2018

6.1. Misconfiguration

 If DNS is misconfigured so that a client receives ESNI keys for a
 server which is not prepared to receive ESNI, then the server will
 ignore the "encrypted_server_name" extension, as required by
 [I-D.ietf-tls-tls13]; Section 4.1.2. If the servers does not require
 SNI, it will complete the handshake with its default certificate.
 Most likely, this will cause a certificate name mismatch and thus
 handshake failure. Clients SHOULD not fall back to cleartext SNI,
 because that allows a network attacker to disclose the SNI. They MAY
 attempt to use another server from the DNS results, if one is
 provided.

6.2. Middleboxes

 A more serious problem is MITM proxies which do not support this
 extension. [I-D.ietf-tls-tls13]; Section 9.3 requires that such
 proxies remove any extensions they do not understand. This will have
 one of two results when connecting to the client-facing server:

 1. The handshake will fail if the client-facing server requires SNI.

 2. The handshake will succeed with the client-facing server’s
 default certificate.

 A Web client client can securely detect case (2) because it will
 result in a connection which has an invalid identity (most likely)
 but which is signed by a certificate which does not chain to a
 publicly known trust anchor. The client can detect this case and
 disable ESNI while in that network configuration.

 In order to enable this mechanism, client-facing servers SHOULD NOT
 require SNI, but rather respond with some default certificate.

 A non-conformant MITM proxy will forward the ESNI extension,
 substituting its own KeyShare value, with the result that the client-
 facing server will not be able to decrypt the SNI. This causes a
 hard failure. Detecting this case is difficult, but clients might
 opt to attempt captive portal detection to see if they are in the
 presence of a MITM proxy, and if so disable ESNI. Hopefully, the TLS
 1.3 deployment experience has cleaned out most such proxies.

7. Security Considerations

Rescorla, et al. Expires January 3, 2019 [Page 11]

Internet-Draft TLS 1.3 SNI Encryption July 2018

7.1. Why is cleartext DNS OK?

 In comparison to [I-D.kazuho-protected-sni], wherein DNS Resource
 Records are signed via a server private key, ESNIKeys have no
 authenticity or provenance information. This means that any attacker
 which can inject DNS responses or poison DNS caches, which is a
 common scenario in client access networks, can supply clients with
 fake ESNIKeys (so that the client encrypts SNI to them) or strip the
 ESNIKeys from the response. However, in the face of an attacker that
 controls DNS, no SNI encryption scheme can work because the attacker
 can replace the IP address, thus blocking client connections, or
 substituting a unique IP address which is 1:1 with the DNS name that
 was looked up (modulo DNS wildcards). Thus, allowing the ESNIKeys in
 the clear does not make the situation significantly worse.

 Clearly, DNSSEC (if the client validates and hard fails) is a defense
 against this form of attack, but DoH/DPRIVE are also defenses against
 DNS attacks by attackers on the local network, which is a common case
 where SNI. Moreover, as noted in the introduction, SNI encryption is
 less useful without encryption of DNS queries in transit via DoH or
 DPRIVE mechanisms.

7.2. Comparison Against Criteria

 [I-D.ietf-tls-sni-encryption] lists several requirements for SNI
 encryption. In this section, we re-iterate these requirements and
 assess the ESNI design against them.

7.2.1. Mitigate against replay attacks

 Since the SNI encryption key is derived from a (EC)DH operation
 between the client’s ephemeral and server’s semi-static ESNI key, the
 ESNI encryption is bound to the Client Hello. It is not possible for
 an attacker to "cut and paste" the ESNI value in a different Client
 Hello, with a different ephemeral key share, as the terminating
 server will fail to decrypt and verify the ESNI value.

7.2.2. Avoid widely-deployed shared secrets

 This design depends upon DNS as a vehicle for semi-static public key
 distribution. Server operators may partition their private keys
 however they see fit provided each server behind an IP address has
 the corresponding private key to decrypt a key. Thus, when one ESNI
 key is provided, sharing is optimally bound by the number of hosts
 that share an IP address. Server operators may further limit sharing
 by sending different Resource Records containing ESNIKeys with
 different keys using a short TTL.

Rescorla, et al. Expires January 3, 2019 [Page 12]

Internet-Draft TLS 1.3 SNI Encryption July 2018

7.2.3. Prevent SNI-based DoS attacks

 This design requires servers to decrypt ClientHello messages with
 EncryptedSNI extensions carrying valid digests. Thus, it is possible
 for an attacker to force decryption operations on the server. This
 attack is bound by the number of valid TCP connections an attacker
 can open.

7.2.4. Do not stick out

 By sending SNI and ESNI values (with illegitimate digests), or by
 sending legitimate ESNI values for and "fake" SNI values, clients do
 not display clear signals of ESNI intent to passive eavesdroppers.
 As more clients enable ESNI support, e.g., as normal part of Web
 browser functionality, with keys supplied by shared hosting
 providers, the presence of ESNI extensions becomes less suspicious
 and part of common or predictable client behavior. In other words,
 if all Web browsers start using ESNI, the presence of this value does
 not signal suspicious behavior to passive eavesdroppers.

7.2.5. Forward secrecy

 This design is not forward secret because the server’s ESNI key is
 static. However, the window of exposure is bound by the key
 lifetime. It is RECOMMEMDED that servers rotate keys frequently.

7.2.6. Proper security context

 This design permits servers operating in Split Mode to forward
 connections directly to backend origin servers, thereby avoiding
 unnecessary MiTM attacks.

7.2.7. Split server spoofing

 Assuming ESNIKeys retrieved from DNS are validated, e.g., via DNSSEC
 or fetched from a trusted Recursive Resolver, spoofing a server
 operating in Split Mode is not possible. See Section 7.1 for more
 details regarding cleartext DNS.

7.2.8. Supporting multiple protocols

 This design has no impact on application layer protocol negotiation.
 It only affects connection routing, server certificate selection, and
 client certificate verification. Thus, it is compatible with
 multiple protocols.

Rescorla, et al. Expires January 3, 2019 [Page 13]

Internet-Draft TLS 1.3 SNI Encryption July 2018

7.3. Misrouting

 Note that the backend server has no way of knowing what the SNI was,
 but that does not lead to additional privacy exposure because the
 backend server also only has one identity. This does, however,
 change the situation slightly in that the backend server might
 previously have checked SNI and now cannot (and an attacker can route
 a connection with an encrypted SNI to any backend server and the TLS
 connection will still complete). However, the client is still
 responsible for verifying the server’s identity in its certificate.

 [[TODO: Some more analysis needed in this case, as it is a little
 odd, and probably some precise rules about handling ESNI and no SNI
 uniformly?]]

8. IANA Considerations

8.1. Update of the TLS ExtensionType Registry

 IANA is requested to Create an entry, encrypted_server_name(0xffce),
 in the existing registry for ExtensionType (defined in
 [I-D.ietf-tls-tls13]), with "TLS 1.3" column values being set to
 "CH", and "Recommended" column being set to "Yes".

9. References

9.1. Normative References

 [I-D.ietf-tls-exported-authenticator]
 Sullivan, N., "Exported Authenticators in TLS", draft-
 ietf-tls-exported-authenticator-07 (work in progress),
 June 2018.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

Rescorla, et al. Expires January 3, 2019 [Page 14]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 [RFC4408] Wong, M. and W. Schlitt, "Sender Policy Framework (SPF)
 for Authorizing Use of Domains in E-Mail, Version 1",
 RFC 4408, DOI 10.17487/RFC4408, April 2006,
 <https://www.rfc-editor.org/info/rfc4408>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011, <https://www.rfc-
 editor.org/info/rfc6066>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011, <https://www.rfc-
 editor.org/info/rfc6234>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015, <https://www.rfc-
 editor.org/info/rfc7540>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [I-D.ietf-doh-dns-over-https]
 Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", draft-ietf-doh-dns-over-https-12 (work in
 progress), June 2018.

 [I-D.ietf-tls-sni-encryption]
 Huitema, C. and E. Rescorla, "Issues and Requirements for
 SNI Encryption in TLS", draft-ietf-tls-sni-encryption-03
 (work in progress), May 2018.

 [I-D.kazuho-protected-sni]
 Oku, K., "TLS Extensions for Protecting SNI", draft-
 kazuho-protected-sni-00 (work in progress), July 2017.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/info/rfc7858>.

Rescorla, et al. Expires January 3, 2019 [Page 15]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 [RFC8094] Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
 Transport Layer Security (DTLS)", RFC 8094,
 DOI 10.17487/RFC8094, February 2017, <https://www.rfc-
 editor.org/info/rfc8094>.

Appendix A. Communicating SNI to Backend Server

 As noted in Section 5.4, the backend server will generally not know
 the true SNI in Split Mode. It is possible for the client-facing
 server to communicate the true SNI to the backend server, but at the
 cost of having that communication not be unmodified TLS 1.3. The
 basic idea is to have a shared key between the client-facing server
 and the backend server (this can be a symmetric key) and use it to
 AEAD-encrypt Z and send the encrypted blob at the beginning of the
 connection before the ClientHello. The backend server can then
 decrypt ESNI to recover the true SNI.

 An obvious alternative here would be to have the client-facing server
 forward the true SNI, but that would allow the client-facing server
 to lie. In this design, the attacker would need to be able to find a
 Z which would expand into a key that would validly AEAD-encrypt a
 message of his choice, which should be intractable (Hand-waving
 alert!).

Appendix B. Alternative SNI Protection Designs

 Alternative approaches to encrypted SNI may be implemented at the TLS
 or application layer. In this section we describe several
 alternatives and discuss drawbacks in comparison to the design in
 this document.

B.1. TLS-layer

B.1.1. TLS in Early Data

 In this variant, TLS Client Hellos are tunneled within early data
 payloads belonging to outer TLS connections established with the
 client-facing server. This requires clients to have established a
 previous session --- and obtained PSKs --- with the server. The
 client-facing server decrypts early data payloads to uncover Client
 Hellos destined for the backend server, and forwards them onwards as
 necessary. Afterwards, all records to and from backend servers are
 forwarded by the client-facing server - unmodified. This avoids
 double encryption of TLS records.

 Problems with this approach are: (1) servers may not always be able
 to distinguish inner Client Hellos from legitimate application data,
 (2) nested 0-RTT data may not function correctly, (3) 0-RTT data may

Rescorla, et al. Expires January 3, 2019 [Page 16]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 not be supported - especially under DoS - leading to availability
 concerns, and (4) clients must bootstrap tunnels (sessions), costing
 an additional round trip and potentially revealing the SNI during the
 initial connection. In contrast, encrypted SNI protects the SNI in a
 distinct Client Hello extension and neither abuses early data nor
 requires a bootstrapping connection.

B.1.2. Combined Tickets

 In this variant, client-facing and backend servers coordinate to
 produce "combined tickets" that are consumable by both. Clients
 offer combined tickets to client-facing servers. The latter parse
 them to determine the correct backend server to which the Client
 Hello should be forwarded. This approach is problematic due to non-
 trivial coordination between client-facing and backend servers for
 ticket construction and consumption. Moreover, it requires a
 bootstrapping step similar to that of the previous variant. In
 contrast, encrypted SNI requires no such coordination.

B.2. Application-layer

B.2.1. HTTP/2 CERTIFICATE Frames

 In this variant, clients request secondary certificates with
 CERTIFICATE_REQUEST HTTP/2 frames after TLS connection completion.
 In response, servers supply certificates via TLS exported
 authenticators [I-D.ietf-tls-exported-authenticator] in CERTIFICATE
 frames. Clients use a generic SNI for the underlying client-facing
 server TLS connection. Problems with this approach include: (1) one
 additional round trip before peer authentication, (2) non-trivial
 application-layer dependencies and interaction, and (3) obtaining the
 generic SNI to bootstrap the connection. In contrast, encrypted SNI
 induces no additional round trip and operates below the application
 layer.

Appendix C. Total Client Hello Encryption

 The design described here only provides encryption for the SNI, but
 not for other extensions, such as ALPN. Another potential design
 would be to encrypt all of the extensions using the same basic
 structure as we use here for ESNI. That design has the following
 advantages:

 o It protects all the extensions from ordinary eavesdroppers

 o If the encrypted block has its own KeyShare, it does not
 necessarily require the client to use a single KeyShare, because

Rescorla, et al. Expires January 3, 2019 [Page 17]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 the client’s share is bound to the SNI by the AEAD (analysis
 needed).

 It also has the following disadvantages:

 o The client-facing server can still see the other extensions. By
 contrast we could introduce another EncryptedExtensions block that
 was encrypted to the backend server and not the client-facing
 server.

 o It requires a mechanism for the client-facing server to provide
 the extension-encryption key to the backend server (as in
 Appendix A and thus cannot be used with an unmodified backend
 server.

 o A conformant middlebox will strip every extension, which might
 result in a ClientHello which is just unacceptable to the server
 (more analysis needed).

Appendix D. Acknowledgments

 This document draws extensively from ideas in
 [I-D.kazuho-protected-sni], but is a much more limited mechanism
 because it depends on the DNS for the protection of the ESNI key.
 Richard Barnes, Christian Huitema, Patrick McManus, Matthew Prince,
 Nick Sullivan, Martin Thomson, and Chris Wood also provided important
 ideas.

Authors’ Addresses

 Eric Rescorla
 RTFM, Inc.

 Email: ekr@rtfm.com

 Kazuho Oku
 Fastly

 Email: kazuhooku@gmail.com

 Nick Sullivan
 Cloudflare

 Email: nick@cloudflare.com

Rescorla, et al. Expires January 3, 2019 [Page 18]

Internet-Draft TLS 1.3 SNI Encryption July 2018

 Christopher A. Wood
 Apple, Inc.

 Email: cawood@apple.com

Rescorla, et al. Expires January 3, 2019 [Page 19]

