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Abstract

   This document defines a simple mechanism for encrypting the Server
   Name Indication for TLS 1.3.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 3, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
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   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   DISCLAIMER: This is very early a work-in-progress design and has not
   yet seen significant (or really any) security analysis.  It should
   not be used as a basis for building production systems.

   Although TLS 1.3 [I-D.ietf-tls-tls13] encrypts most of the handshake,
   including the server certificate, there are several other channels
   that allow an on-path attacker to determine the domain name the
   client is trying to connect to, including:

   o  Cleartext client DNS queries.

   o  Visible server IP addresses, assuming the the server is not doing
      domain-based virtual hosting.

   o  Cleartext Server Name Indication (SNI) [RFC6066] in ClientHello
      messages.

   DoH [I-D.ietf-doh-dns-over-https] and DPRIVE [RFC7858] [RFC8094]
   provide mechanisms for clients to conceal DNS lookups from network
   inspection, and many TLS servers host multiple domains on the same IP
   address.  In such environments, SNI is an explicit signal used to
   determine the server’s identity.  Indirect mechanisms such as traffic
   analysis also exist.

   The TLS WG has extensively studied the problem of protecting SNI, but
   has been unable to develop a completely generic solution.
   [I-D.ietf-tls-sni-encryption] provides a description of the problem
   space and some of the proposed techniques.  One of the more difficult
   problems is "Do not stick out" ([I-D.ietf-tls-sni-encryption];
   Section 3.4): if only sensitive/private services use SNI encryption,
   then SNI encryption is a signal that a client is going to such a
   service.  For this reason, much recent work has focused on concealing
   the fact that SNI is being protected.  Unfortunately, the result
   often has undesirable performance consequences, incomplete coverage,
   or both.

   The design in this document takes a different approach: it assumes
   that private origins will co-locate with or hide behind a provider
   (CDN, app server, etc.) which is able to activate encrypted SNI
   (ESNI) for all of the domains it hosts.  Thus, the use of encrypted
   SNI does not indicate that the client is attempting to reach a
   private origin, but only that it is going to a particular service
   provider, which the observer could already tell from the IP address.
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2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Overview

   This document is designed to operate in one of two primary topologies
   shown below, which we call "Shared Mode" and "Split Mode"

3.1.  Topologies

                   +---------------------+
                   |                     |
                   |   2001:DB8::1111    |
                   |                     |
   Client <----->  | private.example.org |
                   |                     |
                   | public.example.com  |
                   |                     |
                   +---------------------+
                           Server

                      Figure 1: Shared Mode Topology

   In Shared Mode, the provider is the origin server for all the domains
   whose DNS records point to it and clients form a TLS connection
   directly to that provider, which has access to the plaintext of the
   connection.

                   +--------------------+       +---------------------+
                   |                    |       |                     |
                   |   2001:DB8::1111   |       |   2001:DB8::EEEE    |
   Client <------------------------------------>|                     |
                   | public.example.com |       | private.example.com |
                   |                    |       |                     |
                   +--------------------+       +---------------------+
                     Client-Facing Server            Backend Server

                       Figure 2: Split Mode Topology

   In Split Mode, the provider is _not_ the origin server for private
   domains.  Rather the DNS records for private domains point to the
   provider, but the provider’s server just relays the connection back
   to the backend server, which is the true origin server.  The provider
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   does not have access to the plaintext of the connection.  In
   principle, the provider might not be the origin for any domains, but
   as a practical matter, it is probably the origin for a large set of
   innocuous domains, but is also providing protection for some private
   domains.  Note that the backend server can be an unmodified TLS 1.3
   server.

3.2.  SNI Encryption

   The protocol designed in this document is quite straightforward.

   First, the provider publishes a public key which is used for SNI
   encryption for all the domains for which it serves directly or
   indirectly (via Split mode).  This document defines a publication
   mechanism using DNS, but other mechanisms are also possible.  In
   particular, if some of the clients of a private server are
   applications rather than Web browsers, those applications might have
   the public key preconfigured.

   When a client wants to form a TLS connection to any of the domains
   served by an ESNI-supporting provider, it replaces the "server_name"
   extension in the ClientHello with an "encrypted_server_name"
   extension, which contains the true extension encrypted under the
   provider’s public key.  The provider can then decrypt the extension
   and either terminate the connection (in Shared Mode) or forward it to
   the backend server (in Split Mode).

4.  Publishing the SNI Encryption Key

   SNI Encryption keys can be published in the DNS using the ESNIKeys
   structure, defined below.

       // Copied from TLS 1.3
       struct {
           NamedGroup group;
           opaque key_exchange<1..2^16-1>;
       } KeyShareEntry;

       struct {
           uint8 checksum[4];
           KeyShareEntry keys<4..2^16-1>;
           CipherSuite cipher_suites<2..2^16-2>;
           uint16 padded_length;
           uint64 not_before;
           uint64 not_after;
           Extension extensions<0..2^16-1>;
       } ESNIKeys;
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   checksum  The first four (4) octets of the SHA-256 message digest
      [RFC6234] of the ESNIKeys structure starting from the first octet
      of "keys" to the end of the structure.

   keys  The list of keys which can be used by the client to encrypt the
      SNI.  Every key being listed MUST belong to a different group.

   padded_length : The length to pad the ServerNameList value to prior
   to encryption.  This value SHOULD be set to the largest
   ServerNameList the server expects to support rounded up the nearest
   multiple of 16.  If the server supports wildcard names, it SHOULD set
   this value to 260.

   not_before  The moment when the keys become valid for use.  The value
      is represented as seconds from 00:00:00 UTC on Jan 1 1970, not
      including leap seconds.

   not_after  The moment when the keys become invalid.  Uses the same
      unit as not_before.

   extensions  A list of extensions that the client can take into
      consideration when generating a Client Hello message.  The format
      is defined in [I-D.ietf-tls-tls13]; Section 4.2.  The purpose of
      the field is to provide room for additional features in the
      future; this document does not define any extension.

   The semantics of this structure are simple: any of the listed keys
   may be used to encrypt the SNI for the associated domain name.  The
   cipher suite list is orthogonal to the list of keys, so each key may
   be used with any cipher suite.

   This structure is placed in the RRData section of a TXT record as a
   base64-encoded string.  If this encoding exceeds the 255 octet limit
   of TXT strings, it must be split across multiple concatenated strings
   as per Section 3.1.3 of [RFC4408].

   The name of each TXT record MUST match the name composed of _esni and
   the query domain name.  That is, if a client queries example.com, the
   ESNI TXT Resource Record might be:

   _esni.example.com. 60S IN TXT "..." "..."

   Servers MUST ensure that if multiple A or AAAA records are returned
   for a domain with ESNI support, all the servers pointed to by those
   records are able to handle the keys returned as part of a ESNI TXT
   record for that domain.
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   Clients obtain these records by querying DNS for ESNI-enabled server
   domains.  Thus, servers operating in Split Mode SHOULD have DNS
   configured to return the same A (or AAAA) record for all ESNI-enabled
   servers they service.  This yields an anonymity set of cardinality
   equal to the number of ESNI-enabled server domains supported by a
   given client-facing server.  Thus, even with SNI encryption, an
   attacker which can enumerate the set of ESNI-enabled domains
   supported by a client-facing server can guess the correct SNI with
   probability at least 1/K, where K is the size of this ESNI-enabled
   server anonymity set.  This probability may be increased via traffic
   analysis or other mechanisms.

   The "checksum" field provides protection against transmission errors,
   including those caused by intermediaries such as a DNS proxy running
   on a home router.

   "not_before" and "not_after" fields represent the validity period of
   the published ESNI keys.  Clients MUST NOT use ESNI keys that was
   covered by an invalid checksum or beyond the published period.
   Servers SHOULD set the Resource Record TTL small enough so that the
   record gets discarded by the cache before the ESNI keys reach the end
   of their validity period.  Note that servers MAY need to retain the
   decryption key for some time after "not_after", and will need to
   consider clock skew, internal caches and the like, when selecting the
   "not_before" and "not_after" values.

   Client MAY cache the ESNIKeys for a particular domain based on the
   TTL of the Resource Record, but SHOULD NOT cache it based on the
   not_after value, to allow servers to rotate the keys often and
   improve forward secrecy.

   Note that the length of this structure MUST NOT exceed 2^16 - 1, as
   the RDLENGTH is only 16 bits [RFC1035].

5.  The "encrypted_server_name" extension

   The encrypted SNI is carried in an "encrypted_server_name" extension,
   which contains an EncryptedSNI structure:

      struct {
          CipherSuite suite;
          opaque record_digest<0..2^16-1>;
          opaque encrypted_sni<0..2^16-1>;
      } EncryptedSNI;

   record_digest  A cryptographic hash of the ESNIKeys structure from
      which the ESNI key was obtained, i.e., from the first byte of
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      "checksum" to the end of the structure.  This hash is computed
      using the hash function associated with "suite".

   suite  The cipher suite used to encrypt the SNI.

   encrypted_sni  The original ServerNameList from the "server_name"
      extension, padded and AEAD-encrypted using cipher suite "suite"
      and with the key generated as described below.

5.1.  Client Behavior

   In order to send an encrypted SNI, the client MUST first select one
   of the server ESNIKeyShareEntry values and generate an (EC)DHE share
   in the matching group.  This share is then used for the client’s
   "key_share" extension and will be used to derive both the SNI
   encryption key and the (EC)DHE shared secret which is used in the TLS
   key schedule.  This has two important implications:

   o  The client MUST only provide one KeyShareEntry

   o  The server is committing to support every group in the ESNIKeys
      list (see below for server behavior).

   The SNI encryption key is computed from the DH shared secret Z as
   follows:

   Zx = HKDF-Extract(0, Z)
   key = HKDF-Expand-Label(Zx, "esni key", Hash(ClientHello.Random), key_length)
   iv = HKDF-Expand-Label(Zx, "esni iv", Hash(ClientHello.Random), iv_length)

   The client then creates a PaddedServerNameList:

      struct {
          ServerNameList sni;
          opaque zeros[ESNIKeys.padded_length - length(sni)];
      } PaddedServerNameList;

   This value consists of the serialized ServerNameList padded with
   enough zeroes to make the total structure ESNIKeys.padded_length
   bytes long.  The purpose of the padding is to prevent attackers from
   using the length of the "encrypted_server_name" extension to
   determine the true SNI.  If the serialized ServerNameList is longer
   than ESNIKeys.padded_length, the client MUST NOT use the
   "encrypted_server_name" extension.

   The EncryptedSNI.encrypted_sni value is then computed using the usual
   TLS 1.3 AEAD:
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       encrypted_sni = AEAD-Encrypt(key, iv, "", PaddedServerNameList)

   Note: future extensions may end up reusing the server’s
   ESNIKeyShareEntry for other purposes within the same message (e.g.,
   encrypting other values).  Those usages MUST have their own HKDF
   labels to avoid reuse.

   [[OPEN ISSUE: If in future you were to reuse these keys for 0-RTT
   priming, then you would have to worry about potentially expanding
   twice of Z_extracted.  We should think about how to harmonize these
   to make sure that we maintain key separation.  Similarly, if the
   server uses the same key for ESNI as it does in ServerKeyShare, this
   is going to involve re-use of Z in some hard to analyze ways.  Of
   course, this would also involve abandoning PFS.]]

   This value is placed in an "encrypted_server_name" extension.

   The client MAY either omit the "server_name" extension or provide an
   innocuous dummy one (this is required for technical conformance with
   [RFC7540]; Section 9.2.)

5.2.  Client-Facing Server Behavior

   Upon receiving an "encrypted_server_name" extension, the client-
   facing server MUST first perform the following checks:

   o  If it is unable to negotiate TLS 1.3 or greater, it MUST abort the
      connection with a "handshake_failure" alert.

   o  If the EncryptedSNI.record_digest value does not match the
      cryptographic hash of any known ENSIKeys structure, it MUST abort
      the connection with an "illegal_parameter" alert.  This is
      necessary to prevent downgrade attacks.  [[OPEN ISSUE: We looked
      at ignoring the extension but concluded this was better.]]

   o  If more than one KeyShareEntry has been provided, or if that
      share’s group does not match that for the SNI encryption key, it
      MUST abort the connection with an "illegal_parameter" alert.

   o  If the length of the "encrypted_server_name" extension is
      inconsistent with the advertised padding length (plus AEAD
      expansion) the server MAY abort the connection with an
      "illegal_parameter" alert without attempting to decrypt.

   Assuming these checks succeed, the server then computes K_sni and
   decrypts the ServerName value.  If decryption fails, the server MUST
   abort the connection with a "decrypt_error" alert.

Rescorla, et al.         Expires January 3, 2019                [Page 9]



Internet-Draft           TLS 1.3 SNI Encryption                July 2018

   If the decrypted value’s length is different from the advertised
   ESNIKeys.padded_length or the padding consists of any value other
   than 0, then the server MUST abort the connection with an
   illegal_parameter alert.  Otherwise, the server uses the
   PaddedServerNameList.sni value as if it were the "server_name"
   extension.  Any actual "server_name" extension is ignored.

   Upon determining the true SNI, the client-facing server then either
   serves the connection directly (if in Shared Mode), in which case it
   executes the steps in the following section, or forwards the TLS
   connection to the backend server (if in Split Mode).  In the latter
   case, it does not make any changes to the TLS messages, but just
   blindly forwards them.

5.3.  Shared Mode Server Behavior

   A server operating in Shared Mode uses PaddedServerNameList.sni as if
   it were the "server_name" extension to finish the handshake.  It
   SHOULD pad the Certificate message, via padding at the record layer,
   such that its length equals the size of the largest possible
   Certificate (message) covered by the same ESNI key.

5.4.  Split Mode Server Behavior

   The backend Server ignores both the "encrypted_server_name" and the
   "server_name" (if any) and completes the handshake as usual.  If in
   Shared Mode, the server will still know the true SNI, and can use it
   for certificate selection.  In Split Mode, it may not know the true
   SNI and so will generally be configured to use a single certificate.
   Appendix A describes a mechanism for communicating the true SNI to
   the backend server.

   Similar to the Shared Mode behavior, the backend server in Split Mode
   SHOULD pad the Certificate message, via padding at the record layer
   such that its length equals the size of the largest possible
   Certificate (message) covered by the same ESNI key.

   [[OPEN ISSUE: Do we want "encrypted_server_name" in EE?  It’s clearer
   communication, but would make it so you could not operate a current
   TLS 1.3 server as a backend server.]]

6.  Compatibility Issues

   In general, this mechanism is designed only to be used with servers
   which have opted in, thus minimizing compatibility issues.  However,
   there are two scenarios where that does not apply, as detailed below.
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6.1.  Misconfiguration

   If DNS is misconfigured so that a client receives ESNI keys for a
   server which is not prepared to receive ESNI, then the server will
   ignore the "encrypted_server_name" extension, as required by
   [I-D.ietf-tls-tls13]; Section 4.1.2.  If the servers does not require
   SNI, it will complete the handshake with its default certificate.
   Most likely, this will cause a certificate name mismatch and thus
   handshake failure.  Clients SHOULD not fall back to cleartext SNI,
   because that allows a network attacker to disclose the SNI.  They MAY
   attempt to use another server from the DNS results, if one is
   provided.

6.2.  Middleboxes

   A more serious problem is MITM proxies which do not support this
   extension.  [I-D.ietf-tls-tls13]; Section 9.3 requires that such
   proxies remove any extensions they do not understand.  This will have
   one of two results when connecting to the client-facing server:

   1.  The handshake will fail if the client-facing server requires SNI.

   2.  The handshake will succeed with the client-facing server’s
       default certificate.

   A Web client client can securely detect case (2) because it will
   result in a connection which has an invalid identity (most likely)
   but which is signed by a certificate which does not chain to a
   publicly known trust anchor.  The client can detect this case and
   disable ESNI while in that network configuration.

   In order to enable this mechanism, client-facing servers SHOULD NOT
   require SNI, but rather respond with some default certificate.

   A non-conformant MITM proxy will forward the ESNI extension,
   substituting its own KeyShare value, with the result that the client-
   facing server will not be able to decrypt the SNI.  This causes a
   hard failure.  Detecting this case is difficult, but clients might
   opt to attempt captive portal detection to see if they are in the
   presence of a MITM proxy, and if so disable ESNI.  Hopefully, the TLS
   1.3 deployment experience has cleaned out most such proxies.

7.  Security Considerations
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7.1.  Why is cleartext DNS OK?

   In comparison to [I-D.kazuho-protected-sni], wherein DNS Resource
   Records are signed via a server private key, ESNIKeys have no
   authenticity or provenance information.  This means that any attacker
   which can inject DNS responses or poison DNS caches, which is a
   common scenario in client access networks, can supply clients with
   fake ESNIKeys (so that the client encrypts SNI to them) or strip the
   ESNIKeys from the response.  However, in the face of an attacker that
   controls DNS, no SNI encryption scheme can work because the attacker
   can replace the IP address, thus blocking client connections, or
   substituting a unique IP address which is 1:1 with the DNS name that
   was looked up (modulo DNS wildcards).  Thus, allowing the ESNIKeys in
   the clear does not make the situation significantly worse.

   Clearly, DNSSEC (if the client validates and hard fails) is a defense
   against this form of attack, but DoH/DPRIVE are also defenses against
   DNS attacks by attackers on the local network, which is a common case
   where SNI.  Moreover, as noted in the introduction, SNI encryption is
   less useful without encryption of DNS queries in transit via DoH or
   DPRIVE mechanisms.

7.2.  Comparison Against Criteria

   [I-D.ietf-tls-sni-encryption] lists several requirements for SNI
   encryption.  In this section, we re-iterate these requirements and
   assess the ESNI design against them.

7.2.1.  Mitigate against replay attacks

   Since the SNI encryption key is derived from a (EC)DH operation
   between the client’s ephemeral and server’s semi-static ESNI key, the
   ESNI encryption is bound to the Client Hello.  It is not possible for
   an attacker to "cut and paste" the ESNI value in a different Client
   Hello, with a different ephemeral key share, as the terminating
   server will fail to decrypt and verify the ESNI value.

7.2.2.  Avoid widely-deployed shared secrets

   This design depends upon DNS as a vehicle for semi-static public key
   distribution.  Server operators may partition their private keys
   however they see fit provided each server behind an IP address has
   the corresponding private key to decrypt a key.  Thus, when one ESNI
   key is provided, sharing is optimally bound by the number of hosts
   that share an IP address.  Server operators may further limit sharing
   by sending different Resource Records containing ESNIKeys with
   different keys using a short TTL.
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7.2.3.  Prevent SNI-based DoS attacks

   This design requires servers to decrypt ClientHello messages with
   EncryptedSNI extensions carrying valid digests.  Thus, it is possible
   for an attacker to force decryption operations on the server.  This
   attack is bound by the number of valid TCP connections an attacker
   can open.

7.2.4.  Do not stick out

   By sending SNI and ESNI values (with illegitimate digests), or by
   sending legitimate ESNI values for and "fake" SNI values, clients do
   not display clear signals of ESNI intent to passive eavesdroppers.
   As more clients enable ESNI support, e.g., as normal part of Web
   browser functionality, with keys supplied by shared hosting
   providers, the presence of ESNI extensions becomes less suspicious
   and part of common or predictable client behavior.  In other words,
   if all Web browsers start using ESNI, the presence of this value does
   not signal suspicious behavior to passive eavesdroppers.

7.2.5.  Forward secrecy

   This design is not forward secret because the server’s ESNI key is
   static.  However, the window of exposure is bound by the key
   lifetime.  It is RECOMMEMDED that servers rotate keys frequently.

7.2.6.  Proper security context

   This design permits servers operating in Split Mode to forward
   connections directly to backend origin servers, thereby avoiding
   unnecessary MiTM attacks.

7.2.7.  Split server spoofing

   Assuming ESNIKeys retrieved from DNS are validated, e.g., via DNSSEC
   or fetched from a trusted Recursive Resolver, spoofing a server
   operating in Split Mode is not possible.  See Section 7.1 for more
   details regarding cleartext DNS.

7.2.8.  Supporting multiple protocols

   This design has no impact on application layer protocol negotiation.
   It only affects connection routing, server certificate selection, and
   client certificate verification.  Thus, it is compatible with
   multiple protocols.
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7.3.  Misrouting

   Note that the backend server has no way of knowing what the SNI was,
   but that does not lead to additional privacy exposure because the
   backend server also only has one identity.  This does, however,
   change the situation slightly in that the backend server might
   previously have checked SNI and now cannot (and an attacker can route
   a connection with an encrypted SNI to any backend server and the TLS
   connection will still complete).  However, the client is still
   responsible for verifying the server’s identity in its certificate.

   [[TODO: Some more analysis needed in this case, as it is a little
   odd, and probably some precise rules about handling ESNI and no SNI
   uniformly?]]

8.  IANA Considerations

8.1.  Update of the TLS ExtensionType Registry

   IANA is requested to Create an entry, encrypted_server_name(0xffce),
   in the existing registry for ExtensionType (defined in
   [I-D.ietf-tls-tls13]), with "TLS 1.3" column values being set to
   "CH", and "Recommended" column being set to "Yes".
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Appendix A.  Communicating SNI to Backend Server

   As noted in Section 5.4, the backend server will generally not know
   the true SNI in Split Mode.  It is possible for the client-facing
   server to communicate the true SNI to the backend server, but at the
   cost of having that communication not be unmodified TLS 1.3.  The
   basic idea is to have a shared key between the client-facing server
   and the backend server (this can be a symmetric key) and use it to
   AEAD-encrypt Z and send the encrypted blob at the beginning of the
   connection before the ClientHello.  The backend server can then
   decrypt ESNI to recover the true SNI.

   An obvious alternative here would be to have the client-facing server
   forward the true SNI, but that would allow the client-facing server
   to lie.  In this design, the attacker would need to be able to find a
   Z which would expand into a key that would validly AEAD-encrypt a
   message of his choice, which should be intractable (Hand-waving
   alert!).

Appendix B.  Alternative SNI Protection Designs

   Alternative approaches to encrypted SNI may be implemented at the TLS
   or application layer.  In this section we describe several
   alternatives and discuss drawbacks in comparison to the design in
   this document.

B.1.  TLS-layer

B.1.1.  TLS in Early Data

   In this variant, TLS Client Hellos are tunneled within early data
   payloads belonging to outer TLS connections established with the
   client-facing server.  This requires clients to have established a
   previous session --- and obtained PSKs --- with the server.  The
   client-facing server decrypts early data payloads to uncover Client
   Hellos destined for the backend server, and forwards them onwards as
   necessary.  Afterwards, all records to and from backend servers are
   forwarded by the client-facing server - unmodified.  This avoids
   double encryption of TLS records.

   Problems with this approach are: (1) servers may not always be able
   to distinguish inner Client Hellos from legitimate application data,
   (2) nested 0-RTT data may not function correctly, (3) 0-RTT data may
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   not be supported - especially under DoS - leading to availability
   concerns, and (4) clients must bootstrap tunnels (sessions), costing
   an additional round trip and potentially revealing the SNI during the
   initial connection.  In contrast, encrypted SNI protects the SNI in a
   distinct Client Hello extension and neither abuses early data nor
   requires a bootstrapping connection.

B.1.2.  Combined Tickets

   In this variant, client-facing and backend servers coordinate to
   produce "combined tickets" that are consumable by both.  Clients
   offer combined tickets to client-facing servers.  The latter parse
   them to determine the correct backend server to which the Client
   Hello should be forwarded.  This approach is problematic due to non-
   trivial coordination between client-facing and backend servers for
   ticket construction and consumption.  Moreover, it requires a
   bootstrapping step similar to that of the previous variant.  In
   contrast, encrypted SNI requires no such coordination.

B.2.  Application-layer

B.2.1.  HTTP/2 CERTIFICATE Frames

   In this variant, clients request secondary certificates with
   CERTIFICATE_REQUEST HTTP/2 frames after TLS connection completion.
   In response, servers supply certificates via TLS exported
   authenticators [I-D.ietf-tls-exported-authenticator] in CERTIFICATE
   frames.  Clients use a generic SNI for the underlying client-facing
   server TLS connection.  Problems with this approach include: (1) one
   additional round trip before peer authentication, (2) non-trivial
   application-layer dependencies and interaction, and (3) obtaining the
   generic SNI to bootstrap the connection.  In contrast, encrypted SNI
   induces no additional round trip and operates below the application
   layer.

Appendix C.  Total Client Hello Encryption

   The design described here only provides encryption for the SNI, but
   not for other extensions, such as ALPN.  Another potential design
   would be to encrypt all of the extensions using the same basic
   structure as we use here for ESNI.  That design has the following
   advantages:

   o  It protects all the extensions from ordinary eavesdroppers

   o  If the encrypted block has its own KeyShare, it does not
      necessarily require the client to use a single KeyShare, because
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      the client’s share is bound to the SNI by the AEAD (analysis
      needed).

   It also has the following disadvantages:

   o  The client-facing server can still see the other extensions.  By
      contrast we could introduce another EncryptedExtensions block that
      was encrypted to the backend server and not the client-facing
      server.

   o  It requires a mechanism for the client-facing server to provide
      the extension-encryption key to the backend server (as in
      Appendix A and thus cannot be used with an unmodified backend
      server.

   o  A conformant middlebox will strip every extension, which might
      result in a ClientHello which is just unacceptable to the server
      (more analysis needed).
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