
TLS E. Rescorla
Internet-Draft RTFM, Inc.
Obsoletes: 6347 (if approved) H. Tschofenig
Intended status: Standards Track Arm Limited
Expires: 1 November 2021 N. Modadugu
 Google, Inc.
 30 April 2021

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3
 draft-ietf-tls-dtls13-43

Abstract

 This document specifies Version 1.3 of the Datagram Transport Layer
 Security (DTLS) protocol. DTLS 1.3 allows client/server applications
 to communicate over the Internet in a way that is designed to prevent
 eavesdropping, tampering, and message forgery.

 The DTLS 1.3 protocol is intentionally based on the Transport Layer
 Security (TLS) 1.3 protocol and provides equivalent security
 guarantees with the exception of order protection/non-replayability.
 Datagram semantics of the underlying transport are preserved by the
 DTLS protocol.

 This document obsoletes RFC 6347.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 1 November 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Rescorla, et al. Expires 1 November 2021 [Page 1]

Internet-Draft DTLS 1.3 April 2021

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 2. Conventions and Terminology 4
 3. DTLS Design Rationale and Overview 6
 3.1. Packet Loss . 7
 3.2. Reordering . 8
 3.3. Fragmentation . 8
 3.4. Replay Detection . 8
 4. The DTLS Record Layer . 8
 4.1. Demultiplexing DTLS Records 12
 4.2. Sequence Number and Epoch 14
 4.2.1. Processing Guidelines 14
 4.2.2. Reconstructing the Sequence Number and Epoch 15
 4.2.3. Record Number Encryption 15
 4.3. Transport Layer Mapping 16
 4.4. PMTU Issues . 17
 4.5. Record Payload Protection 19
 4.5.1. Anti-Replay . 19
 4.5.2. Handling Invalid Records 20
 4.5.3. AEAD Limits . 20
 5. The DTLS Handshake Protocol 22
 5.1. Denial-of-Service Countermeasures 22
 5.2. DTLS Handshake Message Format 25
 5.3. ClientHello Message 27
 5.4. ServerHello Message 28
 5.5. Handshake Message Fragmentation and Reassembly 28

Rescorla, et al. Expires 1 November 2021 [Page 2]

Internet-Draft DTLS 1.3 April 2021

 5.6. End Of Early Data . 29
 5.7. DTLS Handshake Flights 30
 5.8. Timeout and Retransmission 34
 5.8.1. State Machine . 34
 5.8.2. Timer Values . 37
 5.8.3. Large Flight Sizes 38
 5.8.4. State machine duplication for post-handshake
 messages . 38
 5.9. CertificateVerify and Finished Messages 40
 5.10. Cryptographic Label Prefix 40
 5.11. Alert Messages . 40
 5.12. Establishing New Associations with Existing Parameters . 40
 6. Example of Handshake with Timeout and Retransmission 41
 6.1. Epoch Values and Rekeying 42
 7. ACK Message . 45
 7.1. Sending ACKs . 46
 7.2. Receiving ACKs . 47
 7.3. Design Rationale . 48
 8. Key Updates . 48
 9. Connection ID Updates . 50
 9.1. Connection ID Example 51
 10. Application Data Protocol 53
 11. Security Considerations 53
 12. Changes since DTLS 1.2 55
 13. Updates affecting DTLS 1.2 56
 14. IANA Considerations . 56
 15. References . 57
 15.1. Normative References 57
 15.2. Informative References 58
 Appendix A. Protocol Data Structures and Constant Values 61
 A.1. Record Layer . 61
 A.2. Handshake Protocol 62
 A.3. ACKs . 64
 A.4. Connection ID Management 64
 Appendix B. Analysis of Limits on CCM Usage 64
 B.1. Confidentiality Limits 65
 B.2. Integrity Limits . 66
 B.3. Limits for AEAD_AES_128_CCM_8 66
 Appendix C. Implementation Pitfalls 67
 Appendix D. History . 67
 Appendix E. Working Group Information 70
 Appendix F. Contributors . 70
 Appendix G. Acknowledgements 71
 Authors’ Addresses . 71

Rescorla, et al. Expires 1 November 2021 [Page 3]

Internet-Draft DTLS 1.3 April 2021

1. Introduction

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH

 The source for this draft is maintained in GitHub. Suggested changes
 should be submitted as pull requests at https://github.com/tlswg/
 dtls13-spec. Instructions are on that page as well. Editorial
 changes can be managed in GitHub, but any substantive change should
 be discussed on the TLS mailing list.

 The primary goal of the TLS protocol is to establish an
 authenticated, confidentiality and integrity protected channel
 between two communicating peers. The TLS protocol is composed of two
 layers: the TLS Record Protocol and the TLS Handshake Protocol.
 However, TLS must run over a reliable transport channel - typically
 TCP [RFC0793].

 There are applications that use UDP [RFC0768] as a transport and to
 offer communication security protection for those applications the
 Datagram Transport Layer Security (DTLS) protocol has been developed.
 DTLS is deliberately designed to be as similar to TLS as possible,
 both to minimize new security invention and to maximize the amount of
 code and infrastructure reuse.

 DTLS 1.0 [RFC4347] was originally defined as a delta from TLS 1.1
 [RFC4346] and DTLS 1.2 [RFC6347] was defined as a series of deltas to
 TLS 1.2 [RFC5246]. There is no DTLS 1.1; that version number was
 skipped in order to harmonize version numbers with TLS. This
 specification describes the most current version of the DTLS protocol
 as a delta from TLS 1.3 [TLS13]. It obsoletes DTLS 1.2.

 Implementations that speak both DTLS 1.2 and DTLS 1.3 can
 interoperate with those that speak only DTLS 1.2 (using DTLS 1.2 of
 course), just as TLS 1.3 implementations can interoperate with TLS
 1.2 (see Appendix D of [TLS13] for details). While backwards
 compatibility with DTLS 1.0 is possible the use of DTLS 1.0 is not
 recommended as explained in Section 3.1.2 of RFC 7525 [RFC7525] and
 [DEPRECATE].

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are used:

Rescorla, et al. Expires 1 November 2021 [Page 4]

Internet-Draft DTLS 1.3 April 2021

 * client: The endpoint initiating the DTLS connection.

 * association: Shared state between two endpoints established with a
 DTLS handshake.

 * connection: Synonym for association.

 * endpoint: Either the client or server of the connection.

 * epoch: one set of cryptographic keys used for encryption and
 decryption.

 * handshake: An initial negotiation between client and server that
 establishes the parameters of the connection.

 * peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 * receiver: An endpoint that is receiving records.

 * sender: An endpoint that is transmitting records.

 * server: The endpoint which did not initiate the DTLS connection.

 * CID: Connection ID

 * MSL: Maximum Segment Lifetime

 The reader is assumed to be familiar with [TLS13]. As in TLS 1.3,
 the HelloRetryRequest has the same format as a ServerHello message,
 but for convenience we use the term HelloRetryRequest throughout this
 document as if it were a distinct message.

 DTLS 1.3 uses network byte order (big-endian) format for encoding
 messages based on the encoding format defined in [TLS13] and earlier
 (D)TLS specifications.

 The reader is also assumed to be familiar with
 [I-D.ietf-tls-dtls-connection-id] as this document applies the CID
 functionality to DTLS 1.3.

 Figures in this document illustrate various combinations of the DTLS
 protocol exchanges and the symbols have the following meaning:

 * ’+’ indicates noteworthy extensions sent in the previously noted
 message.

Rescorla, et al. Expires 1 November 2021 [Page 5]

Internet-Draft DTLS 1.3 April 2021

 * ’*’ indicates optional or situation-dependent messages/extensions
 that are not always sent.

 * ’{}’ indicates messages protected using keys derived from a
 [sender]_handshake_traffic_secret.

 * ’[]’ indicates messages protected using keys derived from
 traffic_secret_N.

3. DTLS Design Rationale and Overview

 The basic design philosophy of DTLS is to construct "TLS over
 datagram transport". Datagram transport does not require nor provide
 reliable or in-order delivery of data. The DTLS protocol preserves
 this property for application data. Applications, such as media
 streaming, Internet telephony, and online gaming use datagram
 transport for communication due to the delay-sensitive nature of
 transported data. The behavior of such applications is unchanged
 when the DTLS protocol is used to secure communication, since the
 DTLS protocol does not compensate for lost or reordered data traffic.
 Note that while low-latency streaming and gaming use DTLS to protect
 data (e.g. for protection of a WebRTC data channel), telephony
 utilizes DTLS for key establishment, and Secure Real-time Transport
 Protocol (SRTP) for protection of data [RFC5763].

 TLS cannot be used directly over datagram transports the following
 five reasons:

 1. TLS relies on an implicit sequence number on records. If a
 record is not received, then the recipient will use the wrong
 sequence number when attempting to remove record protection from
 subsequent records. DTLS solves this problem by adding sequence
 numbers to records.

 2. The TLS handshake is a lock-step cryptographic protocol.
 Messages must be transmitted and received in a defined order; any
 other order is an error. The DTLS handshake includes message
 sequence numbers to enable fragmented message reassembly and in-
 order delivery in case datagrams are lost or reordered.

 3. During the handshake, messages are implicitly acknowledged by
 other handshake messages. Some handshake messages, such as the
 NewSessionTicket message, do not result in any direct response
 that would allow the sender to detect loss. DTLS adds an
 acknowledgment message to enable better loss recovery.

Rescorla, et al. Expires 1 November 2021 [Page 6]

Internet-Draft DTLS 1.3 April 2021

 4. Handshake messages are potentially larger than can be contained
 in a single datagram. DTLS adds fields to handshake messages to
 support fragmentation and reassembly.

 5. Datagram transport protocols, like UDP, are susceptible to
 abusive behavior effecting denial of service attacks against
 nonparticipants. DTLS adds a return-routability check and DTLS
 1.3 uses the TLS 1.3 HelloRetryRequest message (see Section 5.1
 for details).

3.1. Packet Loss

 DTLS uses a simple retransmission timer to handle packet loss.
 Figure 1 demonstrates the basic concept, using the first phase of the
 DTLS handshake:

 Client Server
 ------ ------
 ClientHello ------>

 X<-- HelloRetryRequest
 (lost)

 [Timer Expires]

 ClientHello ------>
 (retransmit)

 Figure 1: DTLS retransmission example

 Once the client has transmitted the ClientHello message, it expects
 to see a HelloRetryRequest or a ServerHello from the server.
 However, if the timer expires, the client knows that either the
 ClientHello or the response from the server has been lost, which
 causes the the client to retransmit the ClientHello. When the server
 receives the retransmission, it knows to retransmit its
 HelloRetryRequest or ServerHello.

 The server also maintains a retransmission timer for messages it
 sends (other than HelloRetryRequest) and retransmits when that timer
 expires. Not applying retransmissions to the HelloRetryRequest
 avoids the need to create state on the server. The HelloRetryRequest
 is designed to be small enough that it will not itself be fragmented,
 thus avoiding concerns about interleaving multiple
 HelloRetryRequests.

 For more detail on timeouts and retransmission, see Section 5.8.

Rescorla, et al. Expires 1 November 2021 [Page 7]

Internet-Draft DTLS 1.3 April 2021

3.2. Reordering

 In DTLS, each handshake message is assigned a specific sequence
 number. When a peer receives a handshake message, it can quickly
 determine whether that message is the next message it expects. If it
 is, then it processes it. If not, it queues it for future handling
 once all previous messages have been received.

3.3. Fragmentation

 TLS and DTLS handshake messages can be quite large (in theory up to
 2^24-1 bytes, in practice many kilobytes). By contrast, UDP
 datagrams are often limited to less than 1500 bytes if IP
 fragmentation is not desired. In order to compensate for this
 limitation, each DTLS handshake message may be fragmented over
 several DTLS records, each of which is intended to fit in a single
 UDP datagram (see Section 4.4 for guidance). Each DTLS handshake
 message contains both a fragment offset and a fragment length. Thus,
 a recipient in possession of all bytes of a handshake message can
 reassemble the original unfragmented message.

3.4. Replay Detection

 DTLS optionally supports record replay detection. The technique used
 is the same as in IPsec AH/ESP, by maintaining a bitmap window of
 received records. Records that are too old to fit in the window and
 records that have previously been received are silently discarded.
 The replay detection feature is optional, since packet duplication is
 not always malicious, but can also occur due to routing errors.
 Applications may conceivably detect duplicate packets and accordingly
 modify their data transmission strategy.

4. The DTLS Record Layer

 The DTLS 1.3 record layer is different from the TLS 1.3 record layer
 and also different from the DTLS 1.2 record layer.

 1. The DTLSCiphertext structure omits the superfluous version number
 and type fields.

 2. DTLS adds an epoch and sequence number to the TLS record header.
 This sequence number allows the recipient to correctly verify the
 DTLS MAC. However, the number of bits used for the epoch and
 sequence number fields in the DTLSCiphertext structure have been
 reduced from those in previous versions.

 3. The DTLSCiphertext structure has a variable length header.

Rescorla, et al. Expires 1 November 2021 [Page 8]

Internet-Draft DTLS 1.3 April 2021

 DTLSPlaintext records are used to send unprotected records and
 DTLSCiphertext records are used to send protected records.

 The DTLS record formats are shown below. Unless explicitly stated
 the meaning of the fields is unchanged from previous TLS / DTLS
 versions.

 struct {
 ContentType type;
 ProtocolVersion legacy_record_version;
 uint16 epoch = 0
 uint48 sequence_number;
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 struct {
 opaque content[DTLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } DTLSInnerPlaintext;

 struct {
 opaque unified_hdr[variable];
 opaque encrypted_record[length];
 } DTLSCiphertext;

 Figure 2: DTLS 1.3 Record Formats

 legacy_record_version This value MUST be set to {254, 253} for all
 records other than the initial ClientHello (i.e., one not
 generated after a HelloRetryRequest), where it may also be {254,
 255} for compatibility purposes. It MUST be ignored for all
 purposes. See [TLS13]; Appendix D.1 for the rationale for this.

 unified_hdr: The unified header (unified_hdr) is a structure of
 variable length, as shown in Figure 3.

 encrypted_record: The AEAD-encrypted form of the serialized
 DTLSInnerPlaintext structure.

Rescorla, et al. Expires 1 November 2021 [Page 9]

Internet-Draft DTLS 1.3 April 2021

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0|0|1|C|S|L|E E|
 +-+-+-+-+-+-+-+-+
 | Connection ID | Legend:
 | (if any, |
 / length as / C - Connection ID (CID) present
 | negotiated) | S - Sequence number length
 +-+-+-+-+-+-+-+-+ L - Length present
 | 8 or 16 bit | E - Epoch
 |Sequence Number|
 +-+-+-+-+-+-+-+-+
 | 16 bit Length |
 | (if present) |
 +-+-+-+-+-+-+-+-+

 Figure 3: DTLS 1.3 Unified Header

 Fixed Bits: The three high bits of the first byte of the unified
 header are set to 001. This ensures that the value will fit
 within the DTLS region when multiplexing is performed as described
 in [RFC7983]. It also ensures that distinguishing encrypted DTLS
 1.3 records from encrypted DTLS 1.2 records is possible when they
 are carried on the same host/port quartet; such multiplexing is
 only possible when CIDs [I-D.ietf-tls-dtls-connection-id] are in
 use, in which case DTLS 1.2 records will have the content type
 tls12_cid (25).

 C: The C bit (0x10) is set if the Connection ID is present.

 S: The S bit (0x08) indicates the size of the sequence number. 0
 means an 8-bit sequence number, 1 means 16-bit. Implementations
 MAY mix sequence numbers of different lengths on the same
 connection.

 L: The L bit (0x04) is set if the length is present.

 E: The two low bits (0x03) include the low order two bits of the
 epoch.

 Connection ID: Variable length CID. The CID functionality is
 described in [I-D.ietf-tls-dtls-connection-id]. An example can be
 found in Section 9.1.

 Sequence Number: The low order 8 or 16 bits of the record sequence
 number. This value is 16 bits if the S bit is set to 1, and 8
 bits if the S bit is 0.

Rescorla, et al. Expires 1 November 2021 [Page 10]

Internet-Draft DTLS 1.3 April 2021

 Length: Identical to the length field in a TLS 1.3 record.

 As with previous versions of DTLS, multiple DTLSPlaintext and
 DTLSCiphertext records can be included in the same underlying
 transport datagram.

 Figure 4 illustrates different record headers.

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | Content Type | |0|0|1|1|1|1|E E| |0|0|1|0|0|0|E E|
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | 16 bit | | | |8-bit Seq. No. |
 | Version | / Connection ID / +-+-+-+-+-+-+-+-+
 +-+-+-+-+-+-+-+-+ | | | |
 | 16 bit | +-+-+-+-+-+-+-+-+ | Encrypted |
 | Epoch | | 16 bit | / Record /
 +-+-+-+-+-+-+-+-+ |Sequence Number| | |
 | | +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | | | 16 bit |
 | 48 bit | | Length | DTLSCiphertext
 |Sequence Number| +-+-+-+-+-+-+-+-+ Structure
 | | | | (minimal)
 | | | Encrypted |
 +-+-+-+-+-+-+-+-+ / Record /
 | 16 bit | | |
 | Length | +-+-+-+-+-+-+-+-+
 +-+-+-+-+-+-+-+-+
 | | DTLSCiphertext
 | | Structure
 / Fragment / (full)
 | |
 +-+-+-+-+-+-+-+-+

 DTLSPlaintext
 Structure

 Figure 4: DTLS 1.3 Header Examples

 The length field MAY be omitted by clearing the L bit, which means
 that the record consumes the entire rest of the datagram in the lower
 level transport. In this case it is not possible to have multiple
 DTLSCiphertext format records without length fields in the same
 datagram. Omitting the length field MUST only be used for the last
 record in a datagram. Implementations MAY mix records with and
 without length fields on the same connection.

Rescorla, et al. Expires 1 November 2021 [Page 11]

Internet-Draft DTLS 1.3 April 2021

 If a Connection ID is negotiated, then it MUST be contained in all
 datagrams. Sending implementations MUST NOT mix records from
 multiple DTLS associations in the same datagram. If the second or
 later record has a connection ID which does not correspond to the
 same association used for previous records, the rest of the datagram
 MUST be discarded.

 When expanded, the epoch and sequence number can be combined into an
 unpacked RecordNumber structure, as shown below:

 struct {
 uint16 epoch;
 uint48 sequence_number;
 } RecordNumber;

 This 64-bit value is used in the ACK message as well as in the
 "record_sequence_number" input to the AEAD function.

 The entire header value shown in Figure 4 (but prior to record number
 encryption, see Section 4.2.3) is used as as the additional data
 value for the AEAD function. For instance, if the minimal variant is
 used, the AAD is 2 octets long. Note that this design is different
 from the additional data calculation for DTLS 1.2 and for DTLS 1.2
 with Connection ID.

4.1. Demultiplexing DTLS Records

 DTLS 1.3 uses a variable length record format and hence the
 demultiplexing process is more complex since more header formats need
 to be distinguished. Implementations can demultiplex DTLS 1.3
 records by examining the first byte as follows:

 * If the first byte is alert(21), handshake(22), or ack(proposed,
 26), the record MUST be interpreted as a DTLSPlaintext record.

 * If the first byte is any other value, then receivers MUST check to
 see if the leading bits of the first byte are 001. If so, the
 implementation MUST process the record as DTLSCiphertext; the true
 content type will be inside the protected portion.

 * Otherwise, the record MUST be rejected as if it had failed
 deprotection, as described in Section 4.5.2.

 Figure 5 shows this demultiplexing procedure graphically taking DTLS
 1.3 and earlier versions of DTLS into account.

Rescorla, et al. Expires 1 November 2021 [Page 12]

Internet-Draft DTLS 1.3 April 2021

 +----------------+
 | Outer Content |
 | Type (OCT) |
 | |
 | OCT == 20 -+--> ChangeCipherSpec (DTLS <1.3)
 | OCT == 21 -+--> Alert (Plaintext)
 | OCT == 22 -+--> Handshake (Plaintext)
 | OCT == 23 -+--> Application Data (DTLS <1.3)
 | OCT == 24 -+--> Heartbeat (DTLS <1.3)
 packet --> | OCT == 25 -+--> DTLSCipherText with CID (DTLS 1.2)
 | OCT == 26 -+--> ACK (DTLS 1.3, Plaintext)
 | |
 | | /+----------------+\
 | 31 < OCT < 64 -+--> |DTLS Ciphertext | |
 | | |(header bits |
 | else | | start with 001)|
 | | | /+-------+--------+\
 +-------+--------+ |
 | |
 v Decryption |
 +---------+ +------+
 | Reject | |
 +---------+ v
 +----------------+
 | Decrypted |
 | Content Type |
 | (DCT) |
 | |
 | DCT == 21 -+--> Alert
 | DCT == 22 -+--> Handshake
 | DCT == 23 -+--> Application Data
 | DCT == 24 -+--> Heartbeat
 | DCT == 26 -+--> ACK
 | |
 +----------------+

 Figure 5: Demultiplexing DTLS 1.2 and DTLS 1.3 Records

Rescorla, et al. Expires 1 November 2021 [Page 13]

Internet-Draft DTLS 1.3 April 2021

 Note: The optimized DTLS header format shown in Figure 3, which does
 not carry the Content Type in the Unified Header format, requires a
 different demultilexing strategy compared to what was used in
 previous DTLS versions where the Content Type was conveyed in every
 record. As described in Figure 5, the first byte determines how an
 incoming DTLS record is demultiplexed. The first 3 bits of the first
 byte distinguish a DTLS 1.3 encrypted record from record types used
 in previous DTLS versions and plaintext DTLS 1.3 record types.
 Hence, the range 32 (0b0010 0000) to 63 (0b0011 1111) needs to be
 excluded from future allocations by IANA to avoid problems while
 demultiplexing; see Section 14.

4.2. Sequence Number and Epoch

 DTLS uses an explicit or partly explicit sequence number, rather than
 an implicit one, carried in the sequence_number field of the record.
 Sequence numbers are maintained separately for each epoch, with each
 sequence_number initially being 0 for each epoch.

 The epoch number is initially zero and is incremented each time
 keying material changes and a sender aims to rekey. More details are
 provided in Section 6.1.

4.2.1. Processing Guidelines

 Because DTLS records could be reordered, a record from epoch M may be
 received after epoch N (where N > M) has begun. Implementations
 SHOULD discard records from earlier epochs, but MAY choose to retain
 keying material from previous epochs for up to the default MSL
 specified for TCP [RFC0793] to allow for packet reordering. (Note
 that the intention here is that implementers use the current guidance
 from the IETF for MSL, as specified in [RFC0793] or successors, not
 that they attempt to interrogate the MSL that the system TCP stack is
 using.)

 Conversely, it is possible for records that are protected with the
 new epoch to be received prior to the completion of a handshake. For
 instance, the server may send its Finished message and then start
 transmitting data. Implementations MAY either buffer or discard such
 records, though when DTLS is used over reliable transports (e.g.,
 SCTP [RFC4960]), they SHOULD be buffered and processed once the
 handshake completes. Note that TLS’s restrictions on when records
 may be sent still apply, and the receiver treats the records as if
 they were sent in the right order.

 Implementations MUST send retransmissions of lost messages using the
 same epoch and keying material as the original transmission.

Rescorla, et al. Expires 1 November 2021 [Page 14]

Internet-Draft DTLS 1.3 April 2021

 Implementations MUST either abandon an association or re-key prior to
 allowing the sequence number to wrap.

 Implementations MUST NOT allow the epoch to wrap, but instead MUST
 establish a new association, terminating the old association.

4.2.2. Reconstructing the Sequence Number and Epoch

 When receiving protected DTLS records, the recipient does not have a
 full epoch or sequence number value in the record and so there is
 some opportunity for ambiguity. Because the full epoch and sequence
 number are used to compute the per-record nonce, failure to
 reconstruct these values leads to failure to deprotect the record,
 and so implementations MAY use a mechanism of their choice to
 determine the full values. This section provides an algorithm which
 is comparatively simple and which implementations are RECOMMENDED to
 follow.

 If the epoch bits match those of the current epoch, then
 implementations SHOULD reconstruct the sequence number by computing
 the full sequence number which is numerically closest to one plus the
 sequence number of the highest successfully deprotected record in the
 current epoch.

 During the handshake phase, the epoch bits unambiguously indicate the
 correct key to use. After the handshake is complete, if the epoch
 bits do not match those from the current epoch implementations SHOULD
 use the most recent past epoch which has matching bits, and then
 reconstruct the sequence number for that epoch as described above.

4.2.3. Record Number Encryption

 In DTLS 1.3, when records are encrypted, record sequence numbers are
 also encrypted. The basic pattern is that the underlying encryption
 algorithm used with the AEAD algorithm is used to generate a mask
 which is then XORed with the sequence number.

 When the AEAD is based on AES, then the Mask is generated by
 computing AES-ECB on the first 16 bytes of the ciphertext:

 Mask = AES-ECB(sn_key, Ciphertext[0..15])

 When the AEAD is based on ChaCha20, then the mask is generated by
 treating the first 4 bytes of the ciphertext as the block counter and
 the next 12 bytes as the nonce, passing them to the ChaCha20 block
 function (Section 2.3 of [CHACHA]):

 Mask = ChaCha20(sn_key, Ciphertext[0..3], Ciphertext[4..15])

Rescorla, et al. Expires 1 November 2021 [Page 15]

Internet-Draft DTLS 1.3 April 2021

 The sn_key is computed as follows:

 [sender]_sn_key = HKDF-Expand-Label(Secret, "sn" , "", key_length)

 [sender] denotes the sending side. The Secret value to be used is
 described in Section 7.3 of [TLS13]. Note that a new key is used for
 each epoch: because the epoch is sent in the clear, this does not
 result in ambiguity.

 The encrypted sequence number is computed by XORing the leading bytes
 of the Mask with the on-the-wire representation of the sequence
 number. Decryption is accomplished by the same process.

 This procedure requires the ciphertext length be at least 16 bytes.
 Receivers MUST reject shorter records as if they had failed
 deprotection, as described in Section 4.5.2. Senders MUST pad short
 plaintexts out (using the conventional record padding mechanism) in
 order to make a suitable-length ciphertext. Note most of the DTLS
 AEAD algorithms have a 16-byte authentication tag and need no
 padding. However, some algorithms such as TLS_AES_128_CCM_8_SHA256
 have a shorter authentication tag and may require padding for short
 inputs.

 Future cipher suites, which are not based on AES or ChaCha20, MUST
 define their own record sequence number encryption in order to be
 used with DTLS.

 Note that sequence number encryption is only applied to the
 DTLSCiphertext structure and not to the DTLSPlaintext structure,
 which also contains a sequence number.

4.3. Transport Layer Mapping

 DTLS messages MAY be fragmented into multiple DTLS records. Each
 DTLS record MUST fit within a single datagram. In order to avoid IP
 fragmentation, clients of the DTLS record layer SHOULD attempt to
 size records so that they fit within any Path MTU (PMTU) estimates
 obtained from the record layer. For more information about PMTU
 issues see Section 4.4.

 Multiple DTLS records MAY be placed in a single datagram. Records
 are encoded consecutively. The length field from DTLS records
 containing that field can be used to determine the boundaries between
 records. The final record in a datagram can omit the length field.
 The first byte of the datagram payload MUST be the beginning of a
 record. Records MUST NOT span datagrams.

Rescorla, et al. Expires 1 November 2021 [Page 16]

Internet-Draft DTLS 1.3 April 2021

 DTLS records without CIDs do not contain any association identifiers
 and applications must arrange to multiplex between associations.
 With UDP, the host/port number is used to look up the appropriate
 security association for incoming records without CIDs.

 Some transports, such as DCCP [RFC4340], provide their own sequence
 numbers. When carried over those transports, both the DTLS and the
 transport sequence numbers will be present. Although this introduces
 a small amount of inefficiency, the transport layer and DTLS sequence
 numbers serve different purposes; therefore, for conceptual
 simplicity, it is superior to use both sequence numbers.

 Some transports provide congestion control for traffic carried over
 them. If the congestion window is sufficiently narrow, DTLS
 handshake retransmissions may be held rather than transmitted
 immediately, potentially leading to timeouts and spurious
 retransmission. When DTLS is used over such transports, care should
 be taken not to overrun the likely congestion window. [RFC5238]
 defines a mapping of DTLS to DCCP that takes these issues into
 account.

4.4. PMTU Issues

 In general, DTLS’s philosophy is to leave PMTU discovery to the
 application. However, DTLS cannot completely ignore PMTU for three
 reasons:

 * The DTLS record framing expands the datagram size, thus lowering
 the effective PMTU from the application’s perspective.

 * In some implementations, the application may not directly talk to
 the network, in which case the DTLS stack may absorb ICMP
 [RFC1191] "Datagram Too Big" indications or ICMPv6 [RFC4443]
 "Packet Too Big" indications.

 * The DTLS handshake messages can exceed the PMTU.

 In order to deal with the first two issues, the DTLS record layer
 SHOULD behave as described below.

 If PMTU estimates are available from the underlying transport
 protocol, they should be made available to upper layer protocols. In
 particular:

 * For DTLS over UDP, the upper layer protocol SHOULD be allowed to
 obtain the PMTU estimate maintained in the IP layer.

Rescorla, et al. Expires 1 November 2021 [Page 17]

Internet-Draft DTLS 1.3 April 2021

 * For DTLS over DCCP, the upper layer protocol SHOULD be allowed to
 obtain the current estimate of the PMTU.

 * For DTLS over TCP or SCTP, which automatically fragment and
 reassemble datagrams, there is no PMTU limitation. However, the
 upper layer protocol MUST NOT write any record that exceeds the
 maximum record size of 2^14 bytes.

 The DTLS record layer SHOULD also allow the upper layer protocol to
 discover the amount of record expansion expected by the DTLS
 processing; alternately it MAY report PMTU estimates minus the
 estimated expansion from the transport layer and DTLS record framing.

 Note that DTLS does not defend against spoofed ICMP messages;
 implementations SHOULD ignore any such messages that indicate PMTUs
 below the IPv4 and IPv6 minimums of 576 and 1280 bytes respectively.

 If there is a transport protocol indication that the PMTU was
 exceeded (either via ICMP or via a refusal to send the datagram as in
 Section 14 of [RFC4340]), then the DTLS record layer MUST inform the
 upper layer protocol of the error.

 The DTLS record layer SHOULD NOT interfere with upper layer protocols
 performing PMTU discovery, whether via [RFC1191] and [RFC4821] for
 IPv4 or via [RFC8201] for IPv6. In particular:

 * Where allowed by the underlying transport protocol, the upper
 layer protocol SHOULD be allowed to set the state of the DF bit
 (in IPv4) or prohibit local fragmentation (in IPv6).

 * If the underlying transport protocol allows the application to
 request PMTU probing (e.g., DCCP), the DTLS record layer SHOULD
 honor this request.

 The final issue is the DTLS handshake protocol. From the perspective
 of the DTLS record layer, this is merely another upper layer
 protocol. However, DTLS handshakes occur infrequently and involve
 only a few round trips; therefore, the handshake protocol PMTU
 handling places a premium on rapid completion over accurate PMTU
 discovery. In order to allow connections under these circumstances,
 DTLS implementations SHOULD follow the following rules:

 * If the DTLS record layer informs the DTLS handshake layer that a
 message is too big, the handshake layer SHOULD immediately attempt
 to fragment the message, using any existing information about the
 PMTU.

Rescorla, et al. Expires 1 November 2021 [Page 18]

Internet-Draft DTLS 1.3 April 2021

 * If repeated retransmissions do not result in a response, and the
 PMTU is unknown, subsequent retransmissions SHOULD back off to a
 smaller record size, fragmenting the handshake message as
 appropriate. This specification does not specify an exact number
 of retransmits to attempt before backing off, but 2-3 seems
 appropriate.

4.5. Record Payload Protection

 Like TLS, DTLS transmits data as a series of protected records. The
 rest of this section describes the details of that format.

4.5.1. Anti-Replay

 Each DTLS record contains a sequence number to provide replay
 protection. Sequence number verification SHOULD be performed using
 the following sliding window procedure, borrowed from Section 3.4.3
 of [RFC4303]. Because each epoch resets the sequence number space, a
 separate sliding window is needed for each epoch.

 The received record counter for an epoch MUST be initialized to zero
 when that epoch is first used. For each received record, the
 receiver MUST verify that the record contains a sequence number that
 does not duplicate the sequence number of any other record received
 in that epoch during the lifetime of the association. This check
 SHOULD happen after deprotecting the record; otherwise the record
 discard might itself serve as a timing channel for the record number.
 Note that computing the full record number from the partial is still
 a potential timing channel for the record number, though a less
 powerful one than whether the record was deprotected.

 Duplicates are rejected through the use of a sliding receive window.
 (How the window is implemented is a local matter, but the following
 text describes the functionality that the implementation must
 exhibit.) The receiver SHOULD pick a window large enough to handle
 any plausible reordering, which depends on the data rate. (The
 receiver does not notify the sender of the window size.)

 The "right" edge of the window represents the highest validated
 sequence number value received in the epoch. Records that contain
 sequence numbers lower than the "left" edge of the window are
 rejected. Records falling within the window are checked against a
 list of received records within the window. An efficient means for
 performing this check, based on the use of a bit mask, is described
 in Section 3.4.3 of [RFC4303]. If the received record falls within
 the window and is new, or if the record is to the right of the
 window, then the record is new.

Rescorla, et al. Expires 1 November 2021 [Page 19]

Internet-Draft DTLS 1.3 April 2021

 The window MUST NOT be updated until the record has been deprotected
 successfully.

4.5.2. Handling Invalid Records

 Unlike TLS, DTLS is resilient in the face of invalid records (e.g.,
 invalid formatting, length, MAC, etc.). In general, invalid records
 SHOULD be silently discarded, thus preserving the association;
 however, an error MAY be logged for diagnostic purposes.
 Implementations which choose to generate an alert instead, MUST
 generate fatal alerts to avoid attacks where the attacker repeatedly
 probes the implementation to see how it responds to various types of
 error. Note that if DTLS is run over UDP, then any implementation
 which does this will be extremely susceptible to denial-of-service
 (DoS) attacks because UDP forgery is so easy. Thus, generating fatal
 alerts is NOT RECOMMENDED for such transports, both to increase the
 reliability of DTLS service and to avoid the risk of spoofing attacks
 sending traffic to unrelated third parties.

 If DTLS is being carried over a transport that is resistant to
 forgery (e.g., SCTP with SCTP-AUTH), then it is safer to send alerts
 because an attacker will have difficulty forging a datagram that will
 not be rejected by the transport layer.

 Note that because invalid records are rejected at a layer lower than
 the handshake state machine, they do not affect pending
 retransmission timers.

4.5.3. AEAD Limits

 Section 5.5 of TLS [TLS13] defines limits on the number of records
 that can be protected using the same keys. These limits are specific
 to an AEAD algorithm, and apply equally to DTLS. Implementations
 SHOULD NOT protect more records than allowed by the limit specified
 for the negotiated AEAD. Implementations SHOULD initiate a key
 update before reaching this limit.

 [TLS13] does not specify a limit for AEAD_AES_128_CCM, but the
 analysis in Appendix B shows that a limit of 2^23 packets can be used
 to obtain the same confidentiality protection as the limits specified
 in TLS.

Rescorla, et al. Expires 1 November 2021 [Page 20]

Internet-Draft DTLS 1.3 April 2021

 The usage limits defined in TLS 1.3 exist for protection against
 attacks on confidentiality and apply to successful applications of
 AEAD protection. The integrity protections in authenticated
 encryption also depend on limiting the number of attempts to forge
 packets. TLS achieves this by closing connections after any record
 fails an authentication check. In comparison, DTLS ignores any
 packet that cannot be authenticated, allowing multiple forgery
 attempts.

 Implementations MUST count the number of received packets that fail
 authentication with each key. If the number of packets that fail
 authentication exceed a limit that is specific to the AEAD in use, an
 implementation SHOULD immediately close the connection.
 Implementations SHOULD initiate a key update with update_requested
 before reaching this limit. Once a key update has been initiated,
 the previous keys can be dropped when the limit is reached rather
 than closing the connection. Applying a limit reduces the
 probability that an attacker is able to successfully forge a packet;
 see [AEBounds] and [ROBUST].

 For AEAD_AES_128_GCM, AEAD_AES_256_GCM, and AEAD_CHACHA20_POLY1305,
 the limit on the number of records that fail authentication is 2^36.
 Note that the analysis in [AEBounds] supports a higher limit for the
 AEAD_AES_128_GCM and AEAD_AES_256_GCM, but this specification
 recommends a lower limit. For AEAD_AES_128_CCM, the limit on the
 number of records that fail authentication is 2^23.5; see Appendix B.

 The AEAD_AES_128_CCM_8 AEAD, as used in TLS_AES_128_CCM_8_SHA256,
 does not have a limit on the number of records that fail
 authentication that both limits the probability of forgery by the
 same amount and does not expose implementations to the risk of denial
 of service; see Appendix B.3. Therefore, TLS_AES_128_CCM_8_SHA256
 MUST NOT be used in DTLS without additional safeguards against
 forgery. Implementations MUST set usage limits for
 AEAD_AES_128_CCM_8 based on an understanding of any additional
 forgery protections that are used.

 Any TLS cipher suite that is specified for use with DTLS MUST define
 limits on the use of the associated AEAD function that preserves
 margins for both confidentiality and integrity. That is, limits MUST
 be specified for the number of packets that can be authenticated and
 for the number of packets that can fail authentication before a key
 update is required. Providing a reference to any analysis upon which
 values are based - and any assumptions used in that analysis - allows
 limits to be adapted to varying usage conditions.

Rescorla, et al. Expires 1 November 2021 [Page 21]

Internet-Draft DTLS 1.3 April 2021

5. The DTLS Handshake Protocol

 DTLS 1.3 re-uses the TLS 1.3 handshake messages and flows, with the
 following changes:

 1. To handle message loss, reordering, and fragmentation
 modifications to the handshake header are necessary.

 2. Retransmission timers are introduced to handle message loss.

 3. A new ACK content type has been added for reliable message
 delivery of handshake messages.

 Note that TLS 1.3 already supports a cookie extension, which is used
 to prevent denial-of-service attacks. This DoS prevention mechanism
 is described in more detail below since UDP-based protocols are more
 vulnerable to amplification attacks than a connection-oriented
 transport like TCP that performs return-routability checks as part of
 the connection establishment.

 DTLS implementations do not use the TLS 1.3 "compatibility mode"
 described in Section D.4 of [TLS13]. DTLS servers MUST NOT echo the
 "legacy_session_id" value from the client and endpoints MUST NOT send
 ChangeCipherSpec messages.

 With these exceptions, the DTLS message formats, flows, and logic are
 the same as those of TLS 1.3.

5.1. Denial-of-Service Countermeasures

 Datagram security protocols are extremely susceptible to a variety of
 DoS attacks. Two attacks are of particular concern:

 1. An attacker can consume excessive resources on the server by
 transmitting a series of handshake initiation requests, causing
 the server to allocate state and potentially to perform expensive
 cryptographic operations.

 2. An attacker can use the server as an amplifier by sending
 connection initiation messages with a forged source address that
 belongs to a victim. The server then sends its response to the
 victim machine, thus flooding it. Depending on the selected
 parameters this response message can be quite large, as is the
 case for a Certificate message.

 In order to counter both of these attacks, DTLS borrows the stateless
 cookie technique used by Photuris [RFC2522] and IKE [RFC7296]. When
 the client sends its ClientHello message to the server, the server

Rescorla, et al. Expires 1 November 2021 [Page 22]

Internet-Draft DTLS 1.3 April 2021

 MAY respond with a HelloRetryRequest message. The HelloRetryRequest
 message, as well as the cookie extension, is defined in TLS 1.3. The
 HelloRetryRequest message contains a stateless cookie (see [TLS13];
 Section 4.2.2). The client MUST send a new ClientHello with the
 cookie added as an extension. The server then verifies the cookie
 and proceeds with the handshake only if it is valid. This mechanism
 forces the attacker/client to be able to receive the cookie, which
 makes DoS attacks with spoofed IP addresses difficult. This
 mechanism does not provide any defense against DoS attacks mounted
 from valid IP addresses.

 The DTLS 1.3 specification changes how cookies are exchanged compared
 to DTLS 1.2. DTLS 1.3 re-uses the HelloRetryRequest message and
 conveys the cookie to the client via an extension. The client
 receiving the cookie uses the same extension to place the cookie
 subsequently into a ClientHello message. DTLS 1.2 on the other hand
 used a separate message, namely the HelloVerifyRequest, to pass a
 cookie to the client and did not utilize the extension mechanism.
 For backwards compatibility reasons, the cookie field in the
 ClientHello is present in DTLS 1.3 but is ignored by a DTLS 1.3
 compliant server implementation.

 The exchange is shown in Figure 6. Note that the figure focuses on
 the cookie exchange; all other extensions are omitted.

 Client Server
 ------ ------
 ClientHello ------>

 <----- HelloRetryRequest
 + cookie

 ClientHello ------>
 + cookie

 [Rest of handshake]

 Figure 6: DTLS exchange with HelloRetryRequest containing the
 "cookie" extension

 The cookie extension is defined in Section 4.2.2 of [TLS13]. When
 sending the initial ClientHello, the client does not have a cookie
 yet. In this case, the cookie extension is omitted and the
 legacy_cookie field in the ClientHello message MUST be set to a zero-
 length vector (i.e., a zero-valued single byte length field).

Rescorla, et al. Expires 1 November 2021 [Page 23]

Internet-Draft DTLS 1.3 April 2021

 When responding to a HelloRetryRequest, the client MUST create a new
 ClientHello message following the description in Section 4.1.2 of
 [TLS13].

 If the HelloRetryRequest message is used, the initial ClientHello and
 the HelloRetryRequest are included in the calculation of the
 transcript hash. The computation of the message hash for the
 HelloRetryRequest is done according to the description in
 Section 4.4.1 of [TLS13].

 The handshake transcript is not reset with the second ClientHello and
 a stateless server-cookie implementation requires the content or hash
 of the initial ClientHello (and HelloRetryRequest) to be stored in
 the cookie. The initial ClientHello is included in the handshake
 transcript as a synthetic "message_hash" message, so only the hash
 value is needed for the handshake to complete, though the complete
 HelloRetryRequest contents are needed.

 When the second ClientHello is received, the server can verify that
 the cookie is valid and that the client can receive packets at the
 given IP address. If the client’s apparent IP address is embedded in
 the cookie, this prevents an attacker from generating an acceptable
 ClientHello apparently from another user.

 One potential attack on this scheme is for the attacker to collect a
 number of cookies from different addresses where it controls
 endpoints and then reuse them to attack the server. The server can
 defend against this attack by changing the secret value frequently,
 thus invalidating those cookies. If the server wishes to allow
 legitimate clients to handshake through the transition (e.g., a
 client received a cookie with Secret 1 and then sent the second
 ClientHello after the server has changed to Secret 2), the server can
 have a limited window during which it accepts both secrets.
 [RFC7296] suggests adding a key identifier to cookies to detect this
 case. An alternative approach is simply to try verifying with both
 secrets. It is RECOMMENDED that servers implement a key rotation
 scheme that allows the server to manage keys with overlapping
 lifetime.

 Alternatively, the server can store timestamps in the cookie and
 reject cookies that were generated outside a certain interval of
 time.

 DTLS servers SHOULD perform a cookie exchange whenever a new
 handshake is being performed. If the server is being operated in an
 environment where amplification is not a problem, the server MAY be
 configured not to perform a cookie exchange. The default SHOULD be
 that the exchange is performed, however. In addition, the server MAY

Rescorla, et al. Expires 1 November 2021 [Page 24]

Internet-Draft DTLS 1.3 April 2021

 choose not to do a cookie exchange when a session is resumed or, more
 generically, when the DTLS handshake uses a PSK-based key exchange
 and the IP address matches one associated with the PSK. Servers
 which process 0-RTT requests and send 0.5-RTT responses without a
 cookie exchange risk being used in an amplification attack if the
 size of outgoing messages greatly exceeds the size of those that are
 received. A server SHOULD limit the amount of data it sends toward a
 client address to three times the amount of data sent by the client
 before it verifies that the client is able to receive data at that
 address. A client address is valid after a cookie exchange or
 handshake completion. Clients MUST be prepared to do a cookie
 exchange with every handshake. Note that cookies are only valid for
 the existing handshake and cannot be stored for future handshakes.

 If a server receives a ClientHello with an invalid cookie, it MUST
 terminate the handshake with an "illegal_parameter" alert. This
 allows the client to restart the connection from scratch without a
 cookie.

 As described in Section 4.1.4 of [TLS13], clients MUST abort the
 handshake with an "unexpected_message" alert in response to any
 second HelloRetryRequest which was sent in the same connection (i.e.,
 where the ClientHello was itself in response to a HelloRetryRequest).

 DTLS clients which do not want to receive a Connection ID SHOULD
 still offer the "connection_id" extension unless there is an
 application profile to the contrary. This permits a server which
 wants to receive a CID to negotiate one.

5.2. DTLS Handshake Message Format

 In order to support message loss, reordering, and message
 fragmentation, DTLS modifies the TLS 1.3 handshake header:

Rescorla, et al. Expires 1 November 2021 [Page 25]

Internet-Draft DTLS 1.3 April 2021

 enum {
 client_hello(1),
 server_hello(2),
 new_session_ticket(4),
 end_of_early_data(5),
 encrypted_extensions(8),
 certificate(11),
 certificate_request(13),
 certificate_verify(15),
 finished(20),
 key_update(24),
 message_hash(254),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 uint16 message_seq; /* DTLS-required field */
 uint24 fragment_offset; /* DTLS-required field */
 uint24 fragment_length; /* DTLS-required field */
 select (msg_type) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 } body;
 } Handshake;

 The first message each side transmits in each association always has
 message_seq = 0. Whenever a new message is generated, the
 message_seq value is incremented by one. When a message is
 retransmitted, the old message_seq value is re-used, i.e., not
 incremented. From the perspective of the DTLS record layer, the
 retransmission is a new record. This record will have a new
 DTLSPlaintext.sequence_number value.

Rescorla, et al. Expires 1 November 2021 [Page 26]

Internet-Draft DTLS 1.3 April 2021

 Note: In DTLS 1.2 the message_seq was reset to zero in case of a
 rehandshake (i.e., renegotiation). On the surface, a rehandshake in
 DTLS 1.2 shares similarities with a post-handshake message exchange
 in DTLS 1.3. However, in DTLS 1.3 the message_seq is not reset to
 allow distinguishing a retransmission from a previously sent post-
 handshake message from a newly sent post-handshake message.

 DTLS implementations maintain (at least notionally) a
 next_receive_seq counter. This counter is initially set to zero.
 When a handshake message is received, if its message_seq value
 matches next_receive_seq, next_receive_seq is incremented and the
 message is processed. If the sequence number is less than
 next_receive_seq, the message MUST be discarded. If the sequence
 number is greater than next_receive_seq, the implementation SHOULD
 queue the message but MAY discard it. (This is a simple space/
 bandwidth tradeoff).

 In addition to the handshake messages that are deprecated by the TLS
 1.3 specification, DTLS 1.3 furthermore deprecates the
 HelloVerifyRequest message originally defined in DTLS 1.0. DTLS
 1.3-compliant implements MUST NOT use the HelloVerifyRequest to
 execute a return-routability check. A dual-stack DTLS 1.2/DTLS 1.3
 client MUST, however, be prepared to interact with a DTLS 1.2 server.

5.3. ClientHello Message

 The format of the ClientHello used by a DTLS 1.3 client differs from
 the TLS 1.3 ClientHello format as shown below.

 uint16 ProtocolVersion;
 opaque Random[32];

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {
 ProtocolVersion legacy_version = { 254,253 }; // DTLSv1.2
 Random random;
 opaque legacy_session_id<0..32>;
 opaque legacy_cookie<0..2^8-1>; // DTLS
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<8..2^16-1>;
 } ClientHello;

 legacy_version: In previous versions of DTLS, this field was used
 for version negotiation and represented the highest version number
 supported by the client. Experience has shown that many servers
 do not properly implement version negotiation, leading to "version

Rescorla, et al. Expires 1 November 2021 [Page 27]

Internet-Draft DTLS 1.3 April 2021

 intolerance" in which the server rejects an otherwise acceptable
 ClientHello with a version number higher than it supports. In
 DTLS 1.3, the client indicates its version preferences in the
 "supported_versions" extension (see Section 4.2.1 of [TLS13]) and
 the legacy_version field MUST be set to {254, 253}, which was the
 version number for DTLS 1.2. The supported_versions entries for
 DTLS 1.0 and DTLS 1.2 are 0xfeff and 0xfefd (to match the wire
 versions). The value 0xfefc is used to indicate DTLS 1.3.

 random: Same as for TLS 1.3, except that the downgrade sentinels
 described in Section 4.1.3 of [TLS13] when TLS 1.2 and TLS 1.1 and
 below are negotiated apply to DTLS 1.2 and DTLS 1.0 respectively.

 legacy_session_id: Versions of TLS and DTLS before version 1.3
 supported a "session resumption" feature which has been merged
 with pre-shared keys in version 1.3. A client which has a cached
 session ID set by a pre-DTLS 1.3 server SHOULD set this field to
 that value. Otherwise, it MUST be set as a zero-length vector
 (i.e., a zero-valued single byte length field).

 legacy_cookie: A DTLS 1.3-only client MUST set the legacy_cookie
 field to zero length. If a DTLS 1.3 ClientHello is received with
 any other value in this field, the server MUST abort the handshake
 with an "illegal_parameter" alert.

 cipher_suites: Same as for TLS 1.3; only suites with DTLS-OK=Y may
 be used.

 legacy_compression_methods: Same as for TLS 1.3.

 extensions: Same as for TLS 1.3.

5.4. ServerHello Message

 The DTLS 1.3 ServerHello message is the same as the TLS 1.3
 ServerHello message, except that the legacy_version field is set to
 0xfefd, indicating DTLS 1.2.

5.5. Handshake Message Fragmentation and Reassembly

 As described in Section 4.3 one or more handshake messages may be
 carried in a single datagram. However, handshake messages are
 potentially bigger than the size allowed by the underlying datagram
 transport. DTLS provides a mechanism for fragmenting a handshake
 message over a number of records, each of which can be transmitted in
 separate datagrams, thus avoiding IP fragmentation.

Rescorla, et al. Expires 1 November 2021 [Page 28]

Internet-Draft DTLS 1.3 April 2021

 When transmitting the handshake message, the sender divides the
 message into a series of N contiguous data ranges. The ranges MUST
 NOT overlap. The sender then creates N handshake messages, all with
 the same message_seq value as the original handshake message. Each
 new message is labeled with the fragment_offset (the number of bytes
 contained in previous fragments) and the fragment_length (the length
 of this fragment). The length field in all messages is the same as
 the length field of the original message. An unfragmented message is
 a degenerate case with fragment_offset=0 and fragment_length=length.
 Each handshake message fragment that is placed into a record MUST be
 delivered in a single UDP datagram.

 When a DTLS implementation receives a handshake message fragment
 corresponding to the next expected handshake message sequence number,
 it MUST buffer it until it has the entire handshake message. DTLS
 implementations MUST be able to handle overlapping fragment ranges.
 This allows senders to retransmit handshake messages with smaller
 fragment sizes if the PMTU estimate changes. Senders MUST NOT change
 handshake message bytes upon retransmission. Receivers MAY check
 that retransmitted bytes are identical and SHOULD abort the handshake
 with an "illegal_parameter" alert if the value of a byte changes.

 Note that as with TLS, multiple handshake messages may be placed in
 the same DTLS record, provided that there is room and that they are
 part of the same flight. Thus, there are two acceptable ways to pack
 two DTLS handshake messages into the same datagram: in the same
 record or in separate records.

5.6. End Of Early Data

 The DTLS 1.3 handshake has one important difference from the TLS 1.3
 handshake: the EndOfEarlyData message is omitted both from the wire
 and the handshake transcript: because DTLS records have epochs,
 EndOfEarlyData is not necessary to determine when the early data is
 complete, and because DTLS is lossy, attackers can trivially mount
 the deletion attacks that EndOfEarlyData prevents in TLS. Servers
 SHOULD NOT accept records from epoch 1 indefinitely once they are
 able to process records from epoch 3. Though reordering of IP
 packets can result in records from epoch 1 arriving after records
 from epoch 3, this is not likely to persist for very long relative to
 the round trip time. Servers could discard epoch 1 keys after the
 first epoch 3 data arrives, or retain keys for processing epoch 1
 data for a short period. (See Section 6.1 for the definitions of
 each epoch.)

Rescorla, et al. Expires 1 November 2021 [Page 29]

Internet-Draft DTLS 1.3 April 2021

5.7. DTLS Handshake Flights

 DTLS handshake messages are grouped into a series of message flights.
 A flight starts with the handshake message transmission of one peer
 and ends with the expected response from the other peer. Table 1
 contains a complete list of message combinations that constitute
 flights.

 +======+========+========+===================================+
 | Note | Client | Server | Handshake Messages |
 +======+========+========+===================================+
 | | x | | ClientHello |
 +------+--------+--------+-----------------------------------+
 | | | x | HelloRetryRequest |
 +------+--------+--------+-----------------------------------+
 | | | x | ServerHello, EncryptedExtensions, |
 | | | | CertificateRequest, Certificate, |
 | | | | CertificateVerify, Finished |
 +------+--------+--------+-----------------------------------+
 | 1 | x | | Certificate, CertificateVerify, |
 | | | | Finished |
 +------+--------+--------+-----------------------------------+
 | 1 | | x | NewSessionTicket |
 +------+--------+--------+-----------------------------------+

 Table 1: Flight Handshake Message Combinations.

 Remarks:

 * Table 1 does not highlight any of the optional messages.

 * Regarding note (1): When a handshake flight is sent without any
 expected response, as it is the case with the client’s final
 flight or with the NewSessionTicket message, the flight must be
 acknowledged with an ACK message.

 Below are several example message exchange illustrating the flight
 concept. The notational conventions from [TLS13] are used.

Rescorla, et al. Expires 1 November 2021 [Page 30]

Internet-Draft DTLS 1.3 April 2021

 Client Server

 +--------+
 ClientHello | Flight |
 --------> +--------+

 +--------+
 <-------- HelloRetryRequest | Flight |
 + cookie +--------+

 +--------+
 ClientHello | Flight |
 + cookie --------> +--------+

 ServerHello
 {EncryptedExtensions} +--------+
 {CertificateRequest*} | Flight |
 {Certificate*} +--------+
 {CertificateVerify*}
 {Finished}
 <-------- [Application Data*]

 {Certificate*} +--------+
 {CertificateVerify*} | Flight |
 {Finished} --------> +--------+
 [Application Data]

 +--------+
 <-------- [ACK] | Flight |
 [Application Data*] +--------+

 [Application Data] <-------> [Application Data]

 Figure 7: Message flights for a full DTLS Handshake (with cookie
 exchange)

Rescorla, et al. Expires 1 November 2021 [Page 31]

Internet-Draft DTLS 1.3 April 2021

 ClientHello +--------+
 + pre_shared_key | Flight |
 + psk_key_exchange_modes +--------+
 + key_share* -------->

 ServerHello
 + pre_shared_key +--------+
 + key_share* | Flight |
 {EncryptedExtensions} +--------+
 <-------- {Finished}
 [Application Data*]
 +--------+
 {Finished} --------> | Flight |
 [Application Data*] +--------+

 +--------+
 <-------- [ACK] | Flight |
 [Application Data*] +--------+

 [Application Data] <-------> [Application Data]

 Figure 8: Message flights for resumption and PSK handshake
 (without cookie exchange)

Rescorla, et al. Expires 1 November 2021 [Page 32]

Internet-Draft DTLS 1.3 April 2021

 Client Server

 ClientHello
 + early_data
 + psk_key_exchange_modes +--------+
 + key_share* | Flight |
 + pre_shared_key +--------+
 (Application Data*) -------->

 ServerHello
 + pre_shared_key
 + key_share* +--------+
 {EncryptedExtensions} | Flight |
 {Finished} +--------+
 <-------- [Application Data*]

 +--------+
 {Finished} --------> | Flight |
 [Application Data*] +--------+

 +--------+
 <-------- [ACK] | Flight |
 [Application Data*] +--------+

 [Application Data] <-------> [Application Data]

 Figure 9: Message flights for the Zero-RTT handshake

 Client Server

 +--------+
 <-------- [NewSessionTicket] | Flight |
 +--------+

 +--------+
 [ACK] --------> | Flight |
 +--------+

 Figure 10: Message flights for the NewSessionTicket message

 KeyUpdate, NewConnectionId and RequestConnectionId follow a similar
 pattern to NewSessionTicket: a single message sent by one side
 followed by an ACK by the other.

Rescorla, et al. Expires 1 November 2021 [Page 33]

Internet-Draft DTLS 1.3 April 2021

5.8. Timeout and Retransmission

5.8.1. State Machine

 DTLS uses a simple timeout and retransmission scheme with the state
 machine shown in Figure 11.

Rescorla, et al. Expires 1 November 2021 [Page 34]

Internet-Draft DTLS 1.3 April 2021

 +-----------+
 | PREPARING |
 +----------> | |
 | | |
 | +-----------+
 | |
 | | Buffer next flight
 | |
 | \|/
 | +-----------+
 | | |
 | | SENDING |<------------------+
 | | | |
 | +-----------+ |
 Receive | | |
 next | | Send flight or partial |
 flight | | flight |
 | | |
 | | Set retransmit timer |
 | \|/ |
 | +-----------+ |
 | | | |
 +------------| WAITING |-------------------+
 | +----->| | Timer expires | | |
 | | +-----------+ |
 | | | | | |
 | | | | | |
 | +----------+ | +--------------------+
 | Receive record | Read retransmit or ACK
 Receive | (Maybe Send ACK) |
 last | |
 flight | | Receive ACK
 | | for last flight
 \|/ |
 |
 +-----------+ |
 | | <---------+
 | FINISHED |
 | |
 +-----------+
 | /|\
 | |
 | |
 +---+

 Server read retransmit
 Retransmit ACK

Rescorla, et al. Expires 1 November 2021 [Page 35]

Internet-Draft DTLS 1.3 April 2021

 Figure 11: DTLS timeout and retransmission state machine

 The state machine has four basic states: PREPARING, SENDING, WAITING,
 and FINISHED.

 In the PREPARING state, the implementation does whatever computations
 are necessary to prepare the next flight of messages. It then
 buffers them up for transmission (emptying the transmission buffer
 first) and enters the SENDING state.

 In the SENDING state, the implementation transmits the buffered
 flight of messages. If the implementation has received one or more
 ACKs (see Section 7) from the peer, then it SHOULD omit any messages
 or message fragments which have already been ACKed. Once the
 messages have been sent, the implementation then sets a retransmit
 timer and enters the WAITING state.

 There are four ways to exit the WAITING state:

 1. The retransmit timer expires: the implementation transitions to
 the SENDING state, where it retransmits the flight, adjusts and
 re-arms the retransmit timer (see Section 5.8.2), and returns to
 the WAITING state.

 2. The implementation reads an ACK from the peer: upon receiving an
 ACK for a partial flight (as mentioned in Section 7.1), the
 implementation transitions to the SENDING state, where it
 retransmits the unacked portion of the flight, adjusts and re-
 arms the retransmit timer, and returns to the WAITING state.
 Upon receiving an ACK for a complete flight, the implementation
 cancels all retransmissions and either remains in WAITING, or, if
 the ACK was for the final flight, transitions to FINISHED.

 3. The implementation reads a retransmitted flight from the peer:
 the implementation transitions to the SENDING state, where it
 retransmits the flight, adjusts and re-arms the retransmit timer,
 and returns to the WAITING state. The rationale here is that the
 receipt of a duplicate message is the likely result of timer
 expiry on the peer and therefore suggests that part of one’s
 previous flight was lost.

 4. The implementation receives some or all of the next flight of
 messages: if this is the final flight of messages, the
 implementation transitions to FINISHED. If the implementation
 needs to send a new flight, it transitions to the PREPARING
 state. Partial reads (whether partial messages or only some of
 the messages in the flight) may also trigger the implementation
 to send an ACK, as described in Section 7.1.

Rescorla, et al. Expires 1 November 2021 [Page 36]

Internet-Draft DTLS 1.3 April 2021

 Because DTLS clients send the first message (ClientHello), they start
 in the PREPARING state. DTLS servers start in the WAITING state, but
 with empty buffers and no retransmit timer.

 In addition, for at least twice the default MSL defined for
 [RFC0793], when in the FINISHED state, the server MUST respond to
 retransmission of the client’s final flight with a retransmit of its
 ACK.

 Note that because of packet loss, it is possible for one side to be
 sending application data even though the other side has not received
 the first side’s Finished message. Implementations MUST either
 discard or buffer all application data records for epoch 3 and above
 until they have received the Finished message from the peer.
 Implementations MAY treat receipt of application data with a new
 epoch prior to receipt of the corresponding Finished message as
 evidence of reordering or packet loss and retransmit their final
 flight immediately, shortcutting the retransmission timer.

5.8.2. Timer Values

 The configuration of timer settings varies with implementations, and
 certain deployment environments require timer value adjustments.
 Mishandling of the timer can lead to serious congestion problems, for
 example if many instances of a DTLS time out early and retransmit too
 quickly on a congested link.

 Unless implementations have deployment-specific and/or external
 information about the round trip time, implementations SHOULD use an
 initial timer value of 1000 ms and double the value at each
 retransmission, up to no less than 60 seconds (the RFC 6298 [RFC6298]
 maximum). Application specific profiles MAY recommend shorter or
 longer timer values. For instance:

 * Profiles for specific deployment environments, such as in low-
 power, multi-hop mesh scenarios as used in some Internet of Things
 (IoT) networks, MAY specify longer timeouts. See
 [I-D.ietf-uta-tls13-iot-profile] for more information about one
 such DTLS 1.3 IoT profile.

 * Real-time protocols MAY specify shorter timeouts. It is
 RECOMMENDED that for DTLS-SRTP [RFC5764], a default timeout of
 400ms be used; because customer experience degrades with one-way
 latencies of greater than 200ms, real-time deployments are less
 likely to have long latencies.

Rescorla, et al. Expires 1 November 2021 [Page 37]

Internet-Draft DTLS 1.3 April 2021

 In settings where there is external information (for instance from an
 ICE [RFC8445] handshake, or from previous connections to the same
 server) about the RTT, implementations SHOULD use 1.5 times that RTT
 estimate as the retransmit timer.

 Implementations SHOULD retain the current timer value until a message
 is transmitted and acknowledged without having to be retransmitted,
 at which time the value SHOULD be adjusted to 1.5 times the measured
 round trip time for that message. After a long period of idleness,
 no less than 10 times the current timer value, implementations MAY
 reset the timer to the initial value.

 Note that because retransmission is for the handshake and not
 dataflow, the effect on congestion of shorter timeouts is smaller
 than in generic protocols such as TCP or QUIC. Experience with DTLS
 1.2, which uses a simpler "retransmit everything on timeout"
 approach, has not shown serious congestion problems in practice.

5.8.3. Large Flight Sizes

 DTLS does not have any built-in congestion control or rate control;
 in general this is not an issue because messages tend to be small.
 However, in principle, some messages - especially Certificate - can
 be quite large. If all the messages in a large flight are sent at
 once, this can result in network congestion. A better strategy is to
 send out only part of the flight, sending more when messages are
 acknowledged. Several extensions have been standardized to reduce
 the size of the certificate message, for example the cached
 information extension [RFC7924], certificate compression [RFC8879]
 and [RFC6066], which defines the "client_certificate_url" extension
 allowing DTLS clients to send a sequence of Uniform Resource Locators
 (URLs) instead of the client certificate.

 DTLS stacks SHOULD NOT send more than 10 records in a single
 transmission.

5.8.4. State machine duplication for post-handshake messages

 DTLS 1.3 makes use of the following categories of post-handshake
 messages:

 1. NewSessionTicket

 2. KeyUpdate

 3. NewConnectionId

 4. RequestConnectionId

Rescorla, et al. Expires 1 November 2021 [Page 38]

Internet-Draft DTLS 1.3 April 2021

 5. Post-handshake client authentication

 Messages of each category can be sent independently, and reliability
 is established via independent state machines each of which behaves
 as described in Section 5.8.1. For example, if a server sends a
 NewSessionTicket and a CertificateRequest message, two independent
 state machines will be created.

 As explained in the corresponding sections, sending multiple
 instances of messages of a given category without having completed
 earlier transmissions is allowed for some categories, but not for
 others. Specifically, a server MAY send multiple NewSessionTicket
 messages at once without awaiting ACKs for earlier NewSessionTicket
 first. Likewise, a server MAY send multiple CertificateRequest
 messages at once without having completed earlier client
 authentication requests before. In contrast, implementations MUST
 NOT send KeyUpdate, NewConnectionId or RequestConnectionId messages
 if an earlier message of the same type has not yet been acknowledged.

 Note: Except for post-handshake client authentication, which involves
 handshake messages in both directions, post-handshake messages are
 single-flight, and their respective state machines on the sender side
 reduce to waiting for an ACK and retransmitting the original message.
 In particular, note that a RequestConnectionId message does not force
 the receiver to send a NewConnectionId message in reply, and both
 messages are therefore treated independently.

 Creating and correctly updating multiple state machines requires
 feedback from the handshake logic to the state machine layer,
 indicating which message belongs to which state machine. For
 example, if a server sends multiple CertificateRequest messages and
 receives a Certificate message in response, the corresponding state
 machine can only be determined after inspecting the
 certificate_request_context field. Similarly, a server sending a
 single CertificateRequest and receiving a NewConnectionId message in
 response can only decide that the NewConnectionId message should be
 treated through an independent state machine after inspecting the
 handshake message type.

Rescorla, et al. Expires 1 November 2021 [Page 39]

Internet-Draft DTLS 1.3 April 2021

5.9. CertificateVerify and Finished Messages

 CertificateVerify and Finished messages have the same format as in
 TLS 1.3. Hash calculations include entire handshake messages,
 including DTLS-specific fields: message_seq, fragment_offset, and
 fragment_length. However, in order to remove sensitivity to
 handshake message fragmentation, the CertificateVerify and the
 Finished messages MUST be computed as if each handshake message had
 been sent as a single fragment following the algorithm described in
 Section 4.4.3 and Section 4.4.4 of [TLS13], respectively.

5.10. Cryptographic Label Prefix

 Section 7.1 of [TLS13] specifies that HKDF-Expand-Label uses a label
 prefix of "tls13 ". For DTLS 1.3, that label SHALL be "dtls13".
 This ensures key separation between DTLS 1.3 and TLS 1.3. Note that
 there is no trailing space; this is necessary in order to keep the
 overall label size inside of one hash iteration because "DTLS" is one
 letter longer than "TLS".

5.11. Alert Messages

 Note that Alert messages are not retransmitted at all, even when they
 occur in the context of a handshake. However, a DTLS implementation
 which would ordinarily issue an alert SHOULD generate a new alert
 message if the offending record is received again (e.g., as a
 retransmitted handshake message). Implementations SHOULD detect when
 a peer is persistently sending bad messages and terminate the local
 connection state after such misbehavior is detected. Note that
 alerts are not reliably transmitted; implementation SHOULD NOT depend
 on receiving alerts in order to signal errors or connection closure.

5.12. Establishing New Associations with Existing Parameters

 If a DTLS client-server pair is configured in such a way that
 repeated connections happen on the same host/port quartet, then it is
 possible that a client will silently abandon one connection and then
 initiate another with the same parameters (e.g., after a reboot).
 This will appear to the server as a new handshake with epoch=0. In
 cases where a server believes it has an existing association on a
 given host/port quartet and it receives an epoch=0 ClientHello, it
 SHOULD proceed with a new handshake but MUST NOT destroy the existing
 association until the client has demonstrated reachability either by
 completing a cookie exchange or by completing a complete handshake
 including delivering a verifiable Finished message. After a correct
 Finished message is received, the server MUST abandon the previous
 association to avoid confusion between two valid associations with
 overlapping epochs. The reachability requirement prevents off-path/

Rescorla, et al. Expires 1 November 2021 [Page 40]

Internet-Draft DTLS 1.3 April 2021

 blind attackers from destroying associations merely by sending forged
 ClientHellos.

 Note: it is not always possible to distinguish which association a
 given record is from. For instance, if the client performs a
 handshake, abandons the connection, and then immediately starts a new
 handshake, it may not be possible to tell which connection a given
 protected record is for. In these cases, trial decryption may be
 necessary, though implementations could use CIDs to avoid the 5-
 tuple-based ambiguity.

6. Example of Handshake with Timeout and Retransmission

 The following is an example of a handshake with lost packets and
 retransmissions. Note that the client sends an empty ACK message
 because it can only acknowledge Record 2 sent by the server once it
 has processed messages in Record 0 needed to establish epoch 2 keys,
 which are needed to encrypt or decrypt messages found in Record 2.
 Section 7 provides the necessary background details for this
 interaction. Note: for simplicity we are not re-setting record
 numbers in this diagram, so "Record 1" is really "Epoch 2, Record 0,
 etc.".

 Client Server
 ------ ------

 Record 0 -------->
 ClientHello
 (message_seq=0)

 X<----- Record 0
 (lost) ServerHello
 (message_seq=0)
 Record 1
 EncryptedExtensions
 (message_seq=1)
 Certificate
 (message_seq=2)

 <-------- Record 2
 CertificateVerify
 (message_seq=3)
 Finished
 (message_seq=4)

 Record 1 -------->
 ACK []

Rescorla, et al. Expires 1 November 2021 [Page 41]

Internet-Draft DTLS 1.3 April 2021

 <-------- Record 3
 ServerHello
 (message_seq=0)
 EncryptedExtensions
 (message_seq=1)
 Certificate
 (message_seq=2)

 <-------- Record 4
 CertificateVerify
 (message_seq=3)
 Finished
 (message_seq=4)

 Record 2 -------->
 Certificate
 (message_seq=1)
 CertificateVerify
 (message_seq=2)
 Finished
 (message_seq=3)

 <-------- Record 5
 ACK [2]

 Figure 12: Example DTLS exchange illustrating message loss

6.1. Epoch Values and Rekeying

 A recipient of a DTLS message needs to select the correct keying
 material in order to process an incoming message. With the
 possibility of message loss and re-ordering, an identifier is needed
 to determine which cipher state has been used to protect the record
 payload. The epoch value fulfills this role in DTLS. In addition to
 the TLS 1.3-defined key derivation steps, see Section 7 of [TLS13], a
 sender may want to rekey at any time during the lifetime of the
 connection. It therefore needs to indicate that it is updating its
 sending cryptographic keys.

 This version of DTLS assigns dedicated epoch values to messages in
 the protocol exchange to allow identification of the correct cipher
 state:

 * epoch value (0) is used with unencrypted messages. There are
 three unencrypted messages in DTLS, namely ClientHello,
 ServerHello, and HelloRetryRequest.

Rescorla, et al. Expires 1 November 2021 [Page 42]

Internet-Draft DTLS 1.3 April 2021

 * epoch value (1) is used for messages protected using keys derived
 from client_early_traffic_secret. Note this epoch is skipped if
 the client does not offer early data.

 * epoch value (2) is used for messages protected using keys derived
 from [sender]_handshake_traffic_secret. Messages transmitted
 during the initial handshake, such as EncryptedExtensions,
 CertificateRequest, Certificate, CertificateVerify, and Finished
 belong to this category. Note, however, post-handshake are
 protected under the appropriate application traffic key and are
 not included in this category.

 * epoch value (3) is used for payloads protected using keys derived
 from the initial [sender]_application_traffic_secret_0. This may
 include handshake messages, such as post-handshake messages (e.g.,
 a NewSessionTicket message).

 * epoch value (4 to 2^16-1) is used for payloads protected using
 keys from the [sender]_application_traffic_secret_N (N>0).

 Using these reserved epoch values a receiver knows what cipher state
 has been used to encrypt and integrity protect a message.
 Implementations that receive a record with an epoch value for which
 no corresponding cipher state can be determined SHOULD handle it as a
 record which fails deprotection.

 Note that epoch values do not wrap. If a DTLS implementation would
 need to wrap the epoch value, it MUST terminate the connection.

 The traffic key calculation is described in Section 7.3 of [TLS13].

 Figure 13 illustrates the epoch values in an example DTLS handshake.

 Client Server
 ------ ------

 Record 0
 ClientHello
 (epoch=0)
 -------->
 Record 0
 <-------- HelloRetryRequest
 (epoch=0)
 Record 1
 ClientHello -------->
 (epoch=0)
 Record 1
 <-------- ServerHello

Rescorla, et al. Expires 1 November 2021 [Page 43]

Internet-Draft DTLS 1.3 April 2021

 (epoch=0)
 {EncryptedExtensions}
 (epoch=2)
 {Certificate}
 (epoch=2)
 {CertificateVerify}
 (epoch=2)
 {Finished}
 (epoch=2)
 Record 2
 {Certificate} -------->
 (epoch=2)
 {CertificateVerify}
 (epoch=2)
 {Finished}
 (epoch=2)
 Record 2
 <-------- [ACK]
 (epoch=3)
 Record 3
 [Application Data] -------->
 (epoch=3)
 Record 3
 <-------- [Application Data]
 (epoch=3)

 Some time later ...
 (Post-Handshake Message Exchange)
 Record 4
 <-------- [NewSessionTicket]
 (epoch=3)
 Record 4
 [ACK] -------->
 (epoch=3)

 Some time later ...
 (Rekeying)
 Record 5
 <-------- [Application Data]
 (epoch=4)
 Record 5
 [Application Data] -------->
 (epoch=4)

 Figure 13: Example DTLS exchange with epoch information

Rescorla, et al. Expires 1 November 2021 [Page 44]

Internet-Draft DTLS 1.3 April 2021

7. ACK Message

 The ACK message is used by an endpoint to indicate which handshake
 records it has received and processed from the other side. ACK is
 not a handshake message but is rather a separate content type, with
 code point TBD (proposed, 25). This avoids having ACK being added to
 the handshake transcript. Note that ACKs can still be sent in the
 same UDP datagram as handshake records.

 struct {
 RecordNumber record_numbers<0..2^16-1>;
 } ACK;

 record_numbers: a list of the records containing handshake messages
 in the current flight which the endpoint has received and either
 processed or buffered, in numerically increasing order.

 Implementations MUST NOT acknowledge records containing handshake
 messages or fragments which have not been processed or buffered.
 Otherwise, deadlock can ensue. As an example, implementations MUST
 NOT send ACKs for handshake messages which they discard because they
 are not the next expected message.

 During the handshake, ACKs only cover the current outstanding flight
 (this is possible because DTLS is generally a lockstep protocol). In
 particular, receiving a message from a handshake flight implicitly
 acknowledges all messages from the previous flight(s). Accordingly,
 an ACK from the server would not cover both the ClientHello and the
 client’s Certificate, because the ClientHello and client Certificate
 are in different flights. Implementations can accomplish this by
 clearing their ACK list upon receiving the start of the next flight.

 After the handshake, ACKs SHOULD be sent once for each received and
 processed handshake record (potentially subject to some delay) and
 MAY cover more than one flight. This includes records containing
 messages which are discarded because a previous copy has been
 received.

 During the handshake, ACK records MUST be sent with an epoch that is
 equal to or higher than the record which is being acknowledged. Note
 that some care is required when processing flights spanning multiple
 epochs. For instance, if the client receives only the Server Hello
 and Certificate and wishes to ACK them in a single record, it must do
 so in epoch 2, as it is required to use an epoch greater than or
 equal to 2 and cannot yet send with any greater epoch.
 Implementations SHOULD simply use the highest current sending epoch,
 which will generally be the highest available. After the handshake,
 implementations MUST use the highest available sending epoch.

Rescorla, et al. Expires 1 November 2021 [Page 45]

Internet-Draft DTLS 1.3 April 2021

7.1. Sending ACKs

 When an implementation detects a disruption in the receipt of the
 current incoming flight, it SHOULD generate an ACK that covers the
 messages from that flight which it has received and processed so far.
 Implementations have some discretion about which events to treat as
 signs of disruption, but it is RECOMMENDED that they generate ACKs
 under two circumstances:

 * When they receive a message or fragment which is out of order,
 either because it is not the next expected message or because it
 is not the next piece of the current message.

 * When they have received part of a flight and do not immediately
 receive the rest of the flight (which may be in the same UDP
 datagram). "Immediately" is hard to define. One approach is to
 set a timer for 1/4 the current retransmit timer value when the
 first record in the flight is received and then send an ACK when
 that timer expires. Note: the 1/4 value here is somewhat
 arbitrary. Given that the round trip estimates in the DTLS
 handshake are generally very rough (or the default), any value
 will be an approximation, and there is an inherent compromise due
 to competition between retransmision due to over-agressive ACKing
 and over-aggressive timeout-based retransmission. As a comparison
 point, QUIC’s loss-based recovery algorithms
 ([I-D.ietf-quic-recovery]; Section 6.1.2) work out to a delay of
 about 1/3 of the retransmit timer.

 In general, flights MUST be ACKed unless they are implicitly
 acknowledged. In the present specification the following flights are
 implicitly acknowledged by the receipt of the next flight, which
 generally immediately follows the flight,

 1. Handshake flights other than the client’s final flight of the
 main handshake.

 2. The server’s post-handshake CertificateRequest.

 ACKs SHOULD NOT be sent for these flights unless the responding
 flight cannot be generated immediately. In this case,
 implementations MAY send explicit ACKs for the complete received
 flight even though it will eventually also be implicitly acknowledged
 through the responding flight. A notable example for this is the
 case of client authentication in constrained environments, where
 generating the CertificateVerify message can take considerable time
 on the client. All other flights MUST be ACKed. Implementations MAY
 acknowledge the records corresponding to each transmission of each
 flight or simply acknowledge the most recent one. In general,

Rescorla, et al. Expires 1 November 2021 [Page 46]

Internet-Draft DTLS 1.3 April 2021

 implementations SHOULD ACK as many received packets as can fit into
 the ACK record, as this provides the most complete information and
 thus reduces the chance of spurious retransmission; if space is
 limited, implementations SHOULD favor including records which have
 not yet been acknowledged.

 Note: While some post-handshake messages follow a request/response
 pattern, this does not necessarily imply receipt. For example, a
 KeyUpdate sent in response to a KeyUpdate with request_update set to
 ’update_requested’ does not implicitly acknowledge the earlier
 KeyUpdate message because the two KeyUpdate messages might have
 crossed in flight.

 ACKs MUST NOT be sent for other records of any content type other
 than handshake or for records which cannot be unprotected.

 Note that in some cases it may be necessary to send an ACK which does
 not contain any record numbers. For instance, a client might receive
 an EncryptedExtensions message prior to receiving a ServerHello.
 Because it cannot decrypt the EncryptedExtensions, it cannot safely
 acknowledge it (as it might be damaged). If the client does not send
 an ACK, the server will eventually retransmit its first flight, but
 this might take far longer than the actual round trip time between
 client and server. Having the client send an empty ACK shortcuts
 this process.

7.2. Receiving ACKs

 When an implementation receives an ACK, it SHOULD record that the
 messages or message fragments sent in the records being ACKed were
 received and omit them from any future retransmissions. Upon receipt
 of an ACK that leaves it with only some messages from a flight having
 been acknowledged an implementation SHOULD retransmit the
 unacknowledged messages or fragments. Note that this requires
 implementations to track which messages appear in which records.
 Once all the messages in a flight have been acknowledged, the
 implementation MUST cancel all retransmissions of that flight.
 Implementations MUST treat a record as having been acknowledged if it
 appears in any ACK; this prevents spurious retransmission in cases
 where a flight is very large and the receiver is forced to elide
 acknowledgements for records which have already been ACKed. As noted
 above, the receipt of any record responding to a given flight MUST be
 taken as an implicit acknowledgement for the entire flight to which
 it is responding.

Rescorla, et al. Expires 1 November 2021 [Page 47]

Internet-Draft DTLS 1.3 April 2021

7.3. Design Rationale

 ACK messages are used in two circumstances, namely :

 * on sign of disruption, or lack of progress, and

 * to indicate complete receipt of the last flight in a handshake.

 In the first case the use of the ACK message is optional because the
 peer will retransmit in any case and therefore the ACK just allows
 for selective or early retransmission, as opposed to the timeout-
 based whole flight retransmission in previous versions of DTLS. When
 DTLS 1.3 is used in deployments with lossy networks, such as low-
 power, long range radio networks as well as low-power mesh networks,
 the use of ACKs is recommended.

 The use of the ACK for the second case is mandatory for the proper
 functioning of the protocol. For instance, the ACK message sent by
 the client in Figure 13, acknowledges receipt and processing of
 record 4 (containing the NewSessionTicket message) and if it is not
 sent the server will continue retransmission of the NewSessionTicket
 indefinitely until its maximum retransmission count is reached.

8. Key Updates

 As with TLS 1.3, DTLS 1.3 implementations send a KeyUpdate message to
 indicate that they are updating their sending keys. As with other
 handshake messages with no built-in response, KeyUpdates MUST be
 acknowledged. In order to facilitate epoch reconstruction
 Section 4.2.2 implementations MUST NOT send records with the new keys
 or send a new KeyUpdate until the previous KeyUpdate has been
 acknowledged (this avoids having too many epochs in active use).

 Due to loss and/or re-ordering, DTLS 1.3 implementations may receive
 a record with an older epoch than the current one (the requirements
 above preclude receiving a newer record). They SHOULD attempt to
 process those records with that epoch (see Section 4.2.2 for
 information on determining the correct epoch), but MAY opt to discard
 such out-of-epoch records.

 Due to the possibility of an ACK message for a KeyUpdate being lost
 and thereby preventing the sender of the KeyUpdate from updating its
 keying material, receivers MUST retain the pre-update keying material
 until receipt and successful decryption of a message using the new
 keys.

Rescorla, et al. Expires 1 November 2021 [Page 48]

Internet-Draft DTLS 1.3 April 2021

 Figure 14 shows an example exchange illustrating that a successful
 ACK processing updates the keys of the KeyUpdate message sender,
 which is reflected in the change of epoch values.

 Client Server

 /---\
 | |
 | Initial Handshake |
 \---/

 [Application Data] -------->
 (epoch=3)

 <-------- [Application Data]
 (epoch=3)

 /---\
 | |
 | Some time later ... |
 \---/

 [Application Data] -------->
 (epoch=3)

 [KeyUpdate]
 (+ update_requested -------->
 (epoch 3)

 <-------- [Application Data]
 (epoch=3)

 [Ack]
 <-------- (epoch=3)

 [Application Data]
 (epoch=4) -------->

 <-------- [KeyUpdate]
 (epoch=3)

Rescorla, et al. Expires 1 November 2021 [Page 49]

Internet-Draft DTLS 1.3 April 2021

 [Ack] -------->
 (epoch=4)

 <-------- [Application Data]
 (epoch=4)

 Figure 14: Example DTLS Key Update

9. Connection ID Updates

 If the client and server have negotiated the "connection_id"
 extension [I-D.ietf-tls-dtls-connection-id], either side can send a
 new CID which it wishes the other side to use in a NewConnectionId
 message.

 enum {
 cid_immediate(0), cid_spare(1), (255)
 } ConnectionIdUsage;

 opaque ConnectionId<0..2^8-1>;

 struct {
 ConnectionIds cids<0..2^16-1>;
 ConnectionIdUsage usage;
 } NewConnectionId;

 cid Indicates the set of CIDs which the sender wishes the peer to
 use.

 usage Indicates whether the new CIDs should be used immediately or
 are spare. If usage is set to "cid_immediate", then one of the
 new CID MUST be used immediately for all future records. If it is
 set to "cid_spare", then either existing or new CID MAY be used.

 Endpoints SHOULD use receiver-provided CIDs in the order they were
 provided. Implementations which receive more spare CIDs than they
 wish to maintain MAY simply discard any extra CIDs. Endpoints MUST
 NOT have more than one NewConnectionId message outstanding.

 Implementations which either did not negotiate the "connection_id"
 extension or which have negotiated receiving an empty CID MUST NOT
 send NewConnectionId. Implementations MUST NOT send
 RequestConnectionId when sending an empty Connection ID.
 Implementations which detect a violation of these rules MUST
 terminate the connection with an "unexpected_message" alert.

Rescorla, et al. Expires 1 November 2021 [Page 50]

Internet-Draft DTLS 1.3 April 2021

 Implementations SHOULD use a new CID whenever sending on a new path,
 and SHOULD request new CIDs for this purpose if path changes are
 anticipated.

 struct {
 uint8 num_cids;
 } RequestConnectionId;

 num_cids The number of CIDs desired.

 Endpoints SHOULD respond to RequestConnectionId by sending a
 NewConnectionId with usage "cid_spare" containing num_cid CIDs soon
 as possible. Endpoints MUST NOT send a RequestConnectionId message
 when an existing request is still unfulfilled; this implies that
 endpoints needs to request new CIDs well in advance. An endpoint MAY
 handle requests, which it considers excessive, by responding with a
 NewConnectionId message containing fewer than num_cid CIDs, including
 no CIDs at all. Endpoints MAY handle an excessive number of
 RequestConnectionId messages by terminating the connection using a
 "too_many_cids_requested" (alert number 52) alert.

 Endpoints MUST NOT send either of these messages if they did not
 negotiate a CID. If an implementation receives these messages when
 CIDs were not negotiated, it MUST abort the connection with an
 unexpected_message alert.

9.1. Connection ID Example

 Below is an example exchange for DTLS 1.3 using a single CID in each
 direction.

 Note: The connection_id extension is defined in
 [I-D.ietf-tls-dtls-connection-id], which is used in ClientHello and
 ServerHello messages.

Rescorla, et al. Expires 1 November 2021 [Page 51]

Internet-Draft DTLS 1.3 April 2021

 Client Server
 ------ ------

 ClientHello
 (connection_id=5)
 -------->

 <-------- HelloRetryRequest
 (cookie)

 ClientHello -------->
 (connection_id=5)
 +cookie

 <-------- ServerHello
 (connection_id=100)
 EncryptedExtensions
 (cid=5)
 Certificate
 (cid=5)
 CertificateVerify
 (cid=5)
 Finished
 (cid=5)

 Certificate -------->
 (cid=100)
 CertificateVerify
 (cid=100)
 Finished
 (cid=100)
 <-------- Ack
 (cid=5)

 Application Data ========>
 (cid=100)
 <======== Application Data
 (cid=5)

 Figure 15: Example DTLS 1.3 Exchange with CIDs

 If no CID is negotiated, then the receiver MUST reject any records it
 receives that contain a CID.

Rescorla, et al. Expires 1 November 2021 [Page 52]

Internet-Draft DTLS 1.3 April 2021

10. Application Data Protocol

 Application data messages are carried by the record layer and are
 split into records and encrypted based on the current connection
 state. The messages are treated as transparent data to the record
 layer.

11. Security Considerations

 Security issues are discussed primarily in [TLS13].

 The primary additional security consideration raised by DTLS is that
 of denial of service by excessive resource consumption. DTLS
 includes a cookie exchange designed to protect against denial of
 service. However, implementations that do not use this cookie
 exchange are still vulnerable to DoS. In particular, DTLS servers
 that do not use the cookie exchange may be used as attack amplifiers
 even if they themselves are not experiencing DoS. Therefore, DTLS
 servers SHOULD use the cookie exchange unless there is good reason to
 believe that amplification is not a threat in their environment.
 Clients MUST be prepared to do a cookie exchange with every
 handshake.

 Some key properties required of the cookie for the cookie-exchange
 mechanism to be functional are described in Section 3.3 of [RFC2522]:

 * the cookie MUST depend on the client’s address.

 * it MUST NOT be possible for anyone other than the issuing entity
 to generate cookies that are accepted as valid by that entity.
 This typically entails an integrity check based on a secret key.

 * cookie generation and verification are triggered by
 unauthenticated parties, and as such their resource consumption
 needs to be restrained in order to avoid having the cookie-
 exchange mechanism itself serve as a DoS vector.

 Although the cookie must allow the server to produce the right
 handshake transcript, it SHOULD be constructed so that knowledge of
 the cookie is insufficient to reproduce the ClientHello contents.
 Otherwise, this may create problems with future extensions such as
 [I-D.ietf-tls-esni].

 When cookies are generated using a keyed authentication mechanism it
 should be possible to rotate the associated secret key, so that
 temporary compromise of the key does not permanently compromise the
 integrity of the cookie-exchange mechanism. Though this secret is
 not as high-value as, e.g., a session-ticket-encryption key, rotating

Rescorla, et al. Expires 1 November 2021 [Page 53]

Internet-Draft DTLS 1.3 April 2021

 the cookie-generation key on a similar timescale would ensure that
 the key-rotation functionality is exercised regularly and thus in
 working order.

 The cookie exchange provides address validation during the initial
 handshake. DTLS with Connection IDs allows for endpoint addresses to
 change during the association; any such updated addresses are not
 covered by the cookie exchange during the handshake. DTLS
 implementations MUST NOT update the address they send to in response
 to packets from a different address unless they first perform some
 reachability test; no such test is defined in this specification.
 Even with such a test, an active on-path adversary can also black-
 hole traffic or create a reflection attack against third parties
 because a DTLS peer has no means to distinguish a genuine address
 update event (for example, due to a NAT rebinding) from one that is
 malicious. This attack is of concern when there is a large asymmetry
 of request/response message sizes.

 With the exception of order protection and non-replayability, the
 security guarantees for DTLS 1.3 are the same as TLS 1.3. While TLS
 always provides order protection and non-replayability, DTLS does not
 provide order protection and may not provide replay protection.

 Unlike TLS implementations, DTLS implementations SHOULD NOT respond
 to invalid records by terminating the connection.

 TLS 1.3 requires replay protection for 0-RTT data (or rather, for
 connections that use 0-RTT data; see Section 8 of [TLS13]). DTLS
 provides an optional per-record replay-protection mechanism, since
 datagram protocols are inherently subject to message reordering and
 replay. These two replay-protection mechanisms are orthogonal, and
 neither mechanism meets the requirements for the other.

 The security and privacy properties of the CID for DTLS 1.3 builds on
 top of what is described for DTLS 1.2 in
 [I-D.ietf-tls-dtls-connection-id]. There are, however, several
 differences:

 * In both versions of DTLS extension negotiation is used to agree on
 the use of the CID feature and the CID values. In both versions
 the CID is carried in the DTLS record header (if negotiated).
 However, the way the CID is included in the record header differs
 between the two versions.

 * The use of the Post-Handshake message allows the client and the
 server to update their CIDs and those values are exchanged with
 confidentiality protection.

Rescorla, et al. Expires 1 November 2021 [Page 54]

Internet-Draft DTLS 1.3 April 2021

 * The ability to use multiple CIDs allows for improved privacy
 properties in multi-homed scenarios. When only a single CID is in
 use on multiple paths from such a host, an adversary can correlate
 the communication interaction across paths, which adds further
 privacy concerns. In order to prevent this, implementations
 SHOULD attempt to use fresh CIDs whenever they change local
 addresses or ports (though this is not always possible to detect).
 The RequestConnectionId message can be used by a peer to ask for
 new CIDs to ensure that a pool of suitable CIDs is available.

 * The mechanism for encrypting sequence numbers (Section 4.2.3)
 prevents trivial tracking by on-path adversaries that attempt to
 correlate the pattern of sequence numbers received on different
 paths; such tracking could occur even when different CIDs are used
 on each path, in the absence of sequence number encryption.
 Switching CIDs based on certain events, or even regularly, helps
 against tracking by on-path adversaries. Note that sequence
 number encryption is used for all encrypted DTLS 1.3 records
 irrespective of whether a CID is used or not. Unlike the sequence
 number, the epoch is not encrypted because it acts as a key
 identifier, which may improve correlation of packets from a single
 connection across different network paths.

 * DTLS 1.3 encrypts handshake messages much earlier than in previous
 DTLS versions. Therefore, less information identifying the DTLS
 client, such as the client certificate, is available to an on-path
 adversary.

12. Changes since DTLS 1.2

 Since TLS 1.3 introduces a large number of changes with respect to
 TLS 1.2, the list of changes from DTLS 1.2 to DTLS 1.3 is equally
 large. For this reason this section focuses on the most important
 changes only.

 * New handshake pattern, which leads to a shorter message exchange

 * Only AEAD ciphers are supported. Additional data calculation has
 been simplified.

 * Removed support for weaker and older cryptographic algorithms

 * HelloRetryRequest of TLS 1.3 used instead of HelloVerifyRequest

 * More flexible ciphersuite negotiation

 * New session resumption mechanism

Rescorla, et al. Expires 1 November 2021 [Page 55]

Internet-Draft DTLS 1.3 April 2021

 * PSK authentication redefined

 * New key derivation hierarchy utilizing a new key derivation
 construct

 * Improved version negotiation

 * Optimized record layer encoding and thereby its size

 * Added CID functionality

 * Sequence numbers are encrypted.

13. Updates affecting DTLS 1.2

 This document defines several changes that optionally affect
 implementations of DTLS 1.2, including those which do not also
 support DTLS 1.3.

 * A version downgrade protection mechanism as described in [TLS13];
 Section 4.1.3 and applying to DTLS as described in Section 5.3.

 * The updates described in [TLS13]; Section 3.

 * The new compliance requirements described in [TLS13]; Section 9.3.

14. IANA Considerations

 IANA is requested to allocate a new value in the "TLS ContentType"
 registry for the ACK message, defined in Section 7, with content type
 26. The value for the "DTLS-OK" column is "Y". IANA is requested to
 reserve the content type range 32-63 so that content types in this
 range are not allocated.

 IANA is requested to allocate "the too_many_cids_requested" alert in
 the "TLS Alerts" registry with value 52.

 IANA is requested to allocate two values in the "TLS Handshake Type"
 registry, defined in [TLS13], for RequestConnectionId (TBD), and
 NewConnectionId (TBD), as defined in this document. The value for
 the "DTLS-OK" columns are "Y".

 IANA is requested to add this RFC as a reference to the TLS Cipher
 Suite Registry along with the following Note:

Rescorla, et al. Expires 1 November 2021 [Page 56]

Internet-Draft DTLS 1.3 April 2021

 Any TLS cipher suite that is specified for use with DTLS MUST
 define limits on the use of the associated AEAD function that
 preserves margins for both confidentiality and integrity,
 as specified in [THIS RFC; Section TODO]

15. References

15.1. Normative References

 [CHACHA] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,
 <https://www.rfc-editor.org/info/rfc8439>.

 [I-D.ietf-tls-dtls-connection-id]
 Rescorla, E., Tschofenig, H., Fossati, T., and A. Kraus,
 "Connection Identifiers for DTLS 1.2", Work in Progress,
 Internet-Draft, draft-ietf-tls-dtls-connection-id-11, 14
 April 2021, <https://www.ietf.org/internet-drafts/draft-
 ietf-tls-dtls-connection-id-11.txt>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,
 RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/info/rfc4443>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

Rescorla, et al. Expires 1 November 2021 [Page 57]

Internet-Draft DTLS 1.3 April 2021

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

15.2. Informative References

 [AEBounds] Luykx, A. and K. Paterson, "Limits on Authenticated
 Encryption Use in TLS", 8 March 2016,
 <http://www.isg.rhul.ac.uk/˜kp/TLS-AEbounds.pdf>.

 [CCM-ANALYSIS]
 Jonsson, J., "On the Security of CTR + CBC-MAC", Selected
 Areas in Cryptography pp. 76-93,
 DOI 10.1007/3-540-36492-7_7, 2003,
 <https://doi.org/10.1007/3-540-36492-7_7>.

 [DEPRECATE]
 Moriarty, K. and S. Farrell, "Deprecating TLSv1.0 and
 TLSv1.1", Work in Progress, Internet-Draft, draft-ietf-
 tls-oldversions-deprecate-12, 21 January 2021,
 <http://www.ietf.org/internet-drafts/draft-ietf-tls-
 oldversions-deprecate-12.txt>.

 [I-D.ietf-quic-recovery]
 Iyengar, J. and I. Swett, "QUIC Loss Detection and
 Congestion Control", Work in Progress, Internet-Draft,
 draft-ietf-quic-recovery-34, 14 January 2021,
 <https://www.ietf.org/internet-drafts/draft-ietf-quic-
 recovery-34.txt>.

 [I-D.ietf-tls-esni]
 Rescorla, E., Oku, K., Sullivan, N., and C. Wood, "TLS
 Encrypted Client Hello", Work in Progress, Internet-Draft,
 draft-ietf-tls-esni-10, 8 March 2021,
 <https://www.ietf.org/internet-drafts/draft-ietf-tls-esni-
 10.txt>.

Rescorla, et al. Expires 1 November 2021 [Page 58]

Internet-Draft DTLS 1.3 April 2021

 [I-D.ietf-uta-tls13-iot-profile]
 Tschofenig, H. and T. Fossati, "TLS/DTLS 1.3 Profiles for
 the Internet of Things", Work in Progress, Internet-Draft,
 draft-ietf-uta-tls13-iot-profile-01, 22 February 2021,
 <https://www.ietf.org/internet-drafts/draft-ietf-uta-
 tls13-iot-profile-01.txt>.

 [RFC2522] Karn, P. and W. Simpson, "Photuris: Session-Key Management
 Protocol", RFC 2522, DOI 10.17487/RFC2522, March 1999,
 <https://www.rfc-editor.org/info/rfc2522>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, DOI 10.17487/RFC4303, December 2005,
 <https://www.rfc-editor.org/info/rfc4303>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <https://www.rfc-editor.org/info/rfc4340>.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346,
 DOI 10.17487/RFC4346, April 2006,
 <https://www.rfc-editor.org/info/rfc4346>.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
 <https://www.rfc-editor.org/info/rfc4347>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5238] Phelan, T., "Datagram Transport Layer Security (DTLS) over
 the Datagram Congestion Control Protocol (DCCP)",
 RFC 5238, DOI 10.17487/RFC5238, May 2008,
 <https://www.rfc-editor.org/info/rfc5238>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, DOI 10.17487/RFC5763, May
 2010, <https://www.rfc-editor.org/info/rfc5763>.

Rescorla, et al. Expires 1 November 2021 [Page 59]

Internet-Draft DTLS 1.3 April 2021

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764,
 DOI 10.17487/RFC5764, May 2010,
 <https://www.rfc-editor.org/info/rfc5764>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924,
 DOI 10.17487/RFC7924, July 2016,
 <https://www.rfc-editor.org/info/rfc7924>.

 [RFC7983] Petit-Huguenin, M. and G. Salgueiro, "Multiplexing Scheme
 Updates for Secure Real-time Transport Protocol (SRTP)
 Extension for Datagram Transport Layer Security (DTLS)",
 RFC 7983, DOI 10.17487/RFC7983, September 2016,
 <https://www.rfc-editor.org/info/rfc7983>.

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

 [RFC8445] Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive
 Connectivity Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal", RFC 8445,
 DOI 10.17487/RFC8445, July 2018,
 <https://www.rfc-editor.org/info/rfc8445>.

Rescorla, et al. Expires 1 November 2021 [Page 60]

Internet-Draft DTLS 1.3 April 2021

 [RFC8879] Ghedini, A. and V. Vasiliev, "TLS Certificate
 Compression", RFC 8879, DOI 10.17487/RFC8879, December
 2020, <https://www.rfc-editor.org/info/rfc8879>.

 [ROBUST] Fischlin, M., Günther, F., and C. Janson, "Robust
 Channels: Handling Unreliable Networks in the Record
 Layers of QUIC and DTLS 1.3", 15 June 2020,
 <https://eprint.iacr.org/2020/718>.

Appendix A. Protocol Data Structures and Constant Values

 This section provides the normative protocol types and constants
 definitions.

A.1. Record Layer

Rescorla, et al. Expires 1 November 2021 [Page 61]

Internet-Draft DTLS 1.3 April 2021

 struct {
 ContentType type;
 ProtocolVersion legacy_record_version;
 uint16 epoch = 0
 uint48 sequence_number;
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 struct {
 opaque content[DTLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } DTLSInnerPlaintext;

 struct {
 opaque unified_hdr[variable];
 opaque encrypted_record[length];
 } DTLSCiphertext;

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0|0|1|C|S|L|E E|
 +-+-+-+-+-+-+-+-+
 | Connection ID | Legend:
 | (if any, |
 / length as / C - Connection ID (CID) present
 | negotiated) | S - Sequence number length
 +-+-+-+-+-+-+-+-+ L - Length present
 | 8 or 16 bit | E - Epoch
 |Sequence Number|
 +-+-+-+-+-+-+-+-+
 | 16 bit Length |
 | (if present) |
 +-+-+-+-+-+-+-+-+

 struct {
 uint16 epoch;
 uint48 sequence_number;
 } RecordNumber;

A.2. Handshake Protocol

Rescorla, et al. Expires 1 November 2021 [Page 62]

Internet-Draft DTLS 1.3 April 2021

 enum {
 hello_request_RESERVED(0),
 client_hello(1),
 server_hello(2),
 hello_verify_request_RESERVED(3),
 new_session_ticket(4),
 end_of_early_data(5),
 hello_retry_request_RESERVED(6),
 encrypted_extensions(8),
 certificate(11),
 server_key_exchange_RESERVED(12),
 certificate_request(13),
 server_hello_done_RESERVED(14),
 certificate_verify(15),
 client_key_exchange_RESERVED(16),
 finished(20),
 certificate_url_RESERVED(21),
 certificate_status_RESERVED(22),
 supplemental_data_RESERVED(23),
 key_update(24),
 message_hash(254),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 uint16 message_seq; /* DTLS-required field */
 uint24 fragment_offset; /* DTLS-required field */
 uint24 fragment_length; /* DTLS-required field */
 select (msg_type) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 } body;
 } Handshake;

 uint16 ProtocolVersion;
 opaque Random[32];

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

Rescorla, et al. Expires 1 November 2021 [Page 63]

Internet-Draft DTLS 1.3 April 2021

 struct {
 ProtocolVersion legacy_version = { 254,253 }; // DTLSv1.2
 Random random;
 opaque legacy_session_id<0..32>;
 opaque legacy_cookie<0..2^8-1>; // DTLS
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<8..2^16-1>;
 } ClientHello;

A.3. ACKs

 struct {
 RecordNumber record_numbers<0..2^16-1>;
 } ACK;

A.4. Connection ID Management

 enum {
 cid_immediate(0), cid_spare(1), (255)
 } ConnectionIdUsage;

 opaque ConnectionId<0..2^8-1>;

 struct {
 ConnectionIds cids<0..2^16-1>;
 ConnectionIdUsage usage;
 } NewConnectionId;

 struct {
 uint8 num_cids;
 } RequestConnectionId;

Appendix B. Analysis of Limits on CCM Usage

 TLS [TLS13] and [AEBounds] do not specify limits on key usage for
 AEAD_AES_128_CCM. However, any AEAD that is used with DTLS requires
 limits on use that ensure that both confidentiality and integrity are
 preserved. This section documents that analysis for
 AEAD_AES_128_CCM.

 [CCM-ANALYSIS] is used as the basis of this analysis. The results of
 that analysis are used to derive usage limits that are based on those
 chosen in [TLS13].

 This analysis uses symbols for multiplication (*), division (/), and
 exponentiation (^), plus parentheses for establishing precedence.
 The following symbols are also used:

Rescorla, et al. Expires 1 November 2021 [Page 64]

Internet-Draft DTLS 1.3 April 2021

 t: The size of the authentication tag in bits. For this cipher, t
 is 128.

 n: The size of the block function in bits. For this cipher, n is
 128.

 l: The number of blocks in each packet (see below).

 q: The number of genuine packets created and protected by endpoints.
 This value is the bound on the number of packets that can be
 protected before updating keys.

 v: The number of forged packets that endpoints will accept. This
 value is the bound on the number of forged packets that an
 endpoint can reject before updating keys.

 The analysis of AEAD_AES_128_CCM relies on a count of the number of
 block operations involved in producing each message. For simplicity,
 and to match the analysis of other AEAD functions in [AEBounds], this
 analysis assumes a packet length of 2^10 blocks and a packet size
 limit of 2^14 bytes.

 For AEAD_AES_128_CCM, the total number of block cipher operations is
 the sum of: the length of the associated data in blocks, the length
 of the ciphertext in blocks, and the length of the plaintext in
 blocks, plus 1. In this analysis, this is simplified to a value of
 twice the maximum length of a record in blocks (that is, "2l =
 2^11"). This simplification is based on the associated data being
 limited to one block.

B.1. Confidentiality Limits

 For confidentiality, Theorem 2 in [CCM-ANALYSIS] establishes that an
 attacker gains a distinguishing advantage over an ideal pseudorandom
 permutation (PRP) of no more than:

 (2l * q)^2 / 2^n

 For a target advantage of 2^-60, which matches that used by [TLS13],
 this results in the relation:

 q <= 2^23

 That is, endpoints cannot protect more than 2^23 packets with the
 same set of keys without causing an attacker to gain an larger
 advantage than the target of 2^-60.

Rescorla, et al. Expires 1 November 2021 [Page 65]

Internet-Draft DTLS 1.3 April 2021

B.2. Integrity Limits

 For integrity, Theorem 1 in [CCM-ANALYSIS] establishes that an
 attacker gains an advantage over an ideal PRP of no more than:

 v / 2^t + (2l * (v + q))^2 / 2^n

 The goal is to limit this advantage to 2^-57, to match the target in
 [TLS13]. As "t" and "n" are both 128, the first term is negligible
 relative to the second, so that term can be removed without a
 significant effect on the result. This produces the relation:

 v + q <= 2^24.5

 Using the previously-established value of 2^23 for "q" and rounding,
 this leads to an upper limit on "v" of 2^23.5. That is, endpoints
 cannot attempt to authenticate more than 2^23.5 packets with the same
 set of keys without causing an attacker to gain an larger advantage
 than the target of 2^-57.

B.3. Limits for AEAD_AES_128_CCM_8

 The TLS_AES_128_CCM_8_SHA256 cipher suite uses the AEAD_AES_128_CCM_8
 function, which uses a short authentication tag (that is, t=64).

 The confidentiality limits of AEAD_AES_128_CCM_8 are the same as
 those for AEAD_AES_128_CCM, as this does not depend on the tag
 length; see Appendix B.1.

 The shorter tag length of 64 bits means that the simplification used
 in Appendix B.2 does not apply to AEAD_AES_128_CCM_8. If the goal is
 to preserve the same margins as other cipher suites, then the limit
 on forgeries is largely dictated by the first term of the advantage
 formula:

 v <= 2^7

 As this represents attempts to fail authentication, applying this
 limit might be feasible in some environments. However, applying this
 limit in an implementation intended for general use exposes
 connections to an inexpensive denial of service attack.

Rescorla, et al. Expires 1 November 2021 [Page 66]

Internet-Draft DTLS 1.3 April 2021

 This analysis supports the view that TLS_AES_128_CCM_8_SHA256 is not
 suitable for general use. Specifically, TLS_AES_128_CCM_8_SHA256
 cannot be used without additional measures to prevent forgery of
 records, or to mitigate the effect of forgeries. This might require
 understanding the constraints that exist in a particular deployment
 or application. For instance, it might be possible to set a
 different target for the advantage an attacker gains based on an
 understanding of the constraints imposed on a specific usage of DTLS.

Appendix C. Implementation Pitfalls

 In addition to the aspects of TLS that have been a source of
 interoperability and security problems (Section C.3 of [TLS13]), DTLS
 presents a few new potential sources of issues, noted here.

 * Do you correctly handle messages received from multiple epochs
 during a key transition? This includes locating the correct key
 as well as performing replay detection, if enabled.

 * Do you retransmit handshake messages that are not (implicitly or
 explicitly) acknowledged (Section 5.8)?

 * Do you correctly handle handshake message fragments received,
 including when they are out of order?

 * Do you correctly handle handshake messages received out of order?
 This may include either buffering or discarding them.

 * Do you limit how much data you send to a peer before its address
 is validated?

 * Do you verify that the explicit record length is contained within
 the datagram in which it is contained?

Appendix D. History

 RFC EDITOR: PLEASE REMOVE THE THIS SECTION

 (*) indicates a change that may affect interoperability.

 IETF Drafts draft-42

 * SHOULD level requirement for the client to offer CID extension.

 * Change the default retransmission timer to 1s and allow people to
 do otherwise if they have side knowledge.

 * Cap any given flight to 10 records

Rescorla, et al. Expires 1 November 2021 [Page 67]

Internet-Draft DTLS 1.3 April 2021

 * Don’t re-set the timer to the initial value but to 1.5 times the
 measured RTT.

 * A bunch more clarity about the reliability algorithms and timers
 (including changing reset to re-arm)

 * Update IANA considerations

 draft-40

 - Clarified encrypted_record structure in DTLS 1.3 record layer
 - Added description of the demultiplexing process
 - Added text about the DTLS 1.2 and DTLS 1.3 CID mechanism
 - Forbid going from an empty CID to a non-empty CID (*)
 - Add warning about certificates and congestion
 - Use DTLS style version values, even for DTLS 1.3 (*)
 - Describe how to distinguish DTLS 1.2 and DTLS 1.3 connections
 - Updated examples
 - Included editorial improvements from Ben Kaduk
 - Removed stale text about out-of-epoch records
 - Added clarifications around when ACKs are sent
 - Noted that alerts are unreliable
 - Clarify when you can reset the timer
 - Indicated that records with bogus epochs should be discarded
 - Relax age out text
 - Updates to cookie text
 - Require that cipher suites define a record number encryption algorithm
 - Clean up use of connection and association
 - Reference tls-old-versions-deprecate

 draft-39 - Updated Figure 4 due to misalignment with Figure 3 content

 draft-38 - Ban implicit Connection IDs (*) - ACKs are processed as
 the union.

 draft-37: - Fix the other place where we have ACK.

 draft-36: - Some editorial changes. - Changed the content type to not
 conflict with existing allocations (*)

 draft-35: - I-D.ietf-tls-dtls-connection-id became a normative
 reference - Removed duplicate reference to I-D.ietf-tls-dtls-
 connection-id. - Fix figure 11 to have the right numbers andno cookie
 in message 1. - Clarify when you can ACK. - Clarify additional data
 computation.

 draft-33: - Key separation between TLS and DTLS. Issue #72.

Rescorla, et al. Expires 1 November 2021 [Page 68]

Internet-Draft DTLS 1.3 April 2021

 draft-32: - Editorial improvements and clarifications.

 draft-31: - Editorial improvements in text and figures. - Added
 normative reference to ChaCha20 and Poly1305.

 draft-30: - Changed record format - Added text about end of early
 data - Changed format of the Connection ID Update message - Added
 Appendix A "Protocol Data Structures and Constant Values"

 draft-29: - Added support for sequence number encryption - Update to
 new record format - Emphasize that compatibility mode isn’t used.

 draft-28: - Version bump to align with TLS 1.3 pre-RFC version.

 draft-27: - Incorporated unified header format. - Added support for
 CIDs.

 draft-04 - 26: - Submissions to align with TLS 1.3 draft versions

 draft-03 - Only update keys after KeyUpdate is ACKed.

 draft-02 - Shorten the protected record header and introduce an
 ultra-short version of the record header. - Reintroduce KeyUpdate,
 which works properly now that we have ACK. - Clarify the ACK rules.

 draft-01 - Restructured the ACK to contain a list of records and also
 be a record rather than a handshake message.

 draft-00 - First IETF Draft

 Personal Drafts draft-01 - Alignment with version -19 of the TLS 1.3
 specification

 draft-00

 * Initial version using TLS 1.3 as a baseline.

 * Use of epoch values instead of KeyUpdate message

 * Use of cookie extension instead of cookie field in ClientHello and
 HelloVerifyRequest messages

 * Added ACK message

 * Text about sequence number handling

Rescorla, et al. Expires 1 November 2021 [Page 69]

Internet-Draft DTLS 1.3 April 2021

Appendix E. Working Group Information

 RFC EDITOR: PLEASE REMOVE THIS SECTION.

 The discussion list for the IETF TLS working group is located at the
 e-mail address tls@ietf.org (mailto:tls@ietf.org). Information on
 the group and information on how to subscribe to the list is at
 https://www1.ietf.org/mailman/listinfo/tls
 (https://www1.ietf.org/mailman/listinfo/tls)

 Archives of the list can be found at: https://www.ietf.org/mail-
 archive/web/tls/current/index.html (https://www.ietf.org/mail-
 archive/web/tls/current/index.html)

Appendix F. Contributors

 Many people have contributed to previous DTLS versions and they are
 acknowledged in prior versions of DTLS specifications or in the
 referenced specifications. The sequence number encryption concept is
 taken from the QUIC specification. We would like to thank the
 authors of the QUIC specification for their work. Felix Guenther and
 Martin Thomson contributed the analysis in Appendix B.

 In addition, we would like to thank:

 * David Benjamin
 Google
 davidben@google.com

 * Thomas Fossati
 Arm Limited
 Thomas.Fossati@arm.com

 * Tobias Gondrom
 Huawei
 tobias.gondrom@gondrom.org

 * Felix Günther
 ETH Zurich
 mail@felixguenther.info

 * Benjamin Kaduk
 Akamai Technologies
 kaduk@mit.edu

 * Ilari Liusvaara
 Independent
 ilariliusvaara@welho.com

Rescorla, et al. Expires 1 November 2021 [Page 70]

Internet-Draft DTLS 1.3 April 2021

 * Martin Thomson
 Mozilla
 martin.thomson@gmail.com

 * Christopher A. Wood
 Apple Inc.
 cawood@apple.com

 * Yin Xinxing
 Huawei
 yinxinxing@huawei.com

 * Hanno Becker
 Arm Limited
 Hanno.Becker@arm.com

Appendix G. Acknowledgements

 We would like to thank Jonathan Hammell, Bernard Aboba and Andy
 Cunningham for their review comments.

 Additionally, we would like to thank the IESG members for their
 review comments: Martin Duke, Erik Kline, Francesca Palombini, Lars
 Eggert, Zaheduzzaman Sarker, John Scudder, Eric Vyncke, Robert
 Wilton, Roman Danyliw, Benjamin Kaduk, Murray Kucherawy, Martin
 Vigoureux, and Alvaro Retana

Authors’ Addresses

 Eric Rescorla
 RTFM, Inc.

 Email: ekr@rtfm.com

 Hannes Tschofenig
 Arm Limited

 Email: hannes.tschofenig@arm.com

 Nagendra Modadugu
 Google, Inc.

 Email: nagendra@cs.stanford.edu

Rescorla, et al. Expires 1 November 2021 [Page 71]

