
Network Working Group R. Barnes
Internet-Draft O. Friel
Intended status: Informational Cisco
Expires: January 17, 2019 July 16, 2018

 Usage of PAKE with TLS 1.3
 draft-barnes-tls-pake-04

Abstract

 The pre-shared key mechanism available in TLS 1.3 is not suitable for
 usage with low-entropy keys, such as passwords entered by users.
 This document describes an extension that enables the use of
 password-authenticated key exchange protocols with TLS 1.3.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 17, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Barnes & Friel Expires January 17, 2019 [Page 1]

Internet-Draft TLS 1.3 PAKE July 2018

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Setup . 3
 4. TLS Extensions . 3
 5. Compatible PAKE Protocols 5
 6. SPAKE2+ Implementation 6
 7. Pre-provisioned Parameters 6
 8. Content of the TLS Extensions 7
 9. Security Considerations 8
 9.1. Security when using SPAKE2+ 8
 10. Open Items . 9
 10.1. PAKE Algorithm Negotiation 9
 11. IANA Considerations . 9
 12. References . 10
 12.1. Normative References 10
 12.2. Informative References 10
 Authors’ Addresses . 11

1. Introduction

 DISCLAIMER: This is a work-in-progress draft and has not yet seen
 significant security analysis. It should not be used as a basis for
 building production systems.

 In some applications, it is desireable to enable a client and server
 to authenticate to one another using a low-entropy pre-shared value,
 such as a user-entered password.

 In prior versions of TLS, this functionality has been provided by the
 integration of the Secure Remote Password PAKE protocol (SRP)
 [RFC5054]. The specific SRP integration described in RFC 5054 does
 not immediately extend to TLS 1.3 because it relies on the Client Key
 Exchange and Server Key Exchange messages, which no longer exist in
 1.3.

 TLS 1.3 itself provides a mechanism for authentication with pre-
 shared keys (PSKs). However, PSKs used with this protocol need to be
 "full-entropy", because the binder values used for authentication can
 be used to mount a dictionary attack on the PSK. So while the TLS
 1.3 PSK mechanism is suitable for the session resumption cases for
 which it is specified, it cannot be used when the client and server
 share only a low-entropy secret.

 Enabling TLS to address this use case effectively requires the TLS
 handshake to execute a password-authenticated key establishment

Barnes & Friel Expires January 17, 2019 [Page 2]

Internet-Draft TLS 1.3 PAKE July 2018

 (PAKE) protocol. This document describes a TLS extension "pake" that
 can carry data necessary to execute a PAKE.

 This extension is generic, in that it can be used to carry key
 exchange information for multiple different PAKEs. We assume that
 the client and server have pre-negotiated a choice of PAKE (and any
 required parameters) in addition to the password itself. As a first
 case, this document defines a concrete protocol for executing the
 SPAKE2+ PAKE protocol [I-D.irtf-cfrg-spake2].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The mechanisms described in this document also apply to DTLS 1.3
 [I-D.ietf-tls-dtls13], but for brevity, we will refer only to TLS
 throughout.

3. Setup

 In order to use this protocol, a TLS client and server need to have
 pre-provisioned the values required to execute the protocol:

 o A choice of PAKE protocol

 o Any parameters required by the PAKE protocol

 o A password (or a derived value as described by the PAKE protocol)

 Servers will of course have multiple instances of this configuration
 information for different clients. Clients may also have multiple
 identities, even within a given server. We assume that in either
 case, a single opaque "identity" value is sufficient to identify the
 required parameters.

4. TLS Extensions

 A client offers to authenticate with PAKE by including a "pake"
 extension in its ClientHello. The content of this exension is a
 "PAKEClientHello" value, providing a list of identities under which
 the client can authenticate, and for each identity, the client’s
 first message from the underlying PAKE protocol.

 If a client sends the "pake" extension, then it MAY also send the
 "key_share" and "pre_shared_key" extensions, to allow the server to
 choose an authentication mode. Unlike PSK-based authentication,

Barnes & Friel Expires January 17, 2019 [Page 3]

Internet-Draft TLS 1.3 PAKE July 2018

 however, authentication with PAKE cannot be combined with the normal
 TLS ECDH mechanism. Forward secrecy is provided by the PAKE itself.

 struct {
 opaque identity<0..2^16-1>;
 opaque pake_message<1..2^16-1>;
 } PAKEShare;

 struct {
 PAKEShare client_shares<0..2^16-1>;
 } PAKEClientHello;

 A server that receives a "pake" extension examines the list of client
 shares to see if there is one with an identity the server recognizes.
 If so, the server may indicate its choice of PAKE authentication by
 including a "pake" extension in its ServerHello. The content of this
 exension is a "PAKEServerHello" value, specifying the identity value
 for the password the server has selected, and the server’s first
 message in the PAKE protocol.

 Use of PAKE authenication is compatible with standard certificate-
 based authentication of both clients and servers. If a server
 includes an "pake" extension in its ServerHello, it may still send
 the Certificate and CertificateVerify messages, and/or send a
 CertificateRequest message to the client.

 If a server uses PAKE authentication, then it MUST NOT send an
 extension of type "key_share", "pre_shared_key", or "early_data".

 struct {
 PAKEShare server_share;
 } PAKEServerHello;

 Based on the messages exchanged in the ClientHello and ServerHello,
 the client and server execute the specified PAKE protocol to derive a
 shared key. This key is used as the "ECHD(E)" input to the TLS 1.3
 key schedule.

 As with client authentication via certificates, the server has not
 authenticated the client until after it has received the client’s
 Finished message. When a server negotiates the use of this mechanism
 for authentication, it MUST NOT send application data before it has
 received the client’s Finished message.

Barnes & Friel Expires January 17, 2019 [Page 4]

Internet-Draft TLS 1.3 PAKE July 2018

5. Compatible PAKE Protocols

 In order to be usable with the "pake" extension, a PAKE protocol must
 specify some syntax for its messages, and the protocol itself must be
 compatible with the message flow described above. A specification
 describing the use of a particular PAKE protocol with TLS must
 provide the following details:

 o Parameters that must be pre-provisioned

 o Content of the "pake_message" field in a ClientHello

 o Content of the "pake_message" field in a ServerHello

 o How the PAKE protocol is executed based on those messages

 o How the outputs are of the PAKE protocol are used to populate the
 "PSK" and "ECDH(E)" inputs to the TLS key schedule.

 The underlying cryptographic protocol must be compatible with the
 message flow described above:

 o It must be possible to execute in one round-trip, with the client
 speaking first

 o The Finished MAC must provide sufficient key confirmation for the
 protocol, taking into account the contents of the handshake
 messages

 In addition, to be compatible with the security requirements of TLS
 1.3, PAKE protocols defined for use with TLS 1.3 MUST provide forward
 secrecy.

 Several current PAKE protocols satisfy these requirements, for
 example:

 o SPAKE2+ (described below) [I-D.irtf-cfrg-spake2]

 o SPEKE and derivatives such as Dragonfly [speke]
 [I-D.harkins-tls-dragonfly]

 o OPAQUE [opaque]

 o SRP [RFC2945]

Barnes & Friel Expires January 17, 2019 [Page 5]

Internet-Draft TLS 1.3 PAKE July 2018

6. SPAKE2+ Implementation

7. Pre-provisioned Parameters

 In order to use SPAKE2+, a TLS client and server need to have pre-
 provisioned the values required to execute the SPAKE2+ protocol (see
 Section 3.1 of [I-D.irtf-cfrg-spake2]):

 o A DH group of order "p*h", with "p" a large prime, and generator
 "G"

 o Fixed elements "M" and "N" for the group

 o A hash function "H"

 o A password "pw"

 Note that the hash function "H" might be different from the hash
 function associated with the ciphersuite negotiated by the two
 parties. The hash function "H" MUST be a hash function suitable for
 hashing passwords, e.g., Argon2 or scrypt [I-D.irtf-cfrg-argon2]
 [RFC7914].

 The TLS client and server roles map to the "A" and "B" roles in the
 SPAKE2+ specification, respectively. The identity of the server is
 the domain name sent in the "server_name" extension of the
 ClientHello message. The identity of the client is an opaque octet
 string, specified in the "spake2" ClientHello extension, defined
 below.

 From the shared password, each party computes two shared integers
 "w0" and "w1" by running the following algorithm twice (changing the
 "context" value each time):

 struct {
 uint16 context;
 opaque client_identity<0..255>;
 opaque server_name<0..255>;
 opaque password<0..255>;
 } PasswordInput;

 o Encode the following values into a "PasswordInput" structure:

 * "client_identity": The client’s identity, as described above.

 * "server_name": The server’s identity, as described above.

 * "password": The password "pw"

Barnes & Friel Expires January 17, 2019 [Page 6]

Internet-Draft TLS 1.3 PAKE July 2018

 * "context": One of the following values:

 + 0x7730, when generating "w0"

 + 0x7731, when generating "w1"

 o Use the hash function "H" with the encoded "PasswordInput"
 structure as input to derive an "n"-byte string, where "n" is the
 byte-length of "p".

 o Interpret the "n"-bit string as an integer "w" in network byte
 order. Return the result "(w % p) * h" of reducing "w" mod p and
 multiplying it by "h".

 Servers MUST store only the value "w0" and the product "L = w1*G",
 where "G" is the fixed generator of the group. Clients will need to
 have access to the values "w0" and "w1" directly, but SHOULD generate
 these values dynamically, rather than caching them.

8. Content of the TLS Extensions

 The content of a "pake_message" in a ClientHello is the client’s key
 share "T". The value "T" is computed as specified in
 [I-D.irtf-cfrg-spake2], as "T = w*M + X", where "M" is a fixed value
 for the DH group and "X" is the public key of a fresh DH key pair.
 The format of the key share "T" is the same as for a
 "KeyShareEntry.key_exchange" value from the same group.

 The content of a "pake_message" in a ServerHello is the server’s key
 share "S". The value "S" is computed as specified in
 [I-D.irtf-cfrg-spake2], as "S = w*N + Y", where "N" is a fixed value
 for the DH group and "Y" is the public key of a fresh DH key pair.
 The format of the key share "S" is the same as for a
 "KeyShareEntry.key_exchange" value from the same group.

 Based on these messages, both the client and server can compute the
 two shared values as specified in [I-D.irtf-cfrg-spake2].

 +------+--------+---------------+--------------+
 | Name | Value | Client | Server |
 +------+--------+---------------+--------------+
 | Z | x*y*G | x*(S - w0*N) | x*(T - w0*M) |
 | | | | |
 | V | w1*y*G | w1*(S - w0*N) | y*L |
 +------+--------+---------------+--------------+

 The following value is used as the "(EC)DHE" input to the TLS 1.3 key
 schedule:

Barnes & Friel Expires January 17, 2019 [Page 7]

Internet-Draft TLS 1.3 PAKE July 2018

 K = H(Z || V)

 Here "H" is the hash function corresponding to the TLS cipher suite
 in use and "||" represents concatenation of octet strings.

9. Security Considerations

 Many of the security properties of this protocol will derive from the
 PAKE protocol being used. Security considerations for PAKE protocols
 are noted in Section 5.

 The mechanism defined in this document does not provide protection
 for the client’s identity, in contrast to TLS client authentication
 with certificates.

 TLS servers that offer this mechanism can be used by third party
 attackers as an oracle for two questions:

 1. Whether the server knows about a given identity

 2. Whether the server recognizes a given (identity, password) pair

 The former is signaled by whether the server returns a "pake"
 extension.

 [[TODO: Similar to https://tools.ietf.org/html/rfc5054#section-
 2.5.1.3, the server could run through a complete handshake
 calculation and fail at the end so that the attacker only knows that
 the identity/password pair is incorrect, but does not know if the
 identity is recognized or not. This requires that the server can
 interpret the pake_message and ascertain the associated PAKE
 algorithm, group parameters, etc., which requires a reworking of some
 text in this draft as the identity is currently defined as providing
 a map to said group parameters. This is related to the discussion in
 the Open Items section.]]

 The latter is signaled by whether the connection succeeds. These
 oracles are all-or-nothing: If the attacker does not have the correct
 identity or password, he does not learn anything about the correct
 value.

9.1. Security when using SPAKE2+

 For the most part, the security properties of the password-based
 authentication described in this document are the same as those
 described in the Security Considerations of [I-D.irtf-cfrg-spake2].
 The TLS Finished MAC provides the key confirmation required for the
 security of the protocol. Note that all of the elements covered by

Barnes & Friel Expires January 17, 2019 [Page 8]

Internet-Draft TLS 1.3 PAKE July 2018

 the example confirmation hash listed in that document are also
 covered by the Finished MAC:

 o "A", "B", and "T" are included via the ClientHello

 o "S" via the ServerHello

 o "K", and "w" via the TLS key schedule

 The "x" and "y" values used in the SPAKE2 protocol MUST have the same
 ephemerality properties as the key shares sent in the "key_shares"
 extension. In particular, "x" and "y" MUST NOT be equal to zero.
 This ensures that TLS sessions using SPAKE2 have the same forward
 secrecy properties as sessions using the normal TLS (EC)DH mechanism.

10. Open Items

10.1. PAKE Algorithm Negotiation

 It is possible that a client may know the password to use, but may
 not know in advance which PAKE protocols(s) a particular server
 supports. A potential solution to this is similar to TLS1.3
 ClientHello "key_share" operation: the client may send an empty
 "client_shares" vector in its PAKEClientHello extension. The server
 can then send an HelloRetryRequest indicating which PAKE protocol,
 and associated group parameters, the client should use. The client
 then sends another ClientHello that includes "pake_message" in the
 PAKEClientHello extension calculated using the correct algorithm.
 This requires definition of a suitable field for transporting PAKE
 algorithm and group parameters.

 As an optimaisation, similar to TLS1.3 key_share operation, the
 client could guess the PAKE protocol and include a "pake_message"
 derived from its guess in the initial ClientHello. If the server
 does not support the selected PAKE protcol (or protocol group
 parameter, etc.), the server can send an HelloRetryRequest indicating
 the supported PAKE protocol and group parameters. Note: it is TBD if
 sending two different "pake_messages" derived from two different
 protocol and/or group parameters in two different ClientHello
 messages constitutes a significant attack vector. This needs
 cryptographic review.

11. IANA Considerations

 This document requests that IANA add a value to the TLS ExtensionType
 Registry with the following contents:

Barnes & Friel Expires January 17, 2019 [Page 9]

Internet-Draft TLS 1.3 PAKE July 2018

 +-------+----------------+---------+-----------+
 | Value | Extension Name | TLS 1.3 | Reference |
 +-------+----------------+---------+-----------+
 | TBD | pake | CH, SH | RFC XXXX |
 +-------+----------------+---------+-----------+

 [[RFC EDITOR: Please replace "TBD" in the above table with the value
 assigned by IANA, and replace "XXXX" with the RFC number assigned to
 this document.]]

12. References

12.1. Normative References

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-28 (work in progress), July
 2018.

 [I-D.irtf-cfrg-spake2]
 Ladd, W. and B. Kaduk, "SPAKE2, a PAKE", draft-irtf-cfrg-
 spake2-05 (work in progress), February 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

12.2. Informative References

 [I-D.harkins-tls-dragonfly]
 Harkins, D., "Secure Password Ciphersuites for Transport
 Layer Security (TLS)", draft-harkins-tls-dragonfly-03
 (work in progress), July 2018.

 [I-D.irtf-cfrg-argon2]
 Biryukov, A., Dinu, D., Khovratovich, D., and S.
 Josefsson, "The memory-hard Argon2 password hash and
 proof-of-work function", draft-irtf-cfrg-argon2-03 (work
 in progress), August 2017.

 [opaque] Xu, J., "OPAQUE: An Asymmetric PAKE Protocol Secure
 Against Pre-Computation Attacks", 2018.

 [RFC2945] Wu, T., "The SRP Authentication and Key Exchange System",
 RFC 2945, DOI 10.17487/RFC2945, September 2000,
 <https://www.rfc-editor.org/info/rfc2945>.

Barnes & Friel Expires January 17, 2019 [Page 10]

Internet-Draft TLS 1.3 PAKE July 2018

 [RFC5054] Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
 "Using the Secure Remote Password (SRP) Protocol for TLS
 Authentication", RFC 5054, DOI 10.17487/RFC5054, November
 2007, <https://www.rfc-editor.org/info/rfc5054>.

 [RFC7914] Percival, C. and S. Josefsson, "The scrypt Password-Based
 Key Derivation Function", RFC 7914, DOI 10.17487/RFC7914,
 August 2016, <https://www.rfc-editor.org/info/rfc7914>.

 [speke] Jablon, D., "Extended Password Key Exchange Protocols
 Immune to Dictionary Attacks", 1997.

Authors’ Addresses

 Richard Barnes
 Cisco

 Email: rlb@ipv.sx

 Owen Friel
 Cisco

 Email: ofriel@cisco.com

Barnes & Friel Expires January 17, 2019 [Page 11]

