
Network Working Group R. Barnes
Internet-Draft Cisco
Intended status: Standards Track S. Iyengar
Expires: 17 December 2022 Facebook
 N. Sullivan
 Cloudflare
 E. Rescorla
 Mozilla
 15 June 2022

 Delegated Credentials for (D)TLS
 draft-ietf-tls-subcerts-15

Abstract

 The organizational separation between operators of TLS and DTLS
 endpoints and the certification authority can create limitations.
 For example, the lifetime of certificates, how they may be used, and
 the algorithms they support are ultimately determined by the
 certification authority. This document describes a mechanism to to
 overcome some of these limitations by enabling operators to delegate
 their own credentials for use in TLS and DTLS without breaking
 compatibility with peers that do not support this specification.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/tlswg/tls-subcerts (https://github.com/tlswg/tls-
 subcerts).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 17 December 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction
 2. Conventions and Terminology
 2.1. Change Log
 3. Solution Overview
 3.1. Rationale
 3.2. Related Work
 4. Delegated Credentials
 4.1. Client and Server Behavior
 4.1.1. Server Authentication
 4.1.2. Client Authentication
 4.1.3. Validating a Delegated Credential
 4.2. Certificate Requirements
 5. Operational Considerations
 5.1. Client Clock Skew
 6. IANA Considerations
 7. Security Considerations
 7.1. Security of Delegated Credential’s Private Key
 7.2. Re-use of Delegated Credentials in Multiple Contexts
 7.3. Revocation of Delegated Credentials
 7.4. Interactions with Session Resumption
 7.5. Privacy Considerations
 7.6. The Impact of Signature Forgery Attacks
 8. Acknowledgements
 9. References
 9.1. Normative References
 9.2. Informative References
 Appendix A. ASN.1 Module
 Appendix B. Example Certificate
 Authors’ Addresses

1. Introduction

 Server operators often deploy (D)TLS termination to act as the server
 for inbound TLS connections. These termination services can be in
 locations such as remote data centers or Content Delivery Networks
 (CDNs) where it may be difficult to detect compromises of private key
 material corresponding to TLS certificates. Short-lived certificates
 may be used to limit the exposure of keys in these cases.

 However, short-lived certificates need to be renewed more frequently
 than long-lived certificates. If an external Certification Authority
 (CA) is unable to issue a certificate in time to replace a deployed
 certificate, the server would no longer be able to present a valid
 certificate to clients. With short-lived certificates, there is a
 smaller window of time to renew a certificates and therefore a higher
 risk that an outage at a CA will negatively affect the uptime of the
 TLS-fronted service.

 Typically, a (D)TLS server uses a certificate provided by some entity
 other than the operator of the server (a CA) [RFC8446] [RFC5280].
 This organizational separation makes the (D)TLS server operator
 dependent on the CA for some aspects of its operations, for example:

 * Whenever the server operator wants to deploy a new certificate, it

 has to interact with the CA.

 * The CA might only issue credentials containing certain types of
 public key, which can limit the set of (D)TLS signature schemes
 usable by the server operator.

 To reduce the dependency on external CAs, this document specifies a
 limited delegation mechanism that allows a (D)TLS peer to issue its
 own credentials within the scope of a certificate issued by an
 external CA. These credentials only enable the recipient of the
 delegation to terminate connections for names that the CA has
 authorized. Furthermore, this mechanism allows the server to use
 modern signature algorithms such as Ed25519 [RFC8032] even if their
 CA does not support them.

 This document refers to the certificate issued by the CA as a
 "certificate", or "delegation certificate", and the one issued by the
 operator as a "delegated credential" or "DC".

Client Front-End Back-End
	<--DC distribution->
----ClientHello--->	
<---ServerHello----	
<---Certificate----	
<---CertVerify-----	
...	

Legend:
Client: (D)TLS client
Front-End: (D)TLS server (could be a TLS-termination service like a CDN)
Back-End: Service with access to private key

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.1. Change Log

 RFC EDITOR PLEASE DELETE THIS SECTION.

 (*) indicates changes to the wire protocol.

 draft-11

 * Editorial changes based on AD comments

 * Add support for DTLS

 * Address address ambiguity in cert expiry

 draft-10

 * Address superficial comments

 * Add example certificate

 draft-09

 * Address case nits

 * Fix section bullets in 4.1.3.

 * Add operational considerations section for clock skew

 * Add text around using an oracle to forge DCs in the future and
 past

 * Add text about certificate extension vs EKU

 draft-08

 * Include details about the impact of signature forgery attacks

 * Copy edits

 * Fix section about DC reuse

 * Incorporate feedback from Jonathan Hammell and Kevin Jacobs on the
 list

 draft-07

 * Minor text improvements

 draft-06

 * Modified IANA section, fixed nits

 draft-05

 * Removed support for PKCS 1.5 RSA signature algorithms.

 * Additional security considerations.

 draft-04

 * Add support for client certificates.

 draft-03

 * Remove protocol version from the Credential structure. (*)

 draft-02

 * Change public key type. (*)

 * Change DelegationUsage extension to be NULL and define its object
 identifier.

 * Drop support for TLS 1.2.

 * Add the protocol version and credential signature algorithm to the
 Credential structure. (*)

 * Specify undefined behavior in a few cases: when the client
 receives a DC without indicated support; when the client indicates
 the extension in an non-valid protocol version; and when DCs are
 sent as extensions to certificates other than the end-entity
 certificate.

3. Solution Overview

 A delegated credential (DC) is a digitally signed data structure with
 two semantic fields: a validity interval and a public key (along with
 its associated signature algorithm). The signature on the delegated
 credential indicates a delegation from the certificate that is issued
 to the peer. The private key used to sign a credential corresponds
 to the public key of the peer’s X.509 end-entity certificate
 [RFC5280].

 A (D)TLS handshake that uses delegated credentials differs from a
 standard handshake in a few important ways:

 * The initiating peer provides an extension in its ClientHello or
 CertificateRequest that indicates support for this mechanism.

 * The peer sending the Certificate message provides both the
 certificate chain terminating in its certificate as well as the
 delegated credential.

 * The initiator uses information from the peer’s certificate to
 verify the delegated credential and that the peer is asserting an
 expected identity, determining an authentication result for the
 peer.

 * Peers accepting the delegated credential use it as the certificate
 key for the (D)TLS handshake.

 As detailed in Section 4, the delegated credential is
 cryptographically bound to the end-entity certificate with which the
 credential may be used. This document specifies the use of delegated
 credentials in (D)TLS 1.3 or later; their use in prior versions of
 the protocol is not allowed.

 Delegated credentials allow a peer to terminate (D)TLS connections on
 behalf of the certificate owner. If a credential is stolen, there is
 no mechanism for revoking it without revoking the certificate itself.
 To limit exposure in case of the compromise of a delegated
 credential’s private key, delegated credentials have a maximum
 validity period. In the absence of an application profile standard
 specifying otherwise, the maximum validity period is set to 7 days.
 Peers MUST NOT issue credentials with a validity period longer than
 the maximum validity period or that extends beyond the validity
 period of the delegation certificate. This mechanism is described in
 detail in Section 4.1.

 It was noted in [XPROT] that certificates in use by servers that
 support outdated protocols such as SSLv2 can be used to forge
 signatures for certificates that contain the keyEncipherment KeyUsage
 ([RFC5280] section 4.2.1.3). In order to reduce the risk of cross-
 protocol attacks on certificates that are not intended to be used
 with DC-capable TLS stacks, we define a new DelegationUsage extension
 to X.509 that permits use of delegated credentials. (See
 Section 4.2.)

3.1. Rationale

 Delegated credentials present a better alternative than other
 delegation mechanisms like proxy certificates [RFC3820] for several
 reasons:

 * There is no change needed to certificate validation at the PKI

 layer.

 * X.509 semantics are very rich. This can cause unintended
 consequences if a service owner creates a proxy certificate where
 the properties differ from the leaf certificate. Proxy
 certificates can be useful in controlled environments, but remain
 a risk in scenarios where the additional flexibility they provide
 is not necessary. For this reason, delegated credentials have
 very restricted semantics that should not conflict with X.509
 semantics.

 * Proxy certificates rely on the certificate path building process
 to establish a binding between the proxy certificate and the end-
 entity certificate. Since the certificate path building process
 is not cryptographically protected, it is possible that a proxy
 certificate could be bound to another certificate with the same
 public key, with different X.509 parameters. Delegated
 credentials, which rely on a cryptographic binding between the
 entire certificate and the delegated credential, cannot.

 * Each delegated credential is bound to a specific signature
 algorithm for use in the (D)TLS handshake ([RFC8446] section
 4.2.3). This prevents them from being used with other, perhaps
 unintended, signature algorithms. The signature algorithm bound
 to the delegated credential can be chosen independently of the set
 of signature algorithms supported by the end-entity certificate.

3.2. Related Work

 Many of the use cases for delegated credentials can also be addressed
 using purely server-side mechanisms that do not require changes to
 client behavior (e.g., a PKCS#11 interface or a remote signing
 mechanism, [KEYLESS] being one example). These mechanisms, however,
 incur per-transaction latency, since the front-end server has to
 interact with a back-end server that holds a private key. The
 mechanism proposed in this document allows the delegation to be done
 off-line, with no per-transaction latency. The figure below compares
 the message flows for these two mechanisms with (D)TLS 1.3 [RFC8446]
 [I-D.ietf-tls-dtls13].

Remote key signing:

Client Front-End Back-End
----ClientHello--->	
<---ServerHello----	
<---Certificate----	
	<---remote sign---->
<---CertVerify-----	
...	

Delegated Credential:

Client Front-End Back-End
	<--DC distribution->
----ClientHello--->	
<---ServerHello----	
<---Certificate----	
<---CertVerify-----	
...	

Legend:

Client: (D)TLS client
Front-End: (D)TLS server (could be a TLS-termination service like a CDN)
Back-End: Service with access to private key

 These two mechanisms can be complementary. A server could use
 delegated credentials for clients that support them, while using a
 server-side mechanism to support legacy clients. Both mechanisms
 require a trusted relationship between the Front-End and Back-End --
 the delegated credential can be used in place of a certificate
 private key.

 Use of short-lived certificates with automated certificate issuance,
 e.g., with Automated Certificate Management Environment (ACME)
 [RFC8555], reduces the risk of key compromise, but has several
 limitations. Specifically, it introduces an operationally-critical
 dependency on an external party (the CA). It also limits the types
 of algorithms supported for (D)TLS authentication to those the CA is
 willing to issue a certificate for. Nonetheless, existing automated
 issuance APIs like ACME may be useful for provisioning delegated
 credentials.

4. Delegated Credentials

 While X.509 forbids end-entity certificates from being used as
 issuers for other certificates, it is valid to use them to issue
 other signed objects as long as the certificate contains the
 digitalSignature KeyUsage ([RFC5280] section 4.2.1.3). (All
 certificates compatible with TLS 1.3 are required to contain the
 digitalSignature KeyUsage.) This document defines a new signed
 object format that would encode only the semantics that are needed
 for this application. The Credential has the following structure:

 struct {
 uint32 valid_time;
 SignatureScheme dc_cert_verify_algorithm;
 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
 } Credential;

 valid_time: Time, in seconds relative to the delegation
 certificate’s notBefore value, after which the delegated
 credential is no longer valid. By default, unless set to an
 alternative value by an application profile (see
 Section Section 3), endpoints will reject delegated credentials
 that expire more than 7 days from the current time (as described
 in Section 4.1.3).

 dc_cert_verify_algorithm: The signature algorithm of the Credential
 key pair, where the type SignatureScheme is as defined in
 [RFC8446]. This is expected to be the same as the sender’s
 CertificateVerify.algorithm (as described in Section 4.1.3). Only
 signature algorithms allowed for use in CertificateVerify messages
 are allowed (as described in [RFC8446] Section 11). When using
 RSA, the public key MUST NOT use the rsaEncryption OID. As a
 result, the following algorithms are not allowed for use with
 delegated credentials: rsa_pss_rsae_sha256, rsa_pss_rsae_sha384,
 rsa_pss_rsae_sha512.

 ASN1_subjectPublicKeyInfo: The Credential’s public key, a DER-
 encoded [X.690] SubjectPublicKeyInfo as defined in [RFC5280].

 The DelegatedCredential has the following structure:

 struct {
 Credential cred;
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } DelegatedCredential;

 cred: The Credential structure as previously defined.

 algorithm: The signature algorithm used to create
 DelegatedCredential.signature.

 signature: The delegation, a signature that binds the credential to
 the end-entity certificate’s public key as specified below. The
 signature scheme is specified by DelegatedCredential.algorithm.

 The signature of the DelegatedCredential is computed over the
 concatenation of:

 1. An octet stream that consists of octet 32 (0x20) repeated 64
 times.

 2. The non-null terminated context string "TLS, server delegated
 credentials" for server authentication and "TLS, client delegated
 credentials" for client authentication.

 3. A single octet 0x00, which serves as the separator.

 4. The DER-encoded X.509 end-entity certificate used to sign the
 DelegatedCredential.

 5. DelegatedCredential.cred.

 6. DelegatedCredential.algorithm.

 The signature is computed by using the private key of the peer’s end-
 entity certificate, with the algorithm indicated by
 DelegatedCredential.algorithm.

 The signature effectively binds the credential to the parameters of
 the handshake in which it is used. In particular, it ensures that
 credentials are only used with the certificate and signature
 algorithm chosen by the delegator.

 The code changes required in order to create and verify delegated
 credentials, and the implementation complexity this entails, are
 localized to the (D)TLS stack. This has the advantage of avoiding
 changes to the often-delicate security-critical PKI code.

4.1. Client and Server Behavior

 This document defines the following (D)TLS extension code point.

 enum {
 ...
 delegated_credential(34),
 (65535)
 } ExtensionType;

4.1.1. Server Authentication

 A client that is willing to use delegated credentials in a connection
 SHALL send a "delegated_credential" extension in its ClientHello.

 The body of the extension consists of a SignatureSchemeList (defined
 in [RFC8446]):

 struct {
 SignatureScheme supported_signature_algorithm<2..2^16-2>;
 } SignatureSchemeList;

 If the client receives a delegated credential without having
 indicated support in its ClientHello, then the client MUST abort the
 handshake with an "unexpected_message" alert.

 If the extension is present, the server MAY send a delegated
 credential; if the extension is not present, the server MUST NOT send
 a delegated credential. When a (D)TLS version negotiated is less
 than 1.3, the server MUST ignore this extension. An example of when
 a server could choose not to send a delegated credential is when the
 SignatureSchemes listed only contain signature schemes for which a
 corresponding delegated credential does not exist or are otherwise
 unsuitable for the connection.

 The server MUST send the delegated credential as an extension in the
 CertificateEntry of its end-entity certificate; the client SHOULD
 ignore delegated credentials sent as extensions to any other
 certificate.

 The algorithm field MUST be of a type advertised by the client in the
 "signature_algorithms" extension of the ClientHello message and the
 dc_cert_verify_algorithm field MUST be of a type advertised by the
 client in the SignatureSchemeList and is considered not valid
 otherwise. Clients that receive non-valid delegated credentials MUST
 terminate the connection with an "illegal_parameter" alert.

4.1.2. Client Authentication

 A server that supports this specification SHALL send a
 "delegated_credential" extension in the CertificateRequest message
 when requesting client authentication. The body of the extension
 consists of a SignatureSchemeList. If the server receives a
 delegated credential without having indicated support in its
 CertificateRequest, then the server MUST abort with an
 "unexpected_message" alert.

 If the extension is present, the client MAY send a delegated
 credential; if the extension is not present, the client MUST NOT send
 a delegated credential. When a (D)TLS version negotiated is less
 than 1.3, the client MUST ignore this extension.

 The client MUST send the DC as an extension in the CertificateEntry
 of its end-entity certificate; the server SHOULD ignore delegated
 credentials sent as extensions to any other certificate.

 The algorithm field MUST be of a type advertised by the server in the
 "signature_algorithms" extension of the CertificateRequest message
 and the dc_cert_verify_algorithm field MUST be of a type advertised
 by the server in the SignatureSchemeList and is considered not valid
 otherwise. Servers that receive non-valid delegated credentials MUST
 terminate the connection with an "illegal_parameter" alert.

4.1.3. Validating a Delegated Credential

 On receiving a delegated credential and certificate chain, the peer
 validates the certificate chain and matches the end-entity

 certificate to the peer’s expected identity in the same way that it
 is done when delegated credentials are not in use. It then performs
 the following checks with expiry time set to the delegation
 certificate’s notBefore value plus
 DelegatedCredential.cred.valid_time:

 1. Verify that the current time is within the validity interval of
 the credential. This is done by asserting that the current time
 does not exceed the expiry time. (The start time of the
 credential is implicitly validated as part of certificate
 validation.)

 2. Verify that the delegated credential’s remaining validity period
 is no more than the maximum validity period. This is done by
 asserting that the expiry time does not exceed the current time
 plus the maximum validity period (7 days by default).

 3. Verify that dc_cert_verify_algorithm matches the scheme indicated
 in the peer’s CertificateVerify message and that the algorithm is
 allowed for use with delegated credentials.

 4. Verify that the end-entity certificate satisfies the conditions
 in Section 4.2.

 5. Use the public key in the peer’s end-entity certificate to verify
 the signature of the credential using the algorithm indicated by
 DelegatedCredential.algorithm.

 If one or more of these checks fail, then the delegated credential is
 deemed not valid. Clients and servers that receive non-valid
 delegated credentials MUST terminate the connection with an
 "illegal_parameter" alert.

 If successful, the participant receiving the Certificate message uses
 the public key in DelegatedCredential.cred to verify the signature in
 the peer’s CertificateVerify message.

4.2. Certificate Requirements

 This document defines a new X.509 extension, DelegationUsage, to be
 used in the certificate when the certificate permits the usage of
 delegated credentials. What follows is the ASN.1 [X.680] for the
 DelegationUsage certificate extension.

 ext-delegationUsage EXTENSION ::= {
 SYNTAX DelegationUsage IDENTIFIED BY id-pe-delegationUsage
 }

 DelegationUsage ::= NULL

 id-pe-delegationUsage OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 private(4) enterprise(1) id-cloudflare(44363) 44 }

 The extension MUST be marked non-critical. (See Section 4.2 of
 [RFC5280].) An endpoint MUST NOT accept a delegated credential
 unless the peer’s end-entity certificate satisfies the following
 criteria:

 * It has the DelegationUsage extension.

 * It has the digitalSignature KeyUsage (see the KeyUsage extension

 defined in [RFC5280]).

 A new extension was chosen instead of adding a new Extended Key Usage
 (EKU) to be compatible with deployed (D)TLS and PKI software stacks
 without requiring CAs to issue new intermediate certificates.

5. Operational Considerations

 The operational consideration documented in this section should be
 taken into consideration when using Delegated Certificates.

5.1. Client Clock Skew

 One of the risks of deploying a short-lived credential system based
 on absolute time is client clock skew. If a client’s clock is
 sufficiently ahead or behind of the server’s clock, then clients will
 reject delegated credentials that are valid from the server’s
 perspective. Clock skew also affects the validity of the original
 certificates. The lifetime of the delegated credential should be set
 taking clock skew into account. Clock skew may affect a delegated
 credential at the beginning and end of its validity periods, which
 should also be taken into account.

6. IANA Considerations

 This document registers the "delegated_credential" extension in the
 "TLS ExtensionType Values" registry. The "delegated_credential"
 extension has been assigned a code point of 34. The IANA registry
 lists this extension as "Recommended" (i.e., "Y") and indicates that
 it may appear in the ClientHello (CH), CertificateRequest (CR), or
 Certificate (CT) messages in (D)TLS 1.3 [RFC8446]
 [I-D.ietf-tls-dtls13]. Additionally, the "DTLS-Only" column is
 assigned the value "N".

 This document also defines an ASN.1 module for the DelegationUsage
 certificate extension in Appendix A. IANA has registered value 95
 for "id-mod-delegated-credential-extn" in the "SMI Security for PKIX
 Module Identifier" (1.3.5.1.5.5.7.0) registry. An OID for the
 DelegationUsage certificate extension is not needed as it is already
 assigned to the extension from Cloudflare’s IANA Private Enterprise
 Number (PEN) arc.

7. Security Considerations

 The security consideration documented in this section should be taken
 into consideration when using Delegated Certificates.

7.1. Security of Delegated Credential’s Private Key

 Delegated credentials limit the exposure of the private key used in a
 (D)TLS connection by limiting its validity period. An attacker who
 compromises the private key of a delegated credential cannot create
 new delegated credentials, but they can impersonate the compromised
 party in new TLS connections until the delegated credential expires.

 Thus, delegated credentials should not be used to send a delegation
 to an untrusted party, but are meant to be used between parties that
 have some trust relationship with each other. The secrecy of the
 delegated credential’s private key is thus important, and access
 control mechanisms SHOULD be used to protect it, including file
 system controls, physical security, or hardware security modules.

7.2. Re-use of Delegated Credentials in Multiple Contexts

 It is not possible to use the same delegated credential for both
 client and server authentication because issuing parties compute the
 corresponding signature using a context string unique to the intended
 role (client or server).

7.3. Revocation of Delegated Credentials

 Delegated credentials do not provide any additional form of early
 revocation. Since it is short-lived, the expiry of the delegated
 credential revokes the credential. Revocation of the long term
 private key that signs the delegated credential (from the end-entity
 certificate) also implicitly revokes the delegated credential.

7.4. Interactions with Session Resumption

 If a peer decides to cache the certificate chain and re-validate it
 when resuming a connection, they SHOULD also cache the associated
 delegated credential and re-validate it. Failing to do so may result
 in resuming connections for which the DC has expired.

7.5. Privacy Considerations

 Delegated credentials can be valid for 7 days (by default) and it is
 much easier for a service to create delegated credentials than a
 certificate signed by a CA. A service could determine the client
 time and clock skew by creating several delegated credentials with
 different expiry timestamps and observing whether the client would
 accept it. Client time could be unique and thus privacy-sensitive
 clients, such as browsers in incognito mode, who do not trust the
 service might not want to advertise support for delegated credentials
 or limit the number of probes that a server can perform.

7.6. The Impact of Signature Forgery Attacks

 Delegated credentials are only used in (D)TLS 1.3 connections.
 However, the certificate that signs a delegated credential may be
 used in other contexts such as (D)TLS 1.2. Using a certificate in
 multiple contexts opens up a potential cross-protocol attack against
 delegated credentials in (D)TLS 1.3.

 When (D)TLS 1.2 servers support RSA key exchange, they may be
 vulnerable to attacks that allow forging an RSA signature over an
 arbitrary message [BLEI]. TLS 1.2 [RFC5246] (Section 7.4.7.1.)
 describes a mitigation strategy requiring careful implementation of
 timing resistant countermeasures for preventing these attacks.
 Experience shows that in practice, server implementations may fail to
 fully stop these attacks due to the complexity of this mitigation
 [ROBOT]. For (D)TLS 1.2 servers that support RSA key exchange using
 a DC-enabled end-entity certificate, a hypothetical signature forgery
 attack would allow forging a signature over a delegated credential.
 The forged delegated credential could then be used by the attacker as
 the equivalent of a on-path-attacker, valid for a maximum of 7 days
 (if the default valid_time is used).

 Server operators should therefore minimize the risk of using DC-
 enabled end-entity certificates where a signature forgery oracle may
 be present. If possible, server operators may choose to use DC-
 enabled certificates only for signing credentials, and not for
 serving non-DC (D)TLS traffic. Furthermore, server operators may use
 elliptic curve certificates for DC-enabled traffic, while using RSA

 certificates without the DelegationUsage certificate extension for
 non-DC traffic; this completely prevents such attacks.

 Note that if a signature can be forged over an arbitrary credential,
 the attacker can choose any value for the valid_time field. Repeated
 signature forgeries therefore allow the attacker to create multiple
 delegated credentials that can cover the entire validity period of
 the certificate. Temporary exposure of the key or a signing oracle
 may allow the attacker to impersonate a server for the lifetime of
 the certificate.

8. Acknowledgements

 Thanks to David Benjamin, Christopher Patton, Kyle Nekritz, Anirudh
 Ramachandran, Benjamin Kaduk, Kazuho Oku, Daniel Kahn Gillmor, Watson
 Ladd, Robert Merget, Juraj Somorovsky, Nimrod Aviram for their
 discussions, ideas, and bugs they have found.

9. References

9.1. Normative References

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", Work in Progress, Internet-Draft, draft-ietf-tls-
 dtls13-43, 30 April 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-tls-
 dtls13-43>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/rfc/rfc5280>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [X.680] ITU-T, "Information technology - Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ISO/
 IEC 8824-1:2015, November 2015.

 [X.690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO/IEC 8825-1:2015, November 2015.

9.2. Informative References

 [BLEI] Bleichenbacher, D., "Chosen Ciphertext Attacks against
 Protocols Based on RSA Encryption Standard PKCS #1",

 Advances in Cryptology -- CRYPTO’98, LNCS vol. 1462,
 pages: 1-12 , 1998.

 [KEYLESS] Sullivan, N. and D. Stebila, "An Analysis of TLS Handshake
 Proxying", IEEE Trustcom/BigDataSE/ISPA 2015 , 2015.

 [RFC3820] Tuecke, S., Welch, V., Engert, D., Pearlman, L., and M.
 Thompson, "Internet X.509 Public Key Infrastructure (PKI)
 Proxy Certificate Profile", RFC 3820,
 DOI 10.17487/RFC3820, June 2004,
 <https://www.rfc-editor.org/rfc/rfc3820>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/rfc/rfc5246>.

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
 DOI 10.17487/RFC5912, June 2010,
 <https://www.rfc-editor.org/rfc/rfc5912>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/rfc/rfc8032>.

 [RFC8555] Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
 <https://www.rfc-editor.org/rfc/rfc8555>.

 [ROBOT] Boeck, H., Somorovsky, J., and C. Young, "Return Of
 Bleichenbacher’s Oracle Threat (ROBOT)", 27th USENIX
 Security Symposium , 2018.

 [XPROT] Jager, T., Schwenk, J., and J. Somorovsky, "On the
 Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1
 v1.5 Encryption", Proceedings of the 22nd ACM SIGSAC
 Conference on Computer and Communications Security , 2015.

Appendix A. ASN.1 Module

 The following ASN.1 module provides the complete definition of the
 DelegationUsage certificate extension. The ASN.1 module makes
 imports from [RFC5912].

 DelegatedCredentialExtn
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-delegated-credential-extn(95) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 -- EXPORT ALL

 IMPORTS

 EXTENSION
 FROM PKIX-CommonTypes-2009 -- From RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) } ;

 -- OID

 id-cloudflare OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1) private(4)
 enterprise(1) 44363 }

 -- EXTENSION

 ext-delegationUsage EXTENSION ::=
 { SYNTAX DelegationUsage
 IDENTIFIED BY id-pe-delegationUsage }

 id-pe-delegationUsage OBJECT IDENTIFIER ::= { id-cloudflare 44 }

 DelegationUsage ::= NULL

 END

Appendix B. Example Certificate

 The following is an example of a delegation certificate which
 satisfies the requirements described in Section 4.2 (i.e., uses the
 DelegationUsage extension and has the digitalSignature KeyUsage).

 -----BEGIN CERTIFICATE-----
 MIIFRjCCBMugAwIBAgIQDGevB+lY0o/OecHFSJ6YnTAKBggqhkjOPQQDAzBMMQsw
 CQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMSYwJAYDVQQDEx1EaWdp
 Q2VydCBFQ0MgU2VjdXJlIFNlcnZlciBDQTAeFw0xOTAzMjYwMDAwMDBaFw0yMTAz
 MzAxMjAwMDBaMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYw
 FAYDVQQHEw1TYW4gRnJhbmNpc2NvMRkwFwYDVQQKExBDbG91ZGZsYXJlLCBJbmMu
 MRMwEQYDVQQDEwprYzJrZG0uY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE
 d4azI83Bw0fcPgfoeiZpZZnwGuxjBjv++wzE0zAj8vNiUkKxOWSQiGNLn+xlWUpL
 lw9djRN1rLmVmn2gb9GgdKOCA28wggNrMB8GA1UdIwQYMBaAFKOd5h/52jlPwG7o
 kcuVpdox4gqfMB0GA1UdDgQWBBSfcb7fS3fUFAyB91fRcwoDPtgtJjAjBgNVHREE
 HDAaggprYzJrZG0uY29tggwqLmtjMmtkbS5jb20wDgYDVR0PAQH/BAQDAgeAMB0G
 A1UdJQQWMBQGCCsGAQUFBwMBBggrBgEFBQcDAjBpBgNVHR8EYjBgMC6gLKAqhiho
 dHRwOi8vY3JsMy5kaWdpY2VydC5jb20vc3NjYS1lY2MtZzEuY3JsMC6gLKAqhiho
 dHRwOi8vY3JsNC5kaWdpY2VydC5jb20vc3NjYS1lY2MtZzEuY3JsMEwGA1UdIARF
 MEMwNwYJYIZIAYb9bAEBMCowKAYIKwYBBQUHAgEWHGh0dHBzOi8vd3d3LmRpZ2lj
 ZXJ0LmNvbS9DUFMwCAYGZ4EMAQICMHsGCCsGAQUFBwEBBG8wbTAkBggrBgEFBQcw
 AYYYaHR0cDovL29jc3AuZGlnaWNlcnQuY29tMEUGCCsGAQUFBzAChjlodHRwOi8v
 Y2FjZXJ0cy5kaWdpY2VydC5jb20vRGlnaUNlcnRFQ0NTZWN1cmVTZXJ2ZXJDQS5j
 cnQwDAYDVR0TAQH/BAIwADAPBgkrBgEEAYLaSywEAgUAMIIBfgYKKwYBBAHWeQIE
 AgSCAW4EggFqAWgAdgC72d+8H4pxtZOUI5eqkntHOFeVCqtS6BqQlmQ2jh7RhQAA
 AWm5hYJ5AAAEAwBHMEUCICiGfq+hSThRL2m8H0awoDR8OpnEHNkF0nI6nL5yYL/j
 AiEAxwebGs/T6Es0YarPzoQJrVZqk+sHH/t+jrSrKd5TDjcAdgCHdb/nWXz4jEOZ
 X73zbv9WjUdWNv9KtWDBtOr/XqCDDwAAAWm5hYNgAAAEAwBHMEUCIQD9OWA8KGL6
 bxDKfgIleHJWB0iWieRs88VgJyfAg/aFDgIgQ/OsdSF9XOy1foqge0DTDM2FExuw
 0JR0AGZWXoNtJzMAdgBElGUusO7Or8RAB9io/ijA2uaCvtjLMbU/0zOWtbaBqAAA
 AWm5hYHgAAAEAwBHMEUCIQC4vua1n3BqthEqpA/VBTcsNwMtAwpCuac2IhJ9wx6X
 /AIgb+o00k28JQo9TMpP4vzJ3BD3HXWSNc2Zizbq7mkUQYMwCgYIKoZIzj0EAwMD
 aQAwZgIxAJsX7d0SuA8ddf/m7IWfNfs3MQfJyGkEezMJX1t6sRso5z50SS12LpXe
 muGa1FE2ZgIxAL+CDUF5pz7mhrAEIjQ1MqlpF9tH40dJGvYZZQ3W23cMzSkDfvlt
 y5S4RfWHIIPjbw==
 -----END CERTIFICATE-----

Authors’ Addresses

 Richard Barnes

 Cisco
 Email: rlb@ipv.sx

 Subodh Iyengar
 Facebook
 Email: subodh@fb.com

 Nick Sullivan
 Cloudflare
 Email: nick@cloudflare.com

 Eric Rescorla
 Mozilla
 Email: ekr@rtfm.com

