TRANS L. Nordberg

I nternet-Draft NORDUnet
I ntended status: Experinental D. Gl nor
Expires: July 18, 2018 ACLU

T. Ritter

January 14, 2018

Gossiping in CT
draft-ietf-trans-gossip-05

Abst ract

The logs in Certificate Transparency are untrusted in the sense that
the users of the systemdon’t have to trust that they behave
correctly since the behavior of a log can be verified to be correct.

This docunment tries to solve the problemw th | ogs presenting a
"split view' of their operations or failing to incorporate a

submi ssion within MVD. It describes three gossiping nechanisns for
Certificate Transparency: SCT Feedback, STH Pollination and Trusted
Audi tor Rel ationship.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on July 18, 2018.

Copyright Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega

Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of

Nor dberg, et al. Expires July 18, 2018 [Page 1]

Internet-Draft Gossiping in CT January 2018
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents
1. Introduction 3
2. Defining the problen1 4
3. Overview 4
4. Terninol ogy . . . 5

4.1. Pre-Loaded vs LocaIIy Added Anchors . 5
5. Who gossips with whom. . . . - 5
6. What to gossip about and how 6
7. Data flow. . 6
8. GCossip hbchanlsns . 7

8.1. SCT Feedback 7

8.1.1. SCT Feedback data format 8
8.1.2. HITPS client to server Ce e e 9
8.1.3. HITPS server operation 11
8.1.4. HITPS server to auditors 13
8.2. STH pollination . . 2}
8.2.1. HITPS dients and Proof Fetchlng 16
8.2.2. STH Pol l'inati on without Proof Fetchlng .
8.2.3. Auditor Action . . . 4
8.2.4. STH Pollination data fornat e e e 18
8.3. Trusted Auditor Stream . . e e e 18
8.3.1. Trusted Auditor data fornat e
9. 3-Method Ecosystem 20

9.1. SCT Feedback 20

9.2. STH Pollination .. 20

9.3. Trusted Auditor Relationship 21

9.4. Interaction . . . C e e e e s 22
10. Security conS|derat|ons .o B

10.1. Attacks by actively naI|C|ous Iogs . e 23

10. 2. Dual - CA Conprom se . . . e 23

10. 3. Censorshi p/ Bl ocki ng conS|derat|ons e e e e e .. 24

10.4. Flushing Attacks 25

10.4.1. STHs 25

10.4.2. SCTs & CErt|f|cate Cha|ns on HTTPS Servers 26

10.4.3. SCTs & Certificate Chains on HTTPS dients 27

10.5. Privacy considerations 27

10.5.1. Privacy and SCTs . . . - 4

10.5.2. Privacy in SCT Feedback 27
10.5.3. Privacy for HITPS clients perforn1ng STH Proof

Fetching 28

Nor dberg, et al. Expires July 18, 2018 [Page 2]

Internet-Draft

10.
10.
10.

10.

11.1.

11.

11.

11. 2.
11. 3.
11.

11.

11. 4.
11.

11.

12. | ANA consi derations .

Gossiping in CT

5.4, Privacy in STH Pol lination
5.5. Privacy in STH Interaction .

5.6. Trusted Auditors for

HTTPS Oients .

5.7. HITPS Cients as Auditors
11. Policy Recomendati ons .

Bl ocki ng Reconnendatlons .
1.1. Frustrating bl ocking .

1.2. Responding to possible blocklng.

Proof Fetchi ng Recommendati ons

Record Di stributi on Recommendati ons
3.1. Mxing Algorithm. . .
3.2. The Deletion Algorlthm

Concrete Reconmendati ons
4.1. STH Pol li nati on
4.2. SCT Feedback

13. Contributors
14. ChangeLog .

14.
14.
14.
14.
14.
14.
14.

NoghkwhE

Changes
Changes
Changes
Changes
Changes
Changes
Changes

15. References .
Nor mati ve References

I nformati ve References

bet ween

bet ween
bet ween
bet ween
bet ween
bet ween
bet ween

15. 1.
15. 2.
Aut hors’ Addr esses
1. Introduction

The purpose of the protocols in this docunent,

to as CT Gossip,

particul ar,

i etf-04

ietf-03
ietf-02
ietf-01
ietf-00
-01 and
-00 and

aﬁd.

and
and
and
and

-01

i etf-05

ietf-04
ietf-03
ietf-02
ietf-01

January 2018

29
29
30
30
31
31
31
31
33
33
34
35
36
36
40
53
53
53
54
54
54
54
54
55
55
55
55
56
57

collectively referred

is to detect certain mshehavior by CT logs. In
| ogs that are providing

i nconsistent views to different
include subrmitted certificates within the time period stipulated by

MVD.

One of the mmjor challenges of any gossip protoco

to user privacy.

any additiona
partici pants.
particul ar,

The goal
i nformati on about the logs and their operations,
i nformati on about the operation of any of the other
Privacy of consuners of
of web browsers and other TLS clients) should not be

under m ned by gossi p.

Nor dber g

et al.

CT Cossip ains to detect
log clients,

Expires July 18, 2018

and logs failing to

is limting danmage
of CT gossip is to publish and distribute
but not to expose

log information (in

[Page 3]

Internet-Draft Gossiping in CT January 2018

Thi s docunment presents three different, conplenmentary nmechani sns for
non-1og el ements of the CT ecosystemto exchange information about
logs in a manner that preserves the privacy of HITPS clients. They
shoul d provide protective benefits for the systemas a whole even if
their adoption is not universal

2. Defining the problem

When a |l og provides different views of the log to different clients
this is described as a partitioning attack. Each client would be
able to verify the append-only nature of the log but, in the extrene
case, each client m ght see a unique view of the |og.

The CT logs are public, append-only and untrusted and thus have to be
audited for consistency, i.e., they should never rewite history.
Additionally, auditors and other log clients need to exchange

i nformati on about logs in order to be able to detect a partitioning
attack (as described above).

CGossi pi ng about | og behavi or hel ps address the probl em of detecting
mal i ci ous or conpromised logs with respect to a partitioning attack
We want sone side of the partitioned tree, and ideally all sides, to
see at | east one other side.

D ssem nating i nformati on about a | og poses a potential threat to the
privacy of end users. Sone data of interest (e.g., SCTs) is linkable
to specific log entries and thereby to specific websites, which makes
sharing themw th others a privacy concern. Gossiping about this
data has to take privacy considerations into account in order not to
expose associ ati ons between users of the log (e.g., web browsers) and
certificate holders (e.g., web sites). Even sharing STHs (which do
not link to specific log entries) can be problematic - user tracking
by fingerprinting through rare STHs is one potential attack (see
Section 8.2).

3. Overview

Thi s docunment presents three gossiping mechani sns: SCT Feedback, STH
Pol I'i nation, and a Trusted Auditor Rel ationshi p.

SCT Feedback enables HTTPS clients to share Signed Certificate

Ti mestanps (SCTs) (Section 4.8 of [RFC 6962-BIS-27]) with CT auditors
in a privacy-preserving manner by sending SCTs to originating HTTPS
servers, which in turn share themw th CT auditors.

In STH Pol lination, HTTPS clients use HTTPS servers as pools to share
Signed Tree Heads (STHs) (Section 4.10 of [RFC 6962-BIS-27]) with

Nor dberg, et al. Expires July 18, 2018 [Page 4]

Internet-Draft Gossiping in CT January 2018

4.

5.

other connecting clients in the hope that STHs will find their way to
CT auditors.

HTTPS clients in a Trusted Auditor Relationship share SCTs and STHs
with trusted CT auditors directly, with expectations of privacy
sensitive data being handl ed accordi ng to whatever privacy policy is
agreed on between client and trusted party.

Despite the privacy risks with sharing SCTs there is no loss in
privacy if a client sends SCTs for a given site to the site
corresponding to the SCT. This is because the site’'s cookies could
already indicate that the client had accessed that site. In this way
a site can accumul ate records of SCTs that have been issued by
various logs for that site, providing a consolidated repository of
SCTs that could be shared with auditors. Auditors can use this
information to detect a mishehaving log that fails to include a
certificate within the tine period stipulated by its MVD | og

par aneter.

Sharing an STH is considered reasonably safe froma privacy
perspective as long as the same STH is shared by a | arge nunber of
other log clients. This safety in nunbers can be achi eved by only
al | owi ng gossiping of STHs issued in a certain wi ndow of tine, while
al so refusing to gossip about STHs fromlogs with too high an STH

i ssuance frequency (see Section 8.2).

Ter m nol ogy

This docunent relies on terninology and data structures defined in
[RFC-6962- Bl S-27], including MVD, STH, SCT, Version, LoglD, SCT

ti mestanp, CtExtensions, SCT signature, Merkle Tree Hash

This docunment relies on terninology defined in
[draft-ietf-trans-threat-anal ysis-12], including Auditing.

1. Pre-Loaded vs Locally Added Anchors

Through the docunent, we refer to both Trust Anchors (Certificate
Authorities) and Logs. Both Logs and Trust Anchors may be locally
added by an adm nistrator. Unless otherwise clarified, in both cases
we refer to the set of Trust Anchors and Logs that cone pre-|oaded
and pre-trusted in a piece of client software.

Who gossi ps with whom

0 HTTPS clients and servers (SCT Feedback and STH Pol I i nati on)

0 HTTPS servers and CT auditors (SCT Feedback and STH Pol | i nati on)

Nor dberg, et al. Expires July 18, 2018 [Page 5]

Internet-Draft Gossiping in CT January 2018

0 CT auditors (Trusted Auditor Relationship)

Additionally, sone HITPS clients may engage with an auditor which
they trust with their privacy:

o0 HITPS clients and CT auditors (Trusted Auditor Relationship)
6. \What to gossip about and how
There are three separate gossip streans:

0 SCT Feedback - transporting SCTs and certificate chains from HTTPS
clients to CT auditors via HITPS servers.

0 STH Pollination - HTTPS clients and CT auditors using HITPS
servers as STH pools for exchangi ng STHs.

0 Trusted Auditor Stream- HITPS clients comrunicating directly with
trusted CT auditors sharing SCTs, certificate chains and STHs.

It is worthwhile to note that when an HTTPS client or CT auditor
interacts with a log, they may equivalently interact with a | og
mrror or cache that replicates the |og.

7. Data flow
The follow ng picture shows how certificates, SCIs and STHs fl ow

through a CT systemw th SCT Feedback and STH Pollination. It does
not show what goes in the Trusted Auditor Rel ationship stream

Nor dberg, et al. Expires July 18, 2018 [Page 6]

Internet-Draft Gossiping in CT January 2018

8.

8.

1.

+- Cert ---- 4---------- +
| e +
| + SCT -> +---------- +
v [Cert [& SCT]
Fomm e + |
| Log | ---------- SCT ----------- +
e oo + v
| N S +
[SCTs & Certs --- | Website |
sy | T +
| 2] STHs A I
| 1[3] v | HITPS traffic
| e + | |
| +-------- > | Auditor | | SCT & Cert
| R + | | ,
STH | STH & Inclusion proof
I I I
Log entries SCTs & Certs
I I I
v STHs |
S + | Vv
| Monitor | R +
R + | Browser |
e e e oo +
Auditor Log
[1] |--- get-sth ----------mmmom- >|
[<-- STH ------mmmm e - [
[2] |--- leaf hash + tree size ----- >|
| <-- index + inclusion proof --->
[3] |--- tree size 1 + tree size 2 ->|

| <-- consistency proof ---------- |
Gossi p Mechani sns
SCT Feedback

The goal of SCT Feedback is for clients to share SCTs and certificate
chains with CT auditors while still preserving the privacy of the end
user. The sharing of SCTs contribute to the overall goal of
detecting nmisbehaving | ogs by providing auditors with SCTs from nany
vantage points, making it nore likely to catch a violation of a log’ s
MVD or a |log presenting inconsistent views. The sharing of
certificate chains is beneficial to HITPS server operators interested
in direct feedback fromclients for detecting bogus certificates
issued in their name and therefore incentivizes server operators to
take part in SCT Feedback.

Nor dberg, et al. Expires July 18, 2018 [Page 7]

Internet-Draft Gossiping in CT January 2018

SCT Feedback is the nost privacy-preserving gossip nechanism as it
does not directly expose any links between an end user and the sites
they' ve visited to any third party.

HTTPS clients store SCTs and certificate chains they see, and | ater
send themto the originating HTTPS server by posting themto a well -
known URL (associated with that server), as described in

Section 8.1.2. Note that clients will send the same SCTs and chai ns
to a server multiple times with the assunption that any man-in-the-
m ddl e attack eventually will cease, and an honest server wll
eventual ly receive collected malicious SCTs and certificate chains.

HTTPS servers store SCTs and certificate chains received from
clients, as described in Section 8.1.3. They later share themwth
CT auditors by either posting themto auditors or making them
available via a well-known URL. This is described in Section 8.1.4.

8.1.1. SCT Feedback data fornmat

The data shared between HTTPS clients and servers, as well as between
HTTPS servers and CT auditors, is a JSON array [RFC7159]. Each item
inthe array is a JSON object containing at least the first of the
foll owi ng nenbers

0 "x509 chain" : An array of PEM encoded X. 509 certificates. The
first element is the end-entity certificate, the second certifies
the first and so on. The "x509 chain" nmenber is mandatory to
i ncl ude.

0 "sct _data vl" : An array of base64 encoded
"SignedCertificateTi mestanplList"s as defined in [RFC6962] section
3.3. The "sct_data_v1" nmenber is optional

0 "sct _data v2" : An array of base64 encoded "Transltem structures
of type "x509 sct_v2" or "precert_sct_v2" as defined in
[RFC-6962- Bl S-27] section 4.8. The "sct_data_v2" nmenber is
opti onal

W will refer to this object as ’sct_feedback’

The x509 chain el ement always contains a full chain froma | eaf
certificate to a self-signed trust anchor

See Section 8.1.2 for details on what the sct_data el enent contains
as well as nore details about the x509 chain el enment.

Nor dberg, et al. Expires July 18, 2018 [Page 8]

Internet-Draft Gossiping in CT January 2018

8.1.2. HTTPS client to server

When an HTTPS client connects to an HTTPS server, the client receives
a set of SCTs as part of the TLS handshake. SCTs are included in the
TLS handshake using one or nore of the three nechani sns described in
[RFC-6962- Bl S-27] section 6 - in the server certificate, in a TLS
extension, or in an OCSP extension. The client MJST discard SCTs
that are not signed by a | og known to the client and SHOULD store the
remai ning SCTs together with a locally constructed certificate chain
which is trusted (i.e., terninated in a pre-loaded or locally
installed Trust Anchor) in an sct_feedback object or equivalent data
structure for later use in SCT Feedback

The SCTs stored on the client MIST be keyed by the exact domai n nane
the client contacted. They MJUST NOT be sent to the well-known URI of
any domain not matching the original donmain (e.g., if the origina
domai n i s sub. exanpl e.comthey nust not be sent to

sub. sub. exanpl e.comor to exanple.com) In particular, they MJST NOT
be sent to the well-known URI of any Subject Al ternate Nanes
specified in the certificate. |In the case of certificates that
validate nmultiple domain nanes, after visiting a second donmai n nane
specified in the certificate, the sane SCT is expected to be stored
once under each donmain nane’'s key. |f Connection Reuse as defined in
[RFC7540] is available, reusing an existing connection to

sub. exanpl e.comto send data to sub.sub. exanple.comis permtted

Not follow ng these constraints would increase the risk for two types
of privacy breaches. First, the HTTPS server receiving the SCT woul d
| earn about other sites visited by the HTTPS client. Second,
auditors receiving SCTs fromthe HTTPS server would |l earn information
about ot her HTTPS servers visited by its clients.

If the client |ater again connects to the sane HITPS server, it again
receives a set of SCTs and calculates a certificate chain, and again
creates an sct_feedback or similar object. |If this object does not
exactly match an existing object in the store, then the client MJST
add this new object to the store, associated with the exact domain
nane contacted, as described above. An exact conparison is needed to
ensure that attacks involving alternate chains are detected. An
exanpl e of such an attack is described in

[dual - ca- conproni se-attack]. However, at |east one optim zation is
safe and MAY be perforned: If the certificate chain exactly matches
an existing certificate chain, the client MAY store the union of the
SCTs fromthe two objects in the first (existing) object.

If the client does connect to the sanme HITPS server a subsequent

time, it MJUST send to the server sct_feedback objects in the store
that are associated with that donain nane. However, it is not

Nor dberg, et al. Expires July 18, 2018 [Page 9]

Internet-Draft Gossiping in CT January 2018

necessary to send an sct_feedback object constructed fromthe current
TLS session, and if the client does so, it MJST NOT be marked as sent
in any internal tracking done by the client.

Refer to Section 11.3 for recommendations for inplenentation

Because SCTs can be used as a tracki ng nechani sm (see

Section 10.5.2), they deserve special treatnent when they are
received from (and provided to) domains that are | oaded as
subresources froman origin domain. Such donmains are conmonly call ed
"third party donmains’. An HTTPS client SHOULD store SCT Feedback
usi ng a 'doubl e-keying’ approach, which isolates third party domai ns
by the first party domain. This is described in [double-keying].
CGossip would be performed normally for third party domai ns only when
the user revisits the first party domain. 1In lieu of ’double-
keying', an HTTPS client MAY treat SCT Feedback in the sane manner it
treats other security mechani sns that can enabl e tracking (such as
HSTS and HPKP.)

SCT Feedback is only perforned when a user connects to a site via
intentional web browsing or normal third party resource inclusion
It MUST NOT be perforned automatically as part of sone sort of
background process.

Finally, if the HTTPS client has configuration options for not
sendi ng cookies to third parties, SCIs of third parties MJST be
treated as cookies with respect to this setting. This prevents third
party tracking through the use of SCTs/certificates, which would
bypass the cookie policy. For donains that are only |oaded as third
party domains, the client may never perform SCT Feedback; however the
client may perform STH Pol li nati on after fetching an inclusion proof,
as specified in Section 8. 2.

SCTs and corresponding certificates are POSTed to the originating
HTTPS server at the well-known URL:

https://<domai n>/ . wel | - known/ ct - gossi p/ vl/ sct - f eedback

The data sent in the POST is defined in Section 8.1.1. This data
SHOULD be sent in an already-established TLS session. This nmakes it
hard for an attacker to disrupt SCT Feedback w thout al so disturbing
ordinary secure browsing (https://). This is discussed nore in
Section 11.1.1.

The HTTPS server SHOULD respond with an HTTP 200 response code and an

enpty body if it was able to process the request. An HITPS client
whi ch receives any other response SHOULD consider it an error.

Nor dberg, et al. Expires July 18, 2018 [Page 10]

Internet-Draft Gossiping in CT January 2018

Some clients have trust anchors or logs that are locally added (e.g.
by an administrator or by the user thenselves). These additions are
potentially privacy-sensitive because they can carry information
about the specific configuration, conputer, or user.

Certificates validated by locally added trust anchors will comonly
have no SCTs associated with them so in this case no action is
needed with respect to CT Gossip. SCTs issued by locally added | ogs
MUST NOT be reported via SCT Feedback.

If acertificate is validated by SCTs that are issued by publicly
trusted |l ogs, but chains to a local trust anchor, the client MAY
perform SCT Feedback for this SCT and certificate chain bundle. |If
it does so, the client MJUST include the full chain of certificates
chaining to the local trust anchor in the x509 chain array.
Perform ng SCT Feedback in this scenario may be advantageous for the
broader internet and CT ecosystem but nmay al so disclose infornation
about the client. |If the client elects to onit SCT Feedback, it can
choose to perform STH Pol lination after fetching an inclusion proof,
as specified in Section 8. 2.

We require the client to send the full chain (or nothing at all) for
two reasons. Firstly, it sinplifies the operation on the server if
there are not two code paths. Secondly, onmtting the chain does not
actually preserve user privacy. The Issuer field in the certificate
describes the signing certificate. And if the certificate is being
submitted at all, it nmeans the certificate is | ogged, and has SCTs.
This means that the |Issuer can be queried and obtained fromthe |og,
so onitting the signing certificate fromthe client’s subm ssion does
not actually hel p user privacy.

8.1.3. HITPS server operation

HTTPS servers can be configured (or omt configuration), resulting

in, broadly, two nodes of operation. |In the sinpler node, the server
will only track leaf certificates and SCTs applicable to those |eaf
certificates. 1In the nore conplex node, the server will confirmthe

client’s chain validation and store the certificate chain. The
| atter node requires nmore configuration, but is necessary to prevent
deni al of service (DoS) attacks on the server’s storage space.

In the sinple node of operation, upon receiving a subnission at the
sct-feedback well-known URL, an HTTPS server will performa set of
operations, checking on each sct_feedback object before storing it:

o (1) the HTTPS server MAY nodify the sct_feedback object, and

discard all itenms in the x509 chain array except the first item
(which is the end-entity certificate)

Nor dberg, et al. Expires July 18, 2018 [Page 11]

Internet-Draft Gossiping in CT January 2018

o (2) if a bit-wise compare of the sct_feedback object nmatches one
already in the store, this sct_feedback object SHOULD be di scarded

0 (3) if the leaf cert is not for a donmain for which the server is
authoritative, the SCT MJUST be di scarded

o (4) if an SCT in the sct_data array can’'t be verified to be a
valid SCT for the acconpanying |leaf cert, and issued by a known
| og, the individual SCT SHOULD be discarded

The nodification in step nunber 1 is necessary to prevent a nalicious
client fromexhausting the server’'s storage space. A client can
generate their own issuing certificate authorities, and create an
arbitrary nunber of chains that termnate in an end-entity
certificate with an existing SCI. By discarding all but the end-
entity certificate, we prevent a sinple HTTPS server fromstoring
this data. Note that operation in this node will not prevent the
attack described in [dual -ca-conprom se-attack]. Skipping this step
requires additional configuration as described bel ow

The check in step 2 is for detecting duplicates and m nim zi ng
processing and storage by the server. As on the client, an exact
conparison is needed to ensure that attacks involving alternate
chains are detected. Again, at |least one optinization is safe and

MAY be performed. |If the certificate chain exactly matches an
existing certificate chain, the server MAY store the union of the
SCTs fromthe two objects in the first (existing) object. [If the

validity check on any of the SCTs fails, the server SHOULD NOT store
t he uni on of the SCTs.

The check in step 3 is to help malfunctioning clients from exposing
which sites they visit. It additionally hel ps prevent DoS attacks on
t he server.

The check in step 4 is to prevent DoS attacks where an adversary
fills up the store prior to attacking a client (thus preventing the
client’s feedback from being recorded), or an attack where an
adversary sinply attenpts to fill up server’s storage space.

The above describes the sinpler nbde of operation. |In the nore
advanced server node, the server will detect the attack described in
[dual - ca-conproni se-attack]. In this configuration the server wll
not nodify the sct_feedback object prior to perforning checks 2, 3,
and 4. Instead, to prevent a malicious client fromfilling the
server’s data store, the HITPS server SHOULD perform an additiona
check in the nore advanced node:

Nor dberg, et al. Expires July 18, 2018 [Page 12]

Internet-Draft Gossiping in CT January 2018

o (5) if the x509 _chain consists of an invalid certificate chain, or
the culminating trust anchor is not recognized by the server, the
server SHOULD nodify the sct_feedback object, discarding all itens
in the x509 chain array except the first item

The HTTPS server MAY choose to onit checks 4 or 5. This will place
the server at risk of having its data store filled up by invalid
data, but can also allow a server to identify interesting certificate
or certificate chains that omt valid SCTs, or do not chain to a
trusted root. This informati on nay enable an HTTPS server operator
to detect attacks or unusual behavior of Certificate Authorities even
outside the Certificate Transparency ecosystem

8.1.4. HTTPS server to auditors

HTTPS servers receiving SCTs fromclients SHOULD share SCTs and
certificate chains with CT auditors by either serving themon the
wel | - known URL:

htt ps://<domai n>/ . wel | - known/ ct - gossi p/ vl/col | ect ed-sct-feedback

or by HTTPS POSTing themto a set of preconfigured auditors. This
all ows an HTTPS server to choose between an active push nodel or a
passi ve pull nodel

The data received in a GET of the well-known URL or sent in the POST
is defined in Section 8.1.1 with the follow ng difference: The

x509 chain el enent nay contain only he end-entity certificate, as
descri bed bel ow

HTTPS servers SHOULD share all sct_feedback objects they see that
pass the checks in Section 8.1.3. |If this is an infeasible anmount of
data, the server MAY choose to expire subm ssions according to an
undefined policy. Suggestions for such a policy can be found in
Section 11.3.

HTTPS servers MJST NOT share any other data that they may | earn from
the submi ssion of SCT Feedback by HTTPS clients, like the HITPS
client 1P address or the tine of subm ssion

As descri bed above, HTTPS servers can be configured (or onit
configuration), resulting in tw nodes of operation. In one node,
the x509 _chain array will contain a full certificate chain. This
chain may ternminate in a trust anchor the auditor may recognize, or
it my not. (One scenario where this could occur is if the client
submitted a chain termnating in a |locally added trust anchor, and
the server kept this chain.) 1In the other node, the x509 chain array

Nor dberg, et al. Expires July 18, 2018 [Page 13]

Internet-Draft Gossiping in CT January 2018

will consist of only a single elenent, which is the end-entity
certificate.

Audi t ors SHOULD provide the followi ng URL accepting HTTPS POSTi ng of
SCT feedback dat a:

https://<auditor>/ct-gossip/vl/sct-feedback

Audi tors SHOULD regularly poll HTTPS servers at the well-known

col l ected-sct-feedback URL. The frequency of the polling and how to
det ermi ne which donmains to poll is outside the scope of this
docunment. However, the selection MIST NOT be influenced by potenti al
HTTPS clients connecting directly to the auditor. For exanple, if a
poll to exanple.comoccurs directly after a client subnmits an SCT for
exanpl e.com an adversary observing the auditor can trivially
conclude the activity of the client.

8.2. STH pollination

The goal of sharing Signed Tree Heads (STHs) through pollination is
to share STHs between HITPS clients and CT auditors while stil
preserving the privacy of the end user. The sharing of STHs
contribute to the overall goal of detecting nisbehaving | ogs by
providing CT auditors with STHs from many vantage points, nmaking it
possible to detect logs that are presenting inconsistent views.

HTTPS servers supporting the protocol act as STH pools. HITPS
clients and CT auditors in the possession of STHs can pollinate STH
pools by sending STHs to them and retrieving new STHs to send to
other STH pools. CT auditors can inprove the value of their auditing
by retrieving STHs from pool s.

HTTPS clients send STHs to HTTPS servers by POSTing themto the well -
known URL:

https://<domai n>/ . wel | - known/ ct-gossi p/vl/sth-pollination

The data sent in the POST is defined in Section 8.2.4. This data
SHOULD be sent in an already established TLS session. This makes it
hard for an attacker to disrupt STH gossiping w thout al so disturbing
ordinary secure browsing (https://). This is discussed nore in
Section 11.1.1.

On a successful connection to an HITPS server inplenenting STH

Pol i nation, the response code will be 200, and the response body is
application/json, containing zero or nore STHs in the sane format, as
described in Section 8.2. 4.

Nor dberg, et al. Expires July 18, 2018 [Page 14]

Internet-Draft Gossiping in CT January 2018

An HTTPS client nmay acquire STHs by several nethods:
o inreplies to pollination POSTs;

o0 asking logs that it recognizes for the current STH, either
directly (v2/get-sth) or indirectly (for exanple over DNS)

0 resolving an SCT and certificate to an STH via an incl usion proof
0 resolving one STH to another via a consistency proof

HTTPS clients (that have STHs) and CT auditors SHOULD pol |l i nate STH
pools with STHs. Which STHs to send and how often pollination should
happen is regarded as undefined policy with the exception of privacy
concerns expl ained bel ow. Suggestions for the policy can be found in
Section 11.3.

An HTTPS client could be tracked by giving it a unique or rare STH
To address this concern, we place restrictions on different
components of the systemto ensure an STH will not be rare.

0 HTTPS clients silently ignore STHs fromlogs with an STH i ssuance
frequency of nore than one STH per hour. Logs use the STH
Frequency Count |og paraneter to express this ([RFC 6962- Bl S-27]
section 4.1).

0 HITPS clients silently ignore STHs which are not fresh

An STH is considered fresh iff its tinestanp is less than 14 days in
the past. G ven a maxi mum STH i ssuance rate of one per hour, an
attacker has 336 unique STHs per log for tracking. dients MJST

i gnore STHs ol der than 14 days. W consider STHs within this
validity window not to be personally identifiable data, and STHs
outside this window to be personally identifiable.

When nultiplied by the nunber of |logs fromwhich a client accepts
STHs, this nunmber of unique STHs grow and the negative privacy
inmplications growwith it. |It’s inportant that this is taken into
account when | ogs are chosen for default settings in HTTPS clients.
This concern is discussed upon in Section 10.5.5.

A log may cease operation, in which case there will soon be no STH
within the validity window dients SHOULD performall three nethods
of gossip about a log that has ceased operation since it is possible
the log was still conprom sed and gossip can detect that. STH
Pollination is the one nechanismwhere a client nust know about a | og
shutdown. A client which does not know about a | og shutdown MJUST NOT
attenpt any heuristic to detect a shutdown. Instead the client MJST

Nor dberg, et al. Expires July 18, 2018 [Page 15]

Internet-Draft Gossiping in CT January 2018

be i nformed about the shutdown froma verifiable source (e.g., a

sof tware update), and be provided the final STH issued by the |og.
The client SHOULD resolve SCTs and STHs to this final STH If an SCT
or STH cannot be resolved to the final STH, clients SHOULD fol |l ow t he
requi renents and recommendations set forth in Section 11.1.2.

8.2.1. HITPS dients and Proof Fetching

There are two types of proofs a client may retrieve; inclusion proofs
and consi stency proofs.

An HTTPS client will retrieve SCTs together with certificate chains
froman HTTPS server. Using the tinmestanp in the SCT together with
the end-entity certificate and the issuer key hash, it can obtain an
inclusion proof to an STH in order to verify the prom se nmade by the
SCT.

An HTTPS client will have STHs from perform ng STH Pol lination, and
may obtain a consistency proof to a nore recent STH

An HTTPS client may al so receive an SCT bundl ed with an inclusion
proof to a historical STH via an unspecified future nmechani sm
Because this historical STH is considered personally identifiable

i nformati on per above, the client needs to obtain a consistency proof
to a nore recent STH.

A client SHOULD attenpt proof fetching. A client MAY do network
probing to deternmine if proof fetching may succeed, and if it |earns
that it does not, SHOULD periodically re-probe (especially after
network change, if it is aware of these events.) |If it does succeed,
gqueued events can be processed.

A client MJUST NOT perform proof fetching for any SCTs or STHs issued
by a locally added log. A client MAY fetch an inclusion proof for an
SCT (issued by a pre-loaded log) that validates a certificate
chaining to a locally added trust anchor

If a client requested either proof directly froma log or auditor, it
woul d reveal the client’s browsing habits to a third party. To
mtigate this risk, an HITPS client MJST retrieve the proof in a
manner that disguises the client.

Depending on the client’s DNS provider, DNS nay provide an
appropriate internediate | ayer that obfuscates the linkability

bet ween the user of the client and the request for inclusion (while
at the sane tine providing a caching |layer for oft-requested

i nclusion proofs). See [draft-ct-over-dns] for an exanple of how
this can be done.

Nor dberg, et al. Expires July 18, 2018 [Page 16]

Internet-Draft Gossiping in CT January 2018

Anonymi ty networks such as Tor also present a mechanismfor a client
to anonynously retrieve a proof froman auditor or |og.

Even when using a privacy-preserving | ayer between the client and the
| og, certain observations nmay be nade about an anonynous client or
general user behavi or dependi ng on how proofs are fetched. For
exanple, if a client fetched all outstanding proofs at once, a | og
woul d know that SCTs or STHs received around the same tinme are nore
likely to cone froma particular client. This could potentially go
so far as correlation of activity at different tinmes to a single
client. In aggregate the data could reveal what sites are conmnonly
visited together. HITPS clients SHOULD use a strategy of proof
fetching that attenpts to obfuscate these patterns. A suggestion of
such a policy can be found in Section 11.2.

Resol ving either SCTs and STHs may result in errors. These errors
may be routine downtime or other transient errors, or they may be
indicative of an attack. Cients SHOULD follow the requirenents and
recomendations set forth in Section 11.1.2 when handling these
errors in order to give the CT ecosystemthe greatest chance of
detecting and responding to a conprom se.

8.2.2. STH Pol lination wi thout Proof Fetching

An HTTPS client MAY participate in STH Pollination w thout fetching

proofs. In this situation, the client receives STHs froma server,
applies the sane validation logic to them (signed by a known | og,
within the validity window) and will |ater pass themto another HITPS
server.

When operating in this fashion, the HTTPS client is pronoting gossip
for Certificate Transparency, but derives no direct benefit itself.
In conparison, a client which resolves SCTs or historical STHs to
recent STHs and pollinates themis assured that if it was attacked,
there is a probability that the ecosystemw ||l detect and respond to
the attack (by distrusting the |oqg).

8.2.3. Auditor Action

CT auditors participate in STH pollination by retrieving STHs from
HTTPS servers. They verify that the STHis valid by checking the
signature, and requesting a consistency proof fromthe STHto the
nost recent STH.

After retrieving the consistency proof to the nost recent STH, they
SHOULD pol linate this new STH anobng partici pating HTTPS servers. In
this way, as STHs "age out" and are no longer fresh, their "lineage"
continues to be tracked in the system

Nor dberg, et al. Expires July 18, 2018 [Page 17]

Internet-Draft Gossiping in CT January 2018

8.2.4. STH Pollination data fornat

The data sent from HITPS clients and CT auditors to HITPS servers is
a JSON object [RFC7159] with one or both of the follow ng two
nmenbers:

o "v1" : array of O or nore objects each containing an STH as
returned fromct/vl/get-sth, see [RFC6962] section 4.3

o "v2" : array of O or nore objects each containing an STH as
returned fromct/v2/ get-sth, see [RFC-6962-Bl S-27] section 5.2

Note that all STHs MJUST be fresh as defined in Section 8. 2.
8.3. Trusted Auditor Stream

HTTPS clients MAY send SCTs and cert chains, as well as STHs,
directly to auditors. |If sent, this data MAY include data that
reflects locally added | ogs or trust anchors. Note that there are
privacy inplications in doing so, these are outlined in

Section 10.5.1 and Section 10.5. 6.

The nost natural trusted auditor arrangenent arguably is a web
browser that is "logged in to" a provider of various internet
services. Another equivalent arrangenment is a trusted party like a
corporation to which an enpl oyee is connected through a VPN or by
other simlar neans. A third mght be individuals or smaller groups
of people running their own services. |n such a setting, retrieving
proofs fromthat third party could be considered reasonable froma
privacy perspective. The HITPS client may also do its own auditing
and might additionally share SCTs and STHs with the trusted party to
contribute to herd immunity. Here, the ordinary [RFC 6962-BI S-27]
protocol is sufficient for the client to do the auditing while SCT
Feedback and STH Pol lination can be used in whole or in parts for the
gossi p part.

Anot her wel| established trusted party arrangenment on the internet
today is the relation between internet users and their providers of
DNS resol ver services. DNS resolvers are typically provided by the

i nternet service provider (ISP) used, which by the nature of name
resol ving already know a great deal about which sites their users
visit. As mentioned in Section 8.2.1, in order for HTTPS clients to
be able to retrieve proofs in a privacy preserving manner, logs could
expose a DNS interface in addition to the ordinary HITPS interface.

A specification of such a protocol can be found in
[draft-ct-over-dns].

Nor dberg, et al. Expires July 18, 2018 [Page 18]

Internet-Draft Gossiping in CT January 2018

8.3.1. Trusted Auditor data format
Trusted Auditors expose a REST APl at the fixed URI
https://<auditor>/ct-gossip/vl/trusted-auditor
Subni ssions are made by sending an HTTPS POST request, with the body
of the POST in a JSON object. Upon successful receipt the Trusted
Auditor returns 200 K
The JSON obj ect consists of two top-level keys: 'sct feedback’ and
"sths’. The 'sct_feedback’ value is an array of JSON objects as
defined in Section 8.1.1. The 'sths’ value is an array of STHs as
defined in Section 8.2.4.
Exanpl e:

"sct _f eedback’

[

' x509 _chain’
[
"----BEG@ N CERTI FI CATE---\n
AAA. ..,
'----BEA N CERTI FI CATE---\n
AAA. ..,
]1
"sct_data’
[
TAAA LT
TAAA LT,
]
oo,
]1
" st hs’
[
"AAA LT,

Nor dberg, et al. Expires July 18, 2018 [Page 19]

Internet-Draft Gossiping in CT January 2018

9.

9.

9.

3- Met hod Ecosystem

The use of three distinct methods for auditing | ogs may seem
excessi ve, but each represents a needed conponent in the CT
ecosystem To understand why, the drawbacks of each conponent nust
be outlined. |In this discussion we assunme that an attacker knows
whi ch nechani sns an HTTPS client and HTTPS server inplenent.

1. SCT Feedback

SCT Feedback requires the cooperation of HITPS clients and nore
importantly HTTPS servers. Although SCT Feedback does require a
significant anmount of server-side logic to respond to the
corresponding APls, this functionality does not require

custom zation, so it may be pre-provided and work out of the box.
However, to take full advantage of the system an HITPS server woul d
wi sh to perform sonme configuration to optimze its operation:

0 Mninize its disk commitnment by maintaining a list of known SCTs
and certificate chains (or hashes thereof)

0 Muximze its chance of detecting a nisissued certificate by
configuring a trust store of CAs

o Establish a "push" nechani smfor POSTing SCTs to CT auditors

These configuration needs, and the sinple fact that it would require
some depl oynent of software, nmeans that sonme percentage of HITPS
servers will not deploy SCT Feedback

I f SCT Feedback was the only mechanismin the ecosystem any server
that did not inplement the feature would open itself and its users to
attack wi thout any possibility of detection.

A webserver not deploying SCT Feedback (or an alternative nethod
provi di ng equival ent functionality) may never learn that it was a
target of an attack by a malicious |og, as described in Section 10.1
al t hough the presence of an attack by the log could be |earned
through STH Pollination. Additionally, users who wi sh to have the
strongest neasure of privacy protection (by disabling STH Pollination
Proof Fetching and forgoing a Trusted Auditor) could be attacked
without risk of detection.

2. STH Pol lination

STH Pol l i nation requires the cooperation of HITPS clients, HITPS
servers, and | ogs.

Nor dberg, et al. Expires July 18, 2018 [Page 20]

Internet-Draft Gossiping in CT January 2018

For a client to fully participate in STH Pol i nati on, and have this
mechani sm detect attacks against it, the client nust have a way to
safely perform Proof Fetching in a privacy preserving manner. (The
client may pollinate STHs it receives w thout perfornng Proof
Fetching, but we do not consider this option in this section.)

HTTPS servers mnust depl oy software (although, as in the case with SCT
Feedback this logic can be pre-provided) and conmit some configurable
anount of di sk space to the endeavor.

Logs (or a third party mrroring the logs) nust provide access to
clients to query proofs in a privacy preserving nanner, nost |ikely
t hr ough DNS.

Unl i ke SCT Feedback, the STH Pollination mechanismis not hanpered if
only a mnority of HTTPS servers deploy it. However, it nmakes an
assunption that an HTTPS client perforns Proof Fetching (such as the
DNS nechani sm di scussed). Unfortunately, any manner that is
anonymous for sonme (such as clients which use shared DNS services
such as a large |SP), may not be anonynous for others.

For instance, DNS requests expose a considerable anount of sensitive
informati on (including what data is already present in the cache) in
pl ai nt ext over the network. For this reason, sone percentage of
HTTPS clients may choose to not enable the Proof Fetching conponent
of STH Pollination. (Al though they can still request and send STHs
anong participating HITPS servers, even when this affords them no
direct benefit.)

If STH Pollination was the only mechani sm depl oyed, users that
disable it would be able to be attacked without risk of detection

If STH Pollination (or an alternative nmethod providi ng equival ent
functionality) was not deployed, HTTPS clients visiting HITPS Servers
whi ch did not depl oy SCT Feedback coul d be attacked without risk of
det ecti on.

9.3. Trusted Auditor Relationship

The Trusted Auditor Relationship is expected to be the rarest gossip
mechani sm as an HTTPS client is providing an unadulterated report of
its browsing history to a third party. Wile there are valid and
conmon reasons for doing so, there is no appropriate way to enter
into this relationship without retrieving informed consent fromthe
user.

However, the Trusted Auditor Rel ationship nechanismstill provides
value to a class of HTTPS clients. For exanple, web crawl ers have no

Nor dberg, et al. Expires July 18, 2018 [Page 21]

I nt

9. 4.

Nor

ernet-Draft Gossiping in CT January 2018

concept of a "user" and no expectation of privacy. O ganizations

al ready perform ng network auditing for anomalies or attacks can run
their own Trusted Auditor for the same purpose with marginal increase
in privacy concerns.

The ability to change one’s Trusted Auditor is a formof Trust
Agility that allows a user to choose who to trust, and be able to
revise that decision |ater wthout consequence. A Trusted Auditor
connection can be nmade nore confidential than DNS (through the use of
TLS), and can even be nmade (sonewhat) anonynous through the use of
anonymity services such as Tor. (Note that this does ignore the de-
anonymi zation possibilities available fromviewi ng a user’s browsing
history.)

If the Trusted Auditor relationship was the only nmechani sm depl oyed,
users who do not enable it (the majority) would be able to be
attacked without risk of detection.

If the Trusted Auditor relationship was not deployed, craw ers and
organi zations would build it thenselves for their own needs. By
standardizing it, users who wish to opt-in (for instance those
unwilling to participate fully in STH Pollination) can have an

i nteroperabl e standard they can use to choose and change their
trusted auditor.

I nt eraction

Assum ng no ot her | og consistency neasures exist, clients who perform
only a subset of the nmechani sns described in this docunent are
exposed to the follow ng vul nerabilities:

HTTPS clients can be attacked w thout risk of detection if they do
not participate in any of the three nechanisns.

HTTPS clients are afforded the greatest chance of detecting an attack
when they either participate in both SCT Feedback and STH Pol I i nati on
with Proof Fetching or if they have a Trusted Auditor relationship.
(Participating in SCT Feedback is the only way specified in this
docunent to prevent a nmalicious log fromrefusing to ever resolve an
SCT to an STH, as put forward in Section 10.1). Additionally,
participating in SCT Feedback enabl es an HTTPS client to assist in
detecting the exact target of an attack.

HTTPS servers that omit SCT Feedback enable malicious logs to carry
out attacks without risk of detection. |If these servers are targeted
specifically, even if the attack is detected, w thout SCT Feedback
they may never learn that they were specifically targeted. HITPS
servers wi thout SCT Feedback do gain sone neasure of herd immunity,

dberg, et al. Expires July 18, 2018 [Page 22]

Internet-Draft Gossiping in CT January 2018

10.

10.

10.

but only because their clients participate in STH Pollination (with
Proof Fetching) or have a Trusted Auditor Rel ationship.

When HTTPS servers onmit SCT feedback, it allows their users to be
attacked wi thout detection by a nmalicious |og; the vul nerable users
are those who do not have a Trusted Auditor relationshinp.

Security considerations
1. Attacks by actively malicious |ogs

One of the nost powerful attacks possible in the CT ecosystemis a
trusted |l og that has actively decided to be malicious. 1t can carry
out an attack in at |east tw ways:

In the first attack, the log can present a split view of the log for
all tine. This attack can be detected by CT auditors, but a naive
auditor inplenentation may fail to do so. The sinplest, |east
efficient way to detect the attack is to mirror the entire | og and
assert inclusion of every peice of data. |f an auditor does not
mrror the log, one way to detect this attack is to resolve each view
of the log to the nost recent STHs available and then force the |og
to present a consistency proof. (Wiich it cannot.) W highly
recomend auditors plan for this attack scenario and ensure it wll

be detected.

In the second attack, the log can sign an SCT, and refuse to ever
include the certificate that the SCT refers to in the tree
(Alternately, it can include it in a branch of the tree and issue an
STH, but then abandon that branch.) Wenever someone requests an

i nclusion proof for that SCT (or a consistency proof fromthat STH)
the I og would respond with an error, and a client may sinply regard
the response as a transient error. This attack can be detected using
SCT Feedback, or an Auditor of Last Resort, as presented in

Section 11.1.2.

Both of these attack variants can be detected by CT auditors who have
obt ai ned an STH of an 'abnormal’ view of the |og. However, they may
not be able to link the STH to any particular SCT or Certificate.
This means that while the | og m sbehavi or was successful |y detected,
the target of the attack was not identified. To assertively identify
the target(s) of the attack, SCT Feedback is necessary.

2. Dual - CA Conpromni se
[dual - ca- conprom se-attack] describes an attack possible by an

adversary who conpronises two Certificate Authorities and a Log. This
attack is difficult to defend against in the CT ecosystem and

Nor dberg, et al. Expires July 18, 2018 [Page 23]

Internet-Draft Gossiping in CT January 2018

10.

[dual - ca- conprom se-attack] describes a few approaches to doing so
We note that Gossip is not intended to defend against this attack
but can in certain nodes

Def endi ng agai nst the Dual - CA Conpromi se attack requires SCT
Feedback, and explicitly requires the server to save full certificate
chains (described in Section 8.1.3 as the ’"conplex’ configuration.)
After CT auditors receive the full certificate chains fromservers
they MAY conpare the chain built by clients to the chain supplied by
the log. |If the chains differ significantly, the auditor SHOULD
raise a concern. A nethod of determining if chains differ
significantly is by asserting that one chain is not a subset of the
other and that the roots of the chains are different.

3. Censorshi p/ Bl ocki ng consi derations

We assune a network attacker who is able to fully control the
client’s internet connection for some period of tine, including
sel ectively bl ocking requests to certain hosts and truncating TLS
connecti ons based on information observed or guessed about client
behavior. In order to successfully detect |og m sbehavior, the
gossi p nmechani sns nust still work even in these conditions.

There are several gossip connections that can be bl ocked:
1. dients sending SCTs to servers in SCT Feedback

2. Servers sending SCTs to auditors in SCT Feedback (server push
mechani sm

3. Servers nmking SCTs available to auditors (auditor pul
mechani sm

4, Cients fetching proofs in STH Pol lination

5. Cdients sending STHs to servers in STH Pol lination
6. Servers sending STHs to clients in STH Pollination
7. dients sending SCTs to Trusted Auditors

If a party cannot connect to another party, it can be assured that
the connection did not succeed. Wile it may not have been

mal i ci ously bl ocked, it knows the transaction did not succeed.
Mechani sns which result in a positive affirmation fromthe recipient
that the transaction succeeded allow confirmation that a connection
was not blocked. In this situation, the party can factor this into
strategi es suggested in Section 11.3 and in Section 11.1. 2.

Nor dberg, et al. Expires July 18, 2018 [Page 24]

Internet-Draft Gossiping in CT January 2018

10.

10.

The connections that allow positive affirmation are 1, 2, 4, 5, and
7

More insidious is blocking the connections that do not allow positive
confirmation: 3 and 6. An attacker may truncate or drop a response
froma server to a client, such that the server believes it has
shared data with the recipient, when it has not. However, in both
scenarios (3 and 6), the server cannot distinguish the client as a
cooperating nmenber of the CT ecosystemor as an attacker performng a
Sybil attack, aiming to flush the server’s data store. Therefore the
fact that these connections can be undetectably bl ocked does not
actually alter the threat nodel of servers responding to these
requests. The choice of algorithmto release data is crucial to
protect against these attacks; strategies are suggested in

Section 11. 3.

Handl i ng censorship and network bl ocki ng (which is indistinguishable
fromnetwork error) is relegated to the inplenentation policy chosen
by clients. Suggestions for client behavior are specified in
Section 11.1.

4. Flushing Attacks

A flushing attack is an attenpt by an adversary to flush a particul ar
pi ece of data froma pool. |In the CT Gossip ecosystem an attacker
may have perforned an attack and | eft evidence of a conprom sed | og
on a client or server. They would be interested in flushing that
data, i.e. tricking the target into gossiping or pollinating the
incrimnating evidence with only attacker-controlled clients or
servers with the hope they trick the target into deleting it.

Fl ushing attacks may be defended against differently depending on the
entity (HTTPS client or HTTPS server) and record (STHs or SCTs with
Certificate Chains).

4.1. STHs

For both HTTPS clients and HTTPS servers, STHs within the validity

wi ndow SHOULD NOT be deleted. An attacker cannot flush an item from
the cache if it is never renoved so flushing attacks are conpletely
m ti gat ed.

The required disk space for all STHs within the validity w ndow is
336 STHs per log that is trusted. |If 20 logs are trusted, and each
STH takes 1 Kilobytes, this is 6.56 Megabytes.

Note that it is inportant that inplenentors do not calculate the
exact size of cache expected - if an attack does occur, a snall

Nor dberg, et al. Expires July 18, 2018 [Page 25]

Internet-Draft Gossiping in CT January 2018

10.

number of additional, fraudulent STHs will enter into the cache.
These STHs will be in addition to the expected set, and will be
evi dence of the attack. Flooding the cache will not work, as an
attacker would have to include fraudulent STHs in the fl ood.

If an HTTPS client or HTTPS server is operating in a constrained
envi ronnment and cannot devote enough storage space to hold all STHs
within the validity window it is reconmended to use the bel ow

Del etion Algorithmin section Section 11.3.2 to nmake it nore
difficult for the attacker to performa flushing attack

4.2. SCTs & Certificate Chains on HITPS Servers

An HTTPS server will only accept SCTs and Certificate Chains for
domains it is authoritative for. Therefore the storage space needed
i s bound by the nunber of logs it accepts, multiplied by the nunber
of donmains it is authoritative for, multiplied by the nunber of
certificates issued for those domains

| magi ne a server authoritative for 10,000 donai ns, and each domain
has 3 certificate chains, and 10 SCTs. A certificate chainis 5
Kil obytes in size and an SCT 1 Kilobyte. This yields 732 Megabyt es.

This data can be large, but it is calculable. Wb properties with
nmore certificates and domains are nore likely to be able to handl e
the increased storage need, while small web properties will not seen
an undue burden. Therefore HITPS servers SHOULD NOT del ete SCTs or
Certificate Chains. This conpletely nmitigates flushing attacks.

Again, note that it is inportant that inplenmentors do not calcul ate
the exact size of cache expected - if an attack does occur, the new
SCT(s) and Certificate Chain(s) will enter into the cache. This data
will be in addition to the expected set, and will be evidence of the
att ack.

If an HTTPS server is operating in a constrained environnent and
cannot devote enough storage space to hold all SCTs and Certificate
Chains it is authoritative for it is reconrended to configure the SCT
Feedback mechanismto allow only certain certificates that are known
to be valid. These chains and SCTs can then be di scarded wi thout
bei ng stored or subsequently provided to any clients or auditors. |If
the allowist is not sufficient, the below Deletion Algorithmin
Section 11.3.2 is recomended to nmake it nore difficult for the
attacker to performa flushing attack.

Nor dberg, et al. Expires July 18, 2018 [Page 26]

Internet-Draft Gossiping in CT January 2018

10.

10.

10.

10.

4.3. SCTs & Certificate Chains on HITPS dients

HTTPS clients will accunulate SCTs and Certificate Chains w thout
bound. It is expected they will choose a particular cache size and
del ete entries when the cache size neets its linmit. This does not
mtigate flushing attacks, and such an attack is docunented in

[gossi p-ni xi ng] .

The bel ow Del etion Algorithm Section 11.3.2 is recommended to make it
nmore difficult for the attacker to performa flushing attack

5. Privacy considerations

CT CGossip deals with HITPS clients which are trying to share

i ndicators that correspond to their browsing history. The nost
sensitive relationships in the CT ecosystemare the rel ationships

bet ween HTTPS clients and HTTPS servers. Cient-server relationships
can be aggregated into a network graph with potentially serious
implications for correlative de-anonynization of clients and

rel ati onshi p-mappi ng or clustering of servers or of clients.

There are, however, certain clients that do not require privacy
protection. Exanples of these clients are web craw ers or robots.
But even in this case, the nmethod by which these clients crawl the
web may in fact be considered sensitive information. |n general, it
is better to err on the side of safety, and not assume a client is
okay with giving up its privacy.

5.1. Privacy and SCTs

An SCT contains information that links it to a particular web site.
Because the client-server relationship is sensitive, gossip between
clients and servers about unrelated SCTs is risky. Therefore, a
client with an SCT for a given server SHOULD NOT transmt that
information in any other than the following two channels: to the
server associated with the SCT itself (via a TLS connection with a
certificate identifying the Domain Name of the web site with a Host
header specifying the domain nanme); or to a Trusted Auditor, if one
exi sts.

5.2. Privacy in SCT Feedback

SCTs introduce yet another mechani smfor HITPS servers to store state
on an HTTPS client, and potentially track users. HITPS clients which
all ow users to clear history or cookies associated with an origin
MUST cl ear stored SCTs and certificate chains associated with the
origin as well.

Nor dberg, et al. Expires July 18, 2018 [Page 27]

Internet-Draft Gossiping in CT January 2018

10.

Auditors should treat all SCTs as sensitive data. SCTs received
directly froman HITPS client are especially sensitive, because the
auditor is a trusted by the client to not reveal their associations
with servers. Auditors MJUST NOT share such SCTs in any way,

i ncluding sending themto an external log, without first mxing them
with multiple other SCTs | earned through submissions fromnultiple
other clients. Suggestions for nixing SCTs are presented in

Section 11. 3.

There is a possible fingerprinting attack where a |og i ssues a uni que
SCT for targeted log client(s). A colluding |log and HTTPS server
operator could therefore be a threat to the privacy of an HTTPS
client. Gven all the other opportunities for HTTPS servers to
fingerprint clients - TLS session tickets, HPKP and HSTS headers,
HTTP Cookies, etc. - this is considered acceptable.

The fingerprinting attack descri bed above would be mtigated by a
requirenent that |ogs nust use a deterministic signature schenme when
signing SCTs ([RFC-6962-BI S-27] section 2.2). A log signing using
RSA is not required to use a deterninistic signature schene.

Since logs are allowed to issue a new SCT for a certificate already
present in the | og, nmandating determnistic signatures does not stop
this fingerprinting attack altogether. It does nake the attack
harder to pull off w thout being detected though

There is another similar fingerprinting attack where an HITPS server
tracks a client by using a unique certificate or a variation of cert
chains. The risk for this attack is accepted on the sanme grounds as
t he uni que SCT attack described above.

5.3. Privacy for HITPS clients perforning STH Proof Fetching

An HTTPS client perform ng Proof Fetching SHOULD NOT request proofs
froma CT log that it doesn't accept SCTs from An HTTPS client
SHOULD regul arly request an STH fromall logs it is willing to
accept, even if it has seen no SCTs fromthat | og.

The tinme between two polls for new STH s SHOULD NOT be significantly
shorter than the MVD of the polled |og divided by its STH Frequency
Count ([RFC-6962-BI S-27] section 4.1).

The actual mnechani sm by which Proof Fetching is done carries

consi derabl e privacy concerns. Although out of scope for the
docunent, DNS is a nechanismcurrently discussed. DNS exposes data
in plaintext over the network (including what sites the user is
visiting and what sites they have previously visited) and nay not be
suitabl e for sone.

Nor dberg, et al. Expires July 18, 2018 [Page 28]

Internet-Draft Gossiping in CT January 2018

10.

10.

5.4, Privacy in STH Pol lination

An STH linked to an HTTPS client may indicate the foll ow ng about
that client:

o that the client gossips;

o that the client has been using CT at |least until the tine that the
timestanp and the tree size indicate;

o that the client is talking, possibly indirectly, to the |log
i ndi cated by the tree hash

o0 which software and software version is being used.

There is a possible fingerprinting attack where a |og i ssues a uni que
STH for a targeted HTTPS client. This is sinmlar to the
fingerprinting attack described in Section 10.5.2, but can operate
cross-origin. If alog (or HITPS server cooperating with a |og)
provides a unique STHto a client, the targeted client will be the
only client pollinating that STH cross-origin.

It is mtigated partially because the log is Iimted in the nunber of
STHs it can issue. It nust 'save’ one of its STHs each MVD to
performthe attack. A log violating its STH Frequency Count

([RFC-6962-BI S-27] section 4.1) can be identified as non-conpliant by
CT auditors followi ng the procedure described in [RFC 6962- Bl S-27]
section 8. 3.

5.5. Privacy in STH Interaction

An HTTPS client may pollinate any STH within the last 14 days. An
HTTPS client may al so pollinate an STH for any log that it knows
about. Wien a client pollinates STHs to a server, it will rel ease
nmore than one STHat a tine. It is unclear if a server may 'prine’ a
client and be able to reliably detect the client at a later tine.

It’s clear that a single site can track a user any way they w sh, but
this attack works cross-origin and is therefore nore concerning. Two
i ndependent sites A and B want to collaborate to track a user cross-
origin. A feeds a client Carol sone N specific STHs fromthe M ogs
Carol trusts, chosen to be older and | ess common, but still in the
validity window. Carol visits B and chooses to rel ease sone of the
STHs she has stored, according to sonme policy.

Model ing a representation for how common ol der STHs are in the pools
of clients, and examning that with a given policy of how to choose
whi ch of those STHs to send to B, it should be possible to calcul ate

Nor dberg, et al. Expires July 18, 2018 [Page 29]

Internet-Draft Gossiping in CT January 2018

10.

10.

statistics about how uni que Carol |ooks when talking to B and how
useful /accurate such a tracking mechanismis.

Bui I ding such a nodel is likely inpossible without sone real world
data, and requires a given inplenentation of a policy. To conbat
this attack, suggestions are provided in Section 11.3 to attenpt to
mnimze it, but followup testing with real world depl oynent to

i mprove the policy will be required.

5.6. Trusted Auditors for HITPS dients

Sone HTTPS clients nmay choose to use a trusted auditor. This trust
rel ati onshi p exposes a | arge anmount of information about the client
to the auditor. |In particular, it will identify the web sites that
the client has visited to the auditor. Sone clients may al ready
share this information to a third party, for exanple, when using a
server to synchroni ze browser history across devices in a server-

vi si bl e way, or when doing DNS | ookups through a trusted DNS
resolver. For clients with such a relationship already established
sending SCTs to a trusted auditor run by the sanme organi zati on does
not appear to expose any additional information to the trusted third

party.

Clients which wish to contact a CT auditor wi thout associating their
identities with their SCTs may wi sh to use an anonym zi ng networKk
like Tor to submit SCT Feedback to the auditor. Auditors SHOULD
accept SCT Feedback that arrives over such anonym zi ng networKks.

Clients sending feedback to an auditor may prefer to reduce the
tenporal granularity of the history exposure to the auditor by
caching and del ayi ng their SCT Feedback reports. This is el aborated
upon in Section 11.3. This strategy is only as effective as the
granularity of the tinmestanps enbedded in the SCTs and STHs.

5.7. HITPS dients as Auditors

Sone HTTPS clients may choose to act as CT auditors thenmselves. A
Client taking on this role needs to consider the foll ow ng:

0 an Auditing HTTPS client potentially exposes its history to the
| ogs that they query. Querying the log through a cache or a proxy
with many other users may avoid this exposure, but may expose
information to the cache or proxy, in the sanme way that a non-
Auditing HTTPS Cient exposes information to a Trusted Auditor.

o0 an effective CT auditor needs a strategy about what to do in the
event that it discovers misbehavior froma |log. M sbhehavior from
a log involves the | og being unable to provide either (a) a

Nor dberg, et al. Expires July 18, 2018 [Page 30]

Internet-Draft Gossiping in CT January 2018

11.

11.

11.

11.

consi stency proof between two valid STHs or (b) an inclusion proof
for a certificate to an STH any tinme after the log’s MVD has

el apsed fromthe issuance of the SCT. The log’s inability to
provide either proof will not be externally cryptographically-
verifiable, as it may be indistinguishable froma network error

Pol i cy Recommendati ons

This section is intended as suggestions to inplementors of HITPS
Clients, HTTPS servers, and CT auditors. It is not a requirenent for
techni que of inplenentation, so long as the privacy considerations
est abl i shed above are obeyed.

1. Bl ocking Recormendati ons
1.1. Frustrating bl ocking

When nmaki ng gossip connections to HTTPS servers or Trusted Auditors,
it is desirable to mininize the plaintext nmetadata in the connection
that can be used to identify the connection as a gossip connection
and therefore be of interest to block. Additionally, introducing
some randommess into client behavior may be inportant. W assune
that the adversary is able to inspect the behavior of the HITPS
client and understand how it makes gossip connecti ons.

As an exanple, if a client, after establishing a TLS connection (and
recei ving an SCT, but not making its own HITP request yet),

i medi atel y opens a second TLS connection for the purpose of gossip,
the adversary can reliably block this second connection to bl ock
gossip without affecting normal browsing. For this reason it is
recomended to run the gossip protocols over an existing connection
to the server, making use of connection nultiplexing such as HITP
Keep- Al i ve or SPDY

Truncation is also a concern. |f a client always establishes a TLS
connection, nakes a request, receives a response, and then al ways
attenpts a gossip conmmuni cation inmrediately following the first
response, truncation will allow an attacker to bl ock gossip reliably.

For these reasons, we reconmmend that, if at all possible, clients
SHOULD send gossip data in an already established TLS session. This
can be done through the use of HTTP Pipelining, SPDY, or HTTP/ 2

1.2. Responding to possible blocking

In sone circunstances a client nmay have a piece of data that they
have attenpted to share (via SCT Feedback or STH Pollination), but

Nor dberg, et al. Expires July 18, 2018 [Page 31]

Internet-Draft Gossiping in CT January 2018

have been unable to do so: with every attenpt they receive an error
These situations are:

1. The client has an SCT and a certificate, and attenpts to retrieve
an inclusion proof - but receives an error on every attenpt.

2. The client has an STH, and attenpts to resolve it to a newer STH
via a consistency proof - but receives an error on every attenpt.

3. The client has attenpted to share an SCT and constructed
certificate via SCT Feedback - but receives an error on every
attenpt.

4. The client has attenpted to share an STH via STH Pol lination -
but receives an error on every attenpt.

5. The client has attenpted to share a specific piece of data with a
Trusted Auditor - but receives an error on every attenpt.

In the case of 1 or 2, it is conceivable that the reason for the
errors is that the log acted inproperly, either through malicious
actions or conpronise. A proof may not be able to be fetched because
it does not exist (and only errors or tinmeouts occur). One such
situation may arise because of an actively nalicious |og, as
presented in Section 10.1. This data is especially inportant to
share with the broader internet to detect this situation

If an SCT has attenpted to be resolved to an STH via an incl usion
proof multiple tines, and each tine has failed, this SCT mght very
wel | be a conprom sing proof of an attack. However the client MJST
NOT share the data with any other third party (excepting a Trusted
Audi t or shoul d one exist).

If an STH has attenpted to be resolved to a newer STH via a

consi stency proof nmultiple tinmes, and each tine has failed, a client
MAY share the STH with an "Auditor of Last Resort" even if the STHin
qgquestion is no longer within the validity window. This auditor may
be pre-configured in the client, but the client SHOULD permit a user
to disable the functionality or change whom data is sent to. The
Auditor of Last Resort itself represents a point of failure and
privacy concerns, so if inplenented, it SHOULD connect using public
key pinning and not consider an itemdelivered until it receives a
confirmation.

In the cases 3, 4, and 5, we assune that the webserver(s) or trusted
auditor in question is either experiencing an operational failure, or
being attacked. In both cases, a client SHOULD retain the data for

| ater submission (subject to Private Browsing or other history-

Nor dberg, et al. Expires July 18, 2018 [Page 32]

Internet-Draft Gossiping in CT January 2018

clearing actions taken by the user.) This is elaborated upon nore in
Section 11. 3.

11.2. Proof Fetching Reconmendati ons

Proof fetching (both inclusion proofs and consistency proofs) SHOULD
be performed at randomtinme intervals. |If proof fetching occurred
all at once, in a flurry of activity, a |log would know that SCTs or
STHs received around the sane tinme are nore likely to cone froma
particular client. Wile proof fetching is required to be done in a
manner that attenpts to be anonynous fromthe perspective of the |og,
the correlation of activity to a single client would still revea
patterns of user behavior we wish to keep confidential. These
patterns could be recogni zabl e as a single user, or could reveal what
sites are commonly visited together in the aggregate.

11.3. Record Distribution Recommendati ons

In several conponents of the CT Gossip ecosystem the recomendation
is made that data fromnultiple sources be ingested, mxed, stored
for an indeternmnate period of tinme, provided (nultiple tines) to a
third party, and eventually deleted. The instances of these
recommendations in this draft are:

0 When a client receives SCTs during SCT Feedback, it should store
the SCTs and Certificate Chain for sone amount of time, provide
some of them back to the server at sonme point, and nay eventually
remove themfromits store

0 Wien a client receives STHs during STH Pollination, it should
store them for sonme anmpunt of tinme, nmix themw th other STHs,
rel ease sone of themthemto various servers at some point,
resol ve sone of themto new STHs, and eventually renove them from
its store

0 When a server receives SCTs during SCT Feedback, it should store
them for sone period of time, provide themto auditors sone numnber
of times, and may eventually rempove t hem

0 \When a server receives STHs during STH Pollination, it should
store them for sone period of tine, mx themw th other STHs,
provi de sone of themto connecting clients, may resolve themto
new STHs via Proof Fetching, and eventually renmove themfromits
store

0 When a Trusted Auditor receives SCTs or historical STHs from
clients, it should store themfor sone period of tine, mx them

Nor dberg, et al. Expires July 18, 2018 [Page 33]

Internet-Draft Gossiping in CT January 2018

11.

with SCTs received fromother clients, and act upon them at sone
period of tine

Each of these instances have specific requirenments for user privacy,
and each have options that may not be invoked. As one exanple, an
HTTPS client should not mx SCTs fromserver Awith SCTs from server
B and rel ease server B's SCTs to Server A. As another exanple, an
HTTPS server may choose to resolve STHs to a single nore current STH
via proof fetching, but it is under no obligation to do so.

These requirenents should be net, but the general probl em of
aggregating nultiple pieces of data, choosing when and how nany to
rel ease, and when to renove themis shared. This problem has

previ ously been considered in the case of Mx Networks and Rerail ers,
i ncludi ng papers such as [trickle].

There are several concerns to be addressed in this area, outlined
bel ow.

3.1. Mxing A gorithm

When SCTs or STHs are recorded by a participant in CT Gossip and
|ater used, it is inportant that they are selected fromthe datastore
in a non-deterministic fashion.

This is nost inportant for servers, as they can be queried for SCTs
and STHs anonynously. |If the server used a predictable ordering
algorithm an attacker could exploit the predictability to learn

i nformati on about a client. One such nethod would be by observing
the (encrypted) traffic to a server. Wen a client of interest
connects, the attacker makes a note. They observe nore clients
connecting, and predicts at what point the client-of-interest’s data
wi Il be disclosed, and ensures that they query the server at that
poi nt .

Al t hough nost inportant for servers, randomordering is stil

strongly recommended for clients and Trusted Auditors. The above
attack can still occur for these entities, although the circunstances
are less straightforward. For clients, an attacker could observe
their behavior, note when they receive an STH from a server, and use
javascript to cause a network connection at the correct tine to force
a client to disclose the specific STH Trusted Auditors are stewards
of sensitive client data. |If an attacker had the ability to observe
the activities of a Trusted Auditor (perhaps by being a | og, or

anot her auditor), they could performthe sane attack - noting the

di sclosure of data froma client to the Trusted Auditor, and then
correlating a later disclosure fromthe Trusted Auditor as com ng
fromthat client.

Nor dberg, et al. Expires July 18, 2018 [Page 34]

Internet-Draft Gossiping in CT January 2018

11.

Random ordering can be ensured by several nechanisnms. A datastore
can be shuffled, using a secure shuffling algorithmsuch as Fisher-
Yates. Alternately, a series of randomindexes into the data store
can be selected (if a collision occurs, a newindex is selected.) A
cryptographically secure random nunber generator nust be used in
either case. |If shuffling is performed, the datastore nust be marked
"dirty’ upon iteminsertion, and at |east one shuffle operation
occurs on a dirty datastore before data is retrieved fromit for use.

3.2. The Deletion Al gorithm

No entity in CT Gossip is required to delete records at any tine,
except to respect user’s wi shes such as private browsing node or
clearing history. However, it is likely that over tine the
accunul ated storage will grow in size and need to be pruned.

Wil e del etion of data will occur, proof fetching can ensure that any
m sbehavior froma log will still be detected, even after the direct
evidence fromthe attack is deleted. Proof fetching ensures that if
a log presents a split view for a client, they nust maintain that
split viewin perpetuity. An inclusion proof froman SCT to an STH
does not erase the evidence - the new STH is evidence itself. A
consi stency proof fromthat STHto a new one |ikew se - the new STH
is every bit as incrimnating as the first. (dient behavior in the
situation where an SCT or STH cannot be resolved is suggested in
Section 11.1.2.) Because of this property, we recommend that if a
client is performng proof fetching, that they nmake every effort to
not delete data until it has been successfully resolved to a new STH
via a proof.

When it is tine to delete a record, it can be done in a way that
makes it more difficult for a successful flushing attack to to be
per f or med.

1. Wien the record cache has reached a certain size that is yet
under the linit, aggressively performproof fetching. This
shoul d resolve records to a small set of STHs that can be
retained. Once a proof has been fetched, the record is safer to
del ete.

2. |If proof fetching has failed, or is disabled, begin by deleting
SCTs and Certificate Chains that have been successfully reported.
Deletion fromthis set of SCTs should be done at random For a
client, a submission is not counted as being reported unless it
is sent over a connection using a different SCT, so the attacker
is faced with a recursive problem (For a server, this step does

not apply.)

Nor dberg, et al. Expires July 18, 2018 [Page 35]

Internet-Draft Gossiping in CT January 2018

11.

11.

3. Attenpt to save any subnissions that have failed proof fetching
repeatedly, as these are the nost likely to be indicative of an
att ack.

4. Finally, if the above steps have been foll owed and have not
succeeded in reducing the size sufficiently, records may be
del eted at random

Note that if proof fetching is disabled (which is expected although
not required for servers) - the algorithmcoll apses down to 'delete
at randomi .

The decision to delete records at randomis intentional. |Introducing
non-determnismin the decision is absolutely necessary to nake it
more difficult for an adversary to know with certainty or high
confidence that the record has been successfully flushed froma
target.

4. Concrete Recommendati ons

We present the foll ow ng pseudocode as a concrete outline of our
policy recommendati ons.

Bot h suggestions presented are applicable to both clients and
servers. Servers may not perform proof fetching, in which case |arge
portions of the pseudocode are not applicable. But it should work in
ei ther case.

Note that we use a function 'rand()’ in the pseudocode, this function
is assuned to be a cryptographically secure pseudorandom nunber
generator. Additionally, when N unique itens are needed, they are
chosen at random by drawi ng a random i ndex repeatedly until the N
unique itens froman array have been chosen. Al though sinple, when
the array is Nor near-Nitens in length this is inefficient. A
secure shuffle algorithmfoll owed by selecting the first Nitens may
be nore efficient, especially when Nis I|arge.

4.1. STH Pol li nati on

The STH cl ass contains data pertaining specifically to the STH
itself.

Nor dberg, et al. Expires July 18, 2018 [Page 36]

Internet-Draft Gossiping in CT January 2018

class STH
{
uint16 proof _attenpts
uintl16 proof failure_count
ui nt 32 numreports to thirdparty
datetine tinmestanp
byt e[] dat a

}

The broader STH store itself would contain all the STHs known by an
entity participating in STH Pollination (either client or server).
This sinplistic view of the class does not take into account the
complicated locking that would likely be required for a data
structure being accessed by multiple threads. Something to note
about this pseudocode is that it does not remove STHs once they have
been resolved to a newer STH. Doing so mght nmake ol der STHs within
the validity window rarer and thus enabl e tracking.

cl ass STHStore

{
STH] sth_list

/1 This function is run after receiving a set of STHs from
/1l a third party in response to a pollination subm ssion
def insert(STH] new sths) {
foreach(new i n new sths) {
if(this.sth_list.contains(new))
continue
this.sth_list.insert(new)

}
}

/1 This function is called to delete the given STH
/1l fromthe data store
def del ete_now(STH s) {

this.sth_list.renove(s)

}

/1 When it is tine to perform STH Pol lination, the HTTPS client
/1 calls this function to get a selection of STHs to send as
/'l feedback
def get _pollination_selection() {
if(len(this.sth_ list) < MAX STH TO GGSSI P)
return this.sth_|ist
el se {
i ndexes = se
modul us = |l e
outdated_sth

his.sth_list)
0

wnw s

Nor dberg, et al. Expires July 18, 2018 [Page 37]

| nt er net -

}
}
}

Dr aft Gossiping in CT January 2018

whi |l e(l en(i ndexes) + outdated_sths < MAX _STH TO GOSSI P) {
r = random nt () % nodul us
if(r not in indexes)
/1 lgnore STHs that are past the validity wi ndow but not
/1 yet renoved
if(now() - this.sth_list[i].timestamp < TWO VEEKS)
out dat ed_st hs++
el se
i ndexes.insert(r)

}

return_selection =[]
foreach(i in indexes) {
return_selection.insert(this.sth_list[i])

}

return return_sel ection

We al so suggest a function that will be called periodically in the
background, iterating through the STH store, perform ng a cleaning
operation and queui ng consistency proofs. This function can |live as
a menber functions of the STHStore cl ass.

Nor dber g

et al. Expires July 18, 2018 [Page 38]

Internet-Draft Gossiping in CT January 2018

/1 Just a suggestion:
#defi ne M N_PROOF_FAI LURES_CONSI DERED SUSPI Cl QUS 3

def clean_list() {
foreach(sth in this.sth list) {
if(now() - sth.timestanp > TWO WEEKS) {
[ISTH is too old, we nust renove it
i f(proof _fetching_enabled
&% auditor_of |ast _resort_enabl ed
&& st h. proof failure_count
> M N_PROOF_FAI LURES CONSI DERED SUSPI Cl QUS) {
queue_for_auditor_of last_resort(sth,
audi tor_of | ast_resort_cal | back)
} else {
del et e_now(st h)

}
}

el se if(proof _fetching_enabl ed

&% now() - sth.tinestanp > LOG MVD
&% st h.proof attenpts != U NT16_MAX
/[l Only fetch a proof is we have never received a proof
/'l before. (This also avoids submitting sonething
/1 already in the queue.)
&& sth.proof _attenpts == sth. proof_failure_count) {

st h. proof _attenpts++

queue_consi st ency_proof (sth, consistency_proof call back)

}
}
}

These functions also exist in the STHStore cl ass.

Nor dberg, et al. Expires July 18, 2018 [Page 39]

Internet-Draft Gossiping in CT January 2018

/1 This function is called after successfully pollinating STHs

/[l to athird party. It is passed the STHs sent to the third

/1 party, which is the output of get_gossip_selection(), as well

/]l as the STHs received in the response.

def successful thirdparty subm ssion_cal |l back(STH] subnmitted sth |ist,
STH] new st hs)

foreach(sth in submitted_sth list) {
sth.numreports_to_thirdparty++

}

this.insert(new sths);

}

/1 Attenpt auditor of |ast resort submissions until it succeeds
def auditor_of |ast resort _callback(original _sth, error) {
if(lerror) {
del et e_now(ori gi nal _sth)
}
}

def consistency_proof_cal |l back(consi stency_proof, original _sth, error) {
if(lerror) {
i nsert (consi stency_proof. current_sth)
} else {
original _sth.proof failure_count++
}
}

11.4.2. SCT Feedback
The SCT class contains data pertaining specifically to an SCT itself.

cl ass SCT
{
ui nt 16 proof _failure_count
bool has_been _resolved to_sth
bool pr oof _out st andi ng
byte[] data

}

The SCT bundle will contain the trusted certificate chain the HITPS
client built (chaining to a trusted root certificate.) It also
contains the list of associated SCTs, the exact domain it is
applicable to, and netadata pertaining to how often it has been
reported to the third party.

Nor dberg, et al. Expires July 18, 2018 [Page 40]

Internet-Draft Gossiping in CT January 2018

cl ass SCTBundl e
{
X509[] certificate_chain
SCT[] sct_list
string donmain
uint32 numreports to thirdparty

def equal s(sct_bundl e) {

i f(sct_bundl e.domain != this.domain)
return fal se

i f(sct_bundle.certificate chain != this.certificate_chain)
return fal se

i f(sct_bundle.sct_list !'=this.sct_list)

return fal se

return true

}
def approx_equal s(sct_bundle) {
i f(sct_bundle.domain != this.donain)
return fal se
i f(sct_bundle.certificate_chain !'= this.certificate_chain)

return false

return true

}

def insert_scts(sct[] sct_list) {
this.sct _list.union(sct _|ist)
this.numreports to thirdparty = 0

}

def has_been_fully_resolved_to_sths() {
foreach(s in this.sct_list) {
i f(!s.has_been resolved to sth &% !s. proof outstandi ng)
return fal se

}

return true

}

def nmax_proof failures() {
uint mx =0
foreach(sct in this.sct list) {
i f(sct.proof_failure_count > max)
max = sct.proof _failure_count
}
return nmax
}
}

Nor dberg, et al. Expires July 18, 2018 [Page 41]

Internet-Draft Gossiping in CT January 2018

For each domain, we store a SCTDommi nEntry that hol ds the SCTBundl es
seen for that domain, as well as encapsulating some logic relating to
SCT Feedback for that particular domain. |In particular, this data
structure al so contains the | ogic that handl es domai ns not supporting
SCT Feedback. |Its behavior is:

1. Wien a user visits a domain, SCT Feedback is attenpted for it
If it fails, it will retry after a month (configurable). If it
succeeds, excellent. SCT Feedback data is still collected and
stored even if SCT Feedback fail ed.

2. After 3 nonth-long waits between failures, the domain will be
marked as failing long-term No SCT Feedback data will be stored
beyond neta-data, but SCT Feedback will still be attenpted after
nmont h-1ong waits

3. If at any point in time, SCT Feedback succeeds, all failure
counters are reset

4. 1If a domain succeeds, but then begins failing, it nmust fail nore
than 90% of the time (configurable) and then the process begins
at (2).

If a domain is visited infrequently (say, once every 7 nonths) then
it will be evicted fromthe cache and start all over again (according
to the suggestion values in the bel ow pseudocode).

/ I Suggest i ons:

/1 After concluding a donmain doesn’t support feedback, we try again

[l after WAIT_BETWEEN SCT_FEEDBACK ATTEMPTS anount of time to see if
/1 they added support

#def i ne WAI T_BETWEEN_SCT_FEEDBACK _ATTEMPTS 1 nonth

/1 1f we’ve waited M N_SCT_FEEDBACK_ATTEMPTS_BEFORE_OM TTI NG_STORAGE
/1 multiplied by WAI T_BETWEEN SCT_FEEDBACK ATTEMPTS anount of tinme, we

/1 still attenpt SCT Feedback, but no | onger bother storing any data
/1 until the domain supports SCT Feedback
#defi ne M N_SCT_FEEDBACK ATTEMPTS BEFORE_OM TTI NG_STORAGE 3

/1 If this percentage of SCT Feedback attenpts previously succeeded,
/1 we consider the domain as supporting feedback and is just having
/1 transient errors

#define M N_RATI O FOR_SCT_FEEDBACK TO BE WORKI NG .10

cl ass SCTDonmai nEntry

/[l This is the primary key of the object, the exact donmain nane it
/[l is valid for

Nor dberg, et al. Expires July 18, 2018 [Page 42]

Internet-Draft Gossiping in CT January 2018

string domai n

/[l This is the last time the donmain was contacted. For client

/1 operations it is updated whenever the client nakes any request
/1 (not just feedback) to the donmain. For server operations, it is
/1 updated whenever any client contacts the domain. Responsibility
/1 for updating lies OUTSIDE of the class

public datetime |ast_contact_for_domain

/1 This is the last time SCT Feedback was attenpted for the donmin.
/1 1t is updated whenever feedback is attenpted - responsibility for
/1 updating lies OUTSI DE of the class

/1 This is not used when this algorithmruns on servers

public datetime |ast_sct_ feedback_attenpt

/1 This is the nunber of tinmes we have waited an

/1 WAl T_BETWEEN SCT_FEEDBACK ATTEMPTS anount of tine, and still failed
/1l e.g., 10 nonths of failures

/1 This is not used when this algorithmruns on servers

private uintl6 num f eedback_| oop_fail ures

/1 This is whether or not SCT Feedback has fail ed enough tines that we
/1 should not bother storing data for it anynore. It is a snall

/1 function used for illustrative purposes.
/1 This is not used when this algorithmruns on servers
private bool sct_feedback_failing_longtermn()

{ num f eedback_| oop_failures >=
M N_SCT_FEEDBACK_ATTEMPTS_BEFORE_OM TTI NG_STORACE }

[l This is the nunber of SCT Feedback subni ssions attenpted.
/'l Responsibility for incrementing |lies OUTSIDE of the class
/1 (And watch for integer overfl ows)

/1 This is not used when this algorithmruns on servers
public uintl6 num subm ssi ons_att enpted

/1 This is the nunber of successful SCT Feedback submissions. This
/1 variable is updated by the class.

/1 This is not used when this algorithmruns on servers

private uintl6 num subni ssi ons_succeeded

/'l This contains all the bundles of SCT data we have observed for
/!l this domain
SCTBundl e[] observed_records

/1 This function can be called to determine if we should attenpt
/'l SCT Feedback for this domain.
def should _attenpt feedback() {

Nor dberg, et al. Expires July 18, 2018 [Page 43]

Internet-Draft Gossiping in CT January 2018

/1 Servers always perform feedback
i f(operator_is_server)
return true

/1 If we have not tried in a nonth, try again
if(now() - last_sct feedback attenpt >
WAI T_BETWEEN _SCT_FEEDBACK_ATTEMPTS)
return true

/1 If we have tried recently, and it seens to be working, go for it!
i f((num subni ssions_succeeded / num subni ssions_attenpted) >
M N_RATI O FOR_SCT_FEEDBACK_TO BE_WORKI NG
return true

/1 Gtherwi se don't try
return fal se

/1l For dients, this function is called after a successfu
/1 connection to an HTTPS server, with a single SCTBundl e
/'l constructed fromthat connection’s certificate chain and SCTs.
/1l For Servers, this is called after receiving SCT Feedback with
/1 all the bundles sent in the feedback
def insert(SCTBundl e[] bundles) {

/1 Do not store data for |ong-failing domains

i f(sct_feedback _failing_longterm()) {

return
}

foreach(b in bundles) {
i f(operator_is_server) {
i f(!passes_validity _checks(b))
return
}

bool have inserted = fal se
foreach(e in this.observed_records) {
i f(e.equal s(b))
return
el se if(e.approx_equal s(b)) {
have_inserted = true
e.insert_scts(b.sct _list)

}

f(!bhave_i nserted)
this. observed records.insert(b)

}
|

}
SCTSt or eManager . updat e_cache_per cent age()

Nor dberg, et al. Expires July 18, 2018 [Page 44]

Internet-Draft Gossiping in CT January 2018

}

/1 When it is tine to perform SCT Feedback, the HITPS client
/1 calls this function to get a selection of SCTBundles to send
/'l as feedback
def get gossip_selection() {
i f(len(observed_records) > MAX SCT_RECORDS TO GOSSI P) {
i ndexes = set ()
nmodul us = | en(observed_records)
whi | e(l en(i ndexes) < MAX_SCT_RECORDS TO GCSSI P) {
r = random nt () % nodul us
if(r not in indexes)
i ndexes.insert(r)
}

return_selection = []
foreach(i in indexes) {
return_sel ection.insert(this.observed_records[i])

}

return return_sel ection
el se
return this.observed records

def passes_validity_checks(SCTBundl e b) {
/1 This function perforns the validity checks specified in
/1 {{feedback-srvop}}

The SCTDomai nEntry is responsible for handling the outcome of a
submi ssion report for that domain using its menber function

/1 This function is called after providing SCT Feedback

/'l to a server. It is passed the feedback sent to the other party, which

/1 is the output of get_gossip_selection(), and al so the SCTBundl e

/1 representing the connection the data was sent on

/1 (When this code runs on the server, connectionBundle is NULL)

/1 If the Feedback was not sent successfully, error is True

def after _subnit to thirdparty(error, SCTBundl e[] subm ttedBundl es,
SCTBundl e connecti onBundl e)

{

/1l Server operation in this instance is exceedingly sinple
i f(operator_is_server) {
if(error)
return

Nor dberg, et al. Expires July 18, 2018 [Page 45]

Internet-Draft Gossiping in CT January 2018

foreach(bundl e in subm ttedBundl es)
bundl e. num reports_to_thirdparty++
return

}

/1 dient behavior is much nore conplicated
if(error) {
i f(sct_feedback _failing_longterm()) {
num f eedback_| oop_fail ures++

el se i f((num subm ssions_succeeded / num subni ssi ons_att enpt ed)
> M N_RATI O FOR_SCT_FEEDBACK_TO BE WORKI NG {
/1 Do nothing. num submi ssions_succeeded will not be increnented
/1 After enough of these failures, the ratio will fall beyond
/'l acceptabl e
} else {
/1l The domain has begun its three-nonth grace period. W will
/1 attenpt submi ssions once a nonth
num f eedback_| oop_fail ures++

}

return

/'l W succeeded, so reset all of our failure states
/'l Note, there is a race condition here if clear_old_data() is called
/'l while this callback is outstanding.
num f eedback_| oop_fail ures =0
i f (num_submni ssions_succeeded ! = U NT16_MAX)
num subm ssi ons_succeeded++

foreach(bundl e in subm ttedBundl es)
{
/1l Conpare Certificate Chains, if they do not match, it counts as a
/1 submi ssi on.
i f(!connectionBundl e. approx_equal s(bundl e))
bundl e. num reports_to_thirdparty++
el se {
/1 This check ensures that a SCT Bundle is not considered reported
/1 if it is submtted over a connection with the same SCTs. This
/'l satisfies the constraint in Paragraph 5 of {{feedback-clisrv}}
/| Consider three subm ssion scenari os:

/'l Subm tted SCTs Connecti on SCTs Consi dered Submitted
/Il A B A B No - no new i nfornmation
Il A A B Yes - Bis a new SCT
Il A B A No - no new i nfornation

i f(connectionBundle.sct _list is NOT a subset of bundle.sct |ist)
bundl e. num reports_to_thirdparty++

Nor dberg, et al. Expires July 18, 2018 [Page 46]

Internet-Draft Gossiping in CT January 2018

I nstances of the SCTDonmi nEntry class are stored as part of a |arger
class that manages the entire SCT Cache, storing themin a hashmap
keyed by dormain. This class also tracks the current size of the
cache, and will trigger cache eviction.

Nor dberg, et al. Expires July 18, 2018 [Page 47]

Internet-Draft Gossiping in CT January 2018

/] Suggesti ons:

#def i ne CACHE_PRESSURE_SAFE .50
#defi ne CACHE_PRESSURE_I MM NENT .70
#def i ne CACHE_PRESSURE_ALMOST_FULL .85
#def i ne CACHE_PRESSURE_FULL .95

#def i ne WAI T_BETWEEN | MM NENT_CACHE_EVI CTION 5 mi nut es

cl ass SCTSt or eManager

{
hashmap<String, SCTDomai nEntry> all _sct_entries
ui nt 32 current _cache_si ze
datetinme i mm nent _cache_pressure_check _perforned

float current_cache_percentage() {
return current_cache_size / MAX_CACHE Sl ZE
}

static def update_cache_percentage() {
/1 This function calculates the current size of the cache
/1 and updates current_cache_si ze
[* ... performcalculations ... */
current _cache_size = /* new cal cul ated val ue */

/1l Performlocking to prevent multiple of these functions being

/] called concurrently or unnecessarily

i f(current_cache_percentage() > CACHE PRESSURE FULL) {
cache_is_full ()

}

el se if(current_cache_percentage() > CACHE PRESSURE ALMOST FULL) {
cache_pressure_al nost _full ()
}

el se if(current_cache percentage() > CACHE PRESSURE | MM NENT) {
/1 Do not repeatedly performthe i mr nent cache pressure operation
if(now() - inmmnent_cache pressure_check performed >
WAI T_BETWEEN | MM NENT_CACHE_EVI CTI ON) {
cache_pressure_i s_i nm nent ()

}
}
}
}
The SCTStoreManager contains a function that will be called
periodically in the background, iterating through all SCTDomai nEntry
obj ects and perform ng maintenance tasks. It renoves data for

domai ns we have not contacted in a long time. This function is not

Nor dberg, et al. Expires July 18, 2018 [Page 48]

Internet-Draft Gossiping in CT January 2018

intended to clear data if the cache is getting full, separate
functions are used for that.

/'l Suggestions:
#define TIME_UNTIL_OLD SUBM TTED_SCTDATA ERASED 3 nont hs
#define TIME_UNTIL _O.D UNSUBM TTED SCTDATA ERASED 6 nont hs

def clear_old_data()
foreach(domai nEntry in all_sct_stores)

/'l Queue proof fetches
i f(proof _fetching_enabl ed) {
foreach(sctBundl e i n domai nEntry. observed_records) {
i f(!sctBundle.has_been_fully resolved to_sths()) {
foreach(s in bundle.sct list) {
i f(!'s.has_been resolved to sth & !s. proof outstanding) {
sct. proof outstanding = True
queue_i ncl usi on_proof (sct, inclusion_proof_call back)

/1 Do not store data for domains who are not supporting SCT
i f(!operator_is_server

&& donmi nEntry. sct _feedback failing_longtern())
{

/'l Note that reseting these variables every single tine is
/'l necessary to avoid a bug

al | _sct_stores[donmai nEntry].num subm ssi ons_att enpt ed =0

al | _sct_stores[donai nEntry].num subm ssi ons_succeeded =0
del ete all _sct_stores[domai nEntry]. observed_records

al | _sct_stores[donai nEntry].observed records = NULL

}

/1 This check renoves successfully submitted data for
/1 old domains we have not dealt with in a long tine
i f (domai nEntry. num submi ssi ons_succeeded > 0
&% now() - donmi nEntry.last_contact_ for_donain
> TI ME_UNTI L_OLD SUBM TTED_ SCTDATA ERASED)
{

all _sct_stores. renove(domai nEntry)

}

/1 This check renoves unsuccessfully subnitted data for
/1 old domains we have not dealt with in a very long tine

Nor dberg, et al. Expires July 18, 2018 [Page 49]

Internet-Draft Gossiping in CT January 2018

if(now() - domminEntry.last_contact_for_domnain
> TI ME_UNTI L_CLD UNSUBM TTED_SCTDATA ERASED)
{

al | _sct_stores.renove(donmai nEntry)

}

SCTSt or eManager . updat e_cache_per cent age()

}

I nclusi on Proof Fetching is handled fairly independently

/1 This function is a callback invoked after an inclusion proof

/'l has been retrieved. It can exist on the SCT class or independently,
/1l so long as it can nodify the SCT class’ nenbers

def inclusion_proof_call back(inclusion_proof, original_sct, error)

{

/1 Unlike the STH code, this counter nust be increnented on the
/1 callback as there is a race condition on using this counter in the
/'l cache_* functions.
original _sct.proof _attenpts++
ori gi nal _sct. proof _outstanding = Fal se
if(lerror) {
original _sct.has_been resolved to sth = True
insert _to sth _datastore(inclusion_proof.new sth)

} else {
original _sct.proof _failure_count ++
}
If the cache is getting full, these three nmenber functions of the

SCTSt or eManager class will be used.

A e P
/1 This function is called when the cache is not yet full, but is

/1l nearing it. It prioritizes deleting data that should be safe

/1l to delete (because it has been shared with the site or resolved
/1l to an STH)

def cache_pressure_is_immnent()

bundl esToDel ete = []
foreach(domai nEntry in all_sct _stores) {
foreach(sctBundl e i n domai nEntry. observed records) {

i f(proof _fetching_enabl ed) {
/1l First, queue proofs for anything not already queued.
i f(!sctBundle.has_been fully resolved to sths()) {
foreach(sct in bundle.sct list) {
i f(!sct.has_been resolved to _sth

Nor dberg, et al. Expires July 18, 2018 [Page 50]

Internet-Draft Gossiping in CT January 2018

&& !sct. proof outstanding) {
sct. proof _outstandi ng = True
queue_i ncl usi on_proof (sct, inclusion_proof_call back)
}
}
}

/1 Second, consider deleting entries that have been fully
/'l resolved
el se {

bundl esToDel et e. append(Struct(donmai nEntry, sctBundle))
}

}

/1 Third, consider deleting entries that have been successfully
/1 reported
i f(sctBundle.numreports to thirdparty > 0) {
bundl esToDel et e. append(Struct (donmai nEntry, sctBundle))
}
}
}

[l Third, delete the eligible entries at randomuntil the cache is
/1 at a safe |evel

ui nt recal cul at el ndex =0

#def i ne RECALCULATE_EVERY_N_OPERATI ONS 50

whi | e(bundl esToDel ete.l ength > 0 &&
current _cache_percentage() > CACHE PRESSURE SAFE) {
uint rndlndex = rand() % bundl esToDel ete. | ength
bundl esToDel et e[r ndl ndex] . domai nEntry. observed_records. renmove(
bundl esToDel et e[r ndl ndex] . sct Bundl e)
bundl esToDel et e. r enoveAt (r ndl ndex)

recal cul at el ndex++

i f(recal cul atel ndex % RECALCULATE EVERY_ N OPERATI ONS == 0) {
updat e_cache_per cent age()

}

}

/1 Finally, tell the proof fetching engine to go faster

i f(proof fetching_enabled) {
/1 This function would speed up proof fetching until an
[l arbitrary time has passed. Perhaps until it has fetched
/1 proofs for the nunber of items currently in its queue? O
/1 a percentage of thenf
proof fetch faster please()

Nor dberg, et al. Expires July 18, 2018 [Page 51]

Internet-Draft Gossiping in CT January 2018

}

11

updat e_cache_percent age();

/1 This function is called when the cache is alnost full. It wll
/] evict entries at random while attenpting to save entries that
/'l appear to have proof fetching failures

def cache_pressure_al nost _full ()

{

ui nt recal cul at el ndex =0
ui nt savedRecords =0
#def i ne RECALCULATE_EVERY_ N _OPERATI ONS 5

0

while(all _sct_stores.length > savedRecords &&

current _cache_percentage() > CACHE PRESSURE_SAFE) {
uint rndlndexl = rand() %all _sct_stores.length
uint rndlndex2 = rand() %

al | _sct_stores[rndl ndex1].observed records. | ength

i f(proof _fetching_enabl ed) {
i f(all_sct_stores[rndl ndexl].observed_records]
rndl ndex2] . max_proof failures() >
M N_PROCF_FAI LURES_CONSI DERED_SUSPI Cl QUS) {
savedRecor ds++

conti nue
}
}
/1 |f proof fetching is not enabl ed we need sonme other |ogic
el se {
i f(sctBundle.numreports to thirdparty == 0) {
savedRecor ds++
conti nue
}
}
al | _sct_stores[rndl ndex1] . observed_records. renoveAt (rndl ndex?2)
i f(all_sct_stores[rndl ndexl].observed records.length == 0) {
al | _sct_stores. renoveAt (rndl ndexl)
}

recal cul at el ndex++

i f(recal cul atel ndex % RECALCULATE_EVERY_N _OPERATI ONS == 0) {
updat e_cache_per cent age()

}

updat e_cache_percent age();

Nor dberg, et al. Expires July 18, 2018 [Page 52]

Internet-Draft Gossiping in CT January 2018

12.

13.

14.

R e i
[/l This function is called when the cache is full, and will evict
/'l cache entries at random
def cache_is_full()
{
ui nt recal cul at el ndex =0
#def i ne RECALCULATE_EVERY_N OPERATI ONS 50

while(all _sct_stores.length > 0 &&
current _cache_percentage() > CACHE PRESSURE SAFE) {
uint rndindexl = rand() % all_sct_stores.length
uint rndlndex2 = rand() %
al | _sct_stores[rndl ndex1] . observed_records. | ength

al | _sct_stores[rndl ndex1] . observed _records.renoveAt (rndl ndex2)

i f(all _sct_stores[rndlndexl].observed records.length == 0) {
al | _sct_stores. renoveAt (rndl ndexl)
}

recal cul at el ndex++

i f(recal cul atel ndex % RECALCULATE EVERY N OPERATI ONS == 0) {
updat e_cache_per cent age()

}

}

updat e_cache_percent age();

| ANA consi derations
There are no | ANA consi derati ons.

Contributors
The authors would like to thank the follow ng contributors for
val uabl e suggestions: Al Cutter, Andrew Ayer, Ben Laurie, Benjamn
Kaduk, G aham Edgeconbe, Josef QGustafsson, Karen Seo, Magnhus Ahltorp
St even Kent, Yan Zhu

Changelog

Nor dberg, et al. Expires July 18, 2018 [Page 53]

Internet-Draft Gossiping in CT January 2018

14. 1.

14. 2.

14. 3.

14. 5.

Changes between ietf-04 and ietf-05
STH and SCT data formats changed to support CT vl and v2.
Address ED revi ew conments.
Changes between ietf-03 and ietf-04
No changes.
Changes between ietf-02 and ietf-03
TBD s resol ved.
Ref erences added.
Pseduocode changed to work for both clients and servers.
Changes between ietf-01 and ietf-02
Requiring full certificate chain in SCT Feedback

Clarifications on what clients store for and send in SCT Feedback
added.

SCT Feedback server operation updated to protect agai nst DoS
attacks on servers

Pre- Loaded vs Locally Added Anchors expl ai ned.

Base for well-known URL’s changed.

Renmove all mentions of nonitors - gossip deals with auditors.

New sections added: Trusted Auditor protocol, attacks by actively
mal i ci ous 1 og, the Dual - CA conpronise attack, policy
reconmendat i ons,

Changes between ietf-00 and ietf-01

| nprove | anguage and readability based on feedback from Stephen
Kent .

STH Pol I'i nati on Proof Fetching defined and indicated as optional
3- Met hod Ecosystem secti on added.

Cases with Logs ceasing operation handl ed.

Nor dberg, et al. Expires July 18, 2018 [Page 54]

Internet-Draft Gossiping in CT January 2018

14.

14.

15.

15.

(o]

o

1.

Text on tracking via STH Interaction added.
Section with sone early reconmendations for m xi ng added.

Section detailing blocking connections, frustrating it, and the
i mplications added.

Changes between -01 and -02
STH Pol I'i nati on defi ned.
Trusted Auditor Rel ationship defined.
Overvi ew section rewitten
Data fl ow picture added
Section on privacy considerati ons expanded.
Changes between -00 and -01

Add the SCT feedback nechanism Cients send SCTs to originating
web server which shares themwi th auditors.

Stop assuming that clients see STHs.

Don't use HTTP headers but instead .well-known URL's - avoid that
battl e.

Stop referring to trans-gossip and trans-gossip-transport-https -
too conpli cated

Renove all protocols but HTTPS in order to sinplify - let’s cone
back and add nore |ater.

Add nore reasoni ng about privacy.
Do specify data formats.
Ref er ences

Nor mat i ve Ref erences

[RFC- 6962- Bl S- 27]

Laurie, B., Langley, A, Kasper, E., Messeri, E., and R
Stradling, "Certificate Transparency", October 2017
<https://datatracker.ietf.org/doc/draft-ietf-trans-
rfc6962-bis/>.

Nor dberg, et al. Expires July 18, 2018 [Page 55]

Internet-Draft Gossiping in CT January 2018

15.

[RFC6962] Laurie, B., Langley, A, and E. Kasper, "Certificate
Transparency", RFC 6962, DA 10.17487/ RFC6962, June 2013,
<https://www. rfc-editor.org/info/rfc6962>.

[RFC7159] Bray, T., Ed., "The JavaScript Ooject Notation (JSON) Data
I nterchange Format", RFC 7159, DA 10.17487/ RFC7159, March
2014, <https://ww.rfc-editor.org/info/rfc7159>.

[RFC7540] Belshe, M, Peon, R, and M Thonmson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
DO 10.17487/ RFC7540, May 2015, <https://ww.rfc-
editor.org/infolrfc7540>.

2. I nformati ve References

[doubl e- keyi ng]
Perry, M, Cark, E., and S. Murdoch, "Cross-Origin
Identifier Unlinkability", My 2015,
<https://ww.torproject.org/projects/torbrowser/
design/#identifier-linkability>.

[draft-ct-over-dns]
Laurie, B., Phaneuf, P., and A Eijdenberg, "Certificate
Transparency over DNS', February 2016,
<https://github. coni googl e/ certificate-transparency-
rfcs/ bl ob/ master/ dns/draft-ct-over-dns. nd>.

[draft-ietf-trans-threat-anal ysis-12]
Kent, S., "Attack and Threat Mddel for Certificate
Transparency", October 2017,
<https://datatracker.ietf.org/doc/draft-ietf-trans-threat-
anal ysi s/ >.

[dual - ca- conpr oni se- att ack]
Gllnor, D., "can CT defend agai nst dual CA conpromn se?",
n.d., <https://ww.ietf.org/ mil -
archi ve/ web/ trans/ current/ nsg01984. ht nl >.

[gossi p- m xi ng]
Ritter, T., "ABit on Certificate Transparency Gossip",
June 2016, <https://ritter.vg/blog-
a _bit _on_certificate_transparency_gossip. htnl >,

[trickle] Serjantov, A, Dingledine, R, and . Paul Syverson, "From
a Trickle to a Flood: Active Attacks on Several M x
Types", Cctober 2002,
<http://freehaven. net/ doc/ bat chi ng-taxonony/t axonony. pdf >.

Nor dberg, et al. Expires July 18, 2018 [Page 56]

Internet-Draft

Aut hors’ Addr esses

Li nus Nordberg
NCRDUnet

Email : |inus@ordu. net

Dani el Kahn G || nor
ACLU

Emai | : dkg@i ft hhor seman. net

Tom R tter

Email: tom@itter.vg

Nor dberg, et al. Expires July 18, 2018

Gossiping in CT

January 2018

[Page 57]

