
TRANS L. Xia, Ed.
Internet-Draft D. Zhang
Intended status: Standards Track Huawei
Expires: September 7, 2017 D. Gillmor
 CMRG
 B. Sarikaya
 Huawei USA
 March 6, 2017

 CT for Binary Codes
 draft-zhang-trans-ct-binary-codes-04

Abstract

 This document proposes a solution extending the Certificate
 Transparency protocol [I-D.ietf-trans-rfc6962-bis] for transparently
 logging the software binary codes (BC)or its digest with their
 signature, to enable anyone to monitor and audit the software
 provider activity and notice the distribution of suspect software as
 well as to audit the BC logs themselves. The solution is called
 "Binary Transparency" in this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 7, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Xia, et al. Expires September 7, 2017 [Page 1]

Internet-Draft CT for Binary Codes March 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. Cryptographic Components of Binary Transparency 3
 3. Motivation Scenarios . 3
 4. Log Format and Operation Extensions 4
 4.1. Log Entries . 5
 4.2. TransItem Structure 5
 4.3. Merkle Tree Leaves 6
 4.4. Structure of the Signed Binary Timestamp 7
 5. Log Client Messages . 9
 5.1. Add Binary Code and Certificate Chain to Log 9
 5.2. Retrieve Entries and STH from Log 9
 5.3. Summary . 10
 6. Acknowledgements . 11
 7. IANA Considerations . 11
 8. Security Considerations 11
 9. References . 11
 9.1. Normative References 11
 9.2. Informative References 11
 Authors’ Addresses . 11

1. Introduction

 Digital signatures have been widely used in software distributions to
 prove the authenticity of software. Through verifying signature, an
 end user can ensure that the gotten software is developed by a legal
 provider (e.g., Microsoft) and is not tampered during the
 distribution. If an end user does not have a direct trust
 relationship with the software provider, an certificate chain to a
 trust anchor that the user trusts should be provided. That is why
 many signature mechanisms for software distribution are based on
 public key infrastructure (PKI). However, signature mechanisms
 cannot prevent software provider from distributing software either
 with customized backdoors/drawbacks, or they do not own the right to
 distribute. Besides, it may be hard for a user to detect the
 differences between the software it got and the software provided to
 other users..

Xia, et al. Expires September 7, 2017 [Page 2]

Internet-Draft CT for Binary Codes March 2017

 This draft describes the Binary Transparency mechanism which extends
 the Certificate Transparency (CT) protocol specified in [I-D.ietf-
 trans-rfc6962-bis] to support logging binary codes. A software
 provider can submit its software Binary Codes (BC) (or digests of
 codes in order to e.g., save space or avoid violating license
 restrictions) with associated signature to one or more CT logs.
 Therefore, a user can easily detect the existence of software BC with
 customized backdoors, by comparing with the according CT log entries.
 The software provider can monitor the logs all the time to detect
 whether there are tempered copies of its software in the log, or its
 software is submitted into the log by other software providers
 without authority. In summary, the end users should be informed when
 all the above situations happen, how to achieve it is beyond the
 scope of this document.

 With this mechanism, when a section of binary codes and associated
 signature has been submitted to a log, if the provided certificate
 chain ends with a trust anchor that is accepted by the log, the log
 will accept it and return the Signed Binary Timestamp (SBT) to the
 software provider as the evidence of its acceptance provided to the
 users later. Thus, the users should only trust the software
 accompanied by SBT, even if it is associated with a proper signature.
 This approach then forces the software providers to submit their
 binary codes to logs before distributing them.

 Binary Transparency is an extension to Certificate Transparency,
 which comply with most of the specification in [I-D.ietf-trans-
 rfc6962-bis]. This document only focuses on the extension part of
 Binary Transparency mechanisms.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Cryptographic Components of Binary Transparency

 When applying CT for binary codes, a log is a single, ever-growing,
 append-only binary Merkle Hash Tree of software BC, with associated
 signature and certificate chain, complying with the Merkle Hash Tree
 specification in Section 2 of [I-D.ietf-trans-rfc6962-bis].

3. Motivation Scenarios

 The documents disclosed by Edward Snowden have raised the concerns of
 people on the vulnerability of the network devices to the passive
 attacks performed by NSA or other organizations. Meanwhile, the

Xia, et al. Expires September 7, 2017 [Page 3]

Internet-Draft CT for Binary Codes March 2017

 network device vendors are also concerned in their foreign markets
 because their products are suspected to have customized backdoors for
 adversaries to perform attacks. It is desired for vendors to publish
 the design details of the products and provide sufficient facilities
 for clients to check whether certain hardware or software of a device
 has been improperly modified. There are various techniques that
 could be used for this purpose. One way is to force a vendor to
 submit the binary codes of its firmwares to the public CT logs.
 Therefore, anyone can verify the correctness of each log entry and
 monitor when new software BCs are added to it. Specially, customers
 can easily detect whether the vendor is releasing the same firmware
 to everyone. In addition, under the assistance of the Binary
 Transparency, customer will have more confidence on the quality of
 firmware. Since the same codes are used by different customers all
 over the world, the drawbacks in firmware will be easier to be
 detected.

 There are similar requirements to detect the customized backdoors or
 misdistribution in the software market. Besides the software itself,
 a user may also concern whether there are customized backdoors in the
 patches. The Binary Transparency can help address such concerns in
 the same way. In addition, this mechanism can also show some
 advantages in the scenarios where the signer is not aware that their
 keys have been compromised. If their update system is required to
 use a CT log, they have the chance to find out about their
 compromise.

4. Log Format and Operation Extensions

 The software provider can submit the software and the associated
 signature to any preferred CT logs before distributing it. In some
 cases, the software provider may select only to submit the signed
 digest of the software because of the license restriction or the
 space restriction of log entry. In order to verify the attribution
 of each log entry, a log SHALL publish a set of certificates that it
 trusts to benefit an software provider to construct an certificate
 chain connecting a trust anchor and the certificate containing the
 key used to sign the software.

 A log needs to verify the certificate chain provided by the software
 provider, and MUST refuse to accept the signed software/digest if the
 chain cannot lead back to a trusted anchor. If the software/digest
 and the signature are accepted by a log and an SBT is issued, the log
 MUST store the entire chain and MUST present this chain for auditing
 upon request.

 Complying with the log format definition in [I-D.ietf-trans-
 rfc6962-bis], some definitions remain the same: "Log ID", "Merkle

Xia, et al. Expires September 7, 2017 [Page 4]

Internet-Draft CT for Binary Codes March 2017

 Tree Head", "Signed Tree Head", "Merkle Consistency Proofs", "Merkle
 Inclusion Proofs", "Shutting down a log"... The other required log
 format extension for Binary Transparency are specified in the
 following sections:

4.1. Log Entries

 Each software entry in a log MUST include a "BinaryChainEntryV2"
 structure as below:

 enum { binary(TBD1), binary_digest(TBD2) } BIN_Signed_Type;

 opaque BINARY<1..2^24-1>;
 opaque ASN.1Cert<1..2^24-1>;
 struct {
 BIN_Signed_Type bin_signed_type;
 BINARY signed_software;
 ASN.1Cert certificate_chain<1..2^24-1>;
 } BinaryChainEntryV2;

 "bin_signed_type" indicates whether the signature is generated based
 on the software or its digest.

 "signed_software" consists a ContentInfo structure specified in
 CMS[RFC5652]. Specifically, this field includes the binary codes/
 digest, the signature, and any other additional information used to
 describe the software and the issuer publishing the software. The
 software SHOULD be encapsulated and signed following the ways
 specified in CMS[RFC5652] . If signed_type is TBD1, the software
 binary code is encapsulated in this field. If signed_type is TBD2,
 the SHA-256 digest of software binary code is encapsulated in this
 field.

 "certificate_chain" includes the certificates constructing a chain
 from the certificate of software provider to a certificate trusted by
 the log. The first certificate MUST be the certificate of software
 provider. Each following certificate MUST directly certify the one
 preceding it. The final certificate MUST either be, or be issued by,
 a root certificate accepted by the log. If the certificate chain is
 provided in the "signed_software" field structure, this field is set
 to empty.

4.2. TransItem Structure

 The extended "TransItem" structure is defined as below:

Xia, et al. Expires September 7, 2017 [Page 5]

Internet-Draft CT for Binary Codes March 2017

 enum {
 reserved(0),
 x509_entry_v2(1), precert_entry_v2(2),
 x509_sct_v2(3), precert_sct_v2(4),
 signed_tree_head_v2(5), consistency_proof_v2(6),
 inclusion_proof_v2(7), x509_sct_with_proof_v2(8),
 precert_sct_with_proof_v2(9), BIN_entry_v2(TBD3),
 BIN_sbt_v2(TBD4), BIN_sbt_with_proof_v2(TBD5),
 (65535)
 } VersionedTransType;

 struct {
 VersionedTransType versioned_type;
 select (versioned_type) {
 case x509_entry_v2: TimestampedCertificateEntryDataV2;
 case precert_entry_v2: TimestampedCertificateEntryDataV2;
 case x509_sct_v2: SignedCertificateTimestampDataV2;
 case precert_sct_v2: SignedCertificateTimestampDataV2;
 case signed_tree_head_v2: SignedTreeHeadDataV2;
 case consistency_proof_v2: ConsistencyProofDataV2;
 case inclusion_proof_v2: InclusionProofDataV2;
 case x509_sct_with_proof_v2: SCTWithProofDataV2;
 case precert_sct_with_proof_v2: SCTWithProofDataV2;
 case BIN_entry_v2: TimestampedBinaryEntryDataV2;
 case BIN_sbt_v2: SignedBinaryTimestampDataV2;
 case BIN_sbt_with_proof_v2: SBTWithProofDataV2;
 } data;
 } TransItem;

 "versioned_type " is the type of the encapsulated data structure of
 TransItem. Three new values are added to it -- BIN_entry_v2(TBD3),
 BIN_sbt_v2(TBD4), BIN_sbt_with_proof_v2(TBD5).

 For "data" structure, a new type structure of
 TimestampedBinaryEntryDataV2 is added.

4.3. Merkle Tree Leaves

 Each Merkle Tree leaf is defined as the hash value of a "TransItem"
 structure of according type. Here, a new type ("BIN_entry_v2") of
 "TransItem" structure is created, which encapsulates a new
 "TimestampedBinaryEntryDataV2" structure defined as below:

Xia, et al. Expires September 7, 2017 [Page 6]

Internet-Draft CT for Binary Codes March 2017

 opaque TBSCertificate<1..2^24-1>;
 struct {
 uint64 timestamp;
 opaque issuer_key_hash<32..2^8-1>;
 BIN_Signed_Type bin_signed_type;
 TBSSignedSoftware tbs_signed_software;
 SbtExtension sbt_extensions<0..2^16-1>;
 } TimestampedBinaryEntryDataV2;

 "timestamp" is the NTP Time [RFC5905] at which the software binary
 code was accepted by the log, measured in milliseconds since the
 epoch (January 1, 1970, 00:00 UTC), ignoring leap seconds. Note that
 the leaves of a log’s Merkle Tree are not required to be in strict
 chronological order.

 "issuer_key_hash" is the HASH of the public key of the software
 provider that signed the software, calculated over the DER encoding
 of the key represented as SubjectPublicKeyInfo [RFC5280]. This is
 needed to bind the software provider to the software binary code,
 making it impossible for the corresponding SBT to be valid for any
 other software whose TBSSignedSoftware matches "tbs_signed_software".
 The length of the "issuer_key_hash" MUST match HASH_SIZE.

 "bin_signed_type" indicates whether the signature is generated based
 on the software or its digest.

 "tbs_signed_software" is the DER encoded TBSSignedSoftware from the
 "signed_software" in the case of a "BinaryChainEntryV2".

4.4. Structure of the Signed Binary Timestamp

 An SBT is a "TransItem" structure of type "bin_sbt_v2", which
 encapsulates a "SignedBinaryTimestampDataV2" structure:

Xia, et al. Expires September 7, 2017 [Page 7]

Internet-Draft CT for Binary Codes March 2017

 enum {
 reserved(65535)
 } SbtExtensionType;

 struct {
 SbtExtensionType sbt_extension_type;
 opaque sbt_extension_data<0..2^16-1>;
 } SbtExtension;

 struct {
 LogID log_id;
 uint64 timestamp;
 SbtExtension sbt_extensions<0..2^16-1>;
 digitally-signed struct {
 TransItem timestamped_entry;
 } signature;
 } SignedBinaryTimestampDataV2;

 "log_id" is this log’s unique ID, encoded in an opaque vector.

 "timestamp" is equal to the timestamp from the
 "TimestampedBinaryEntryDataV2" structure encapsulated in the
 "timestamped_entry".

 "sbt_extension_type" identifies a single extension from the IANA
 registry in Section 6. At the time of writing, no extensions are
 specified.

 The interpretation of the "sbt_extension_data" field is determined
 solely by the value of the "sbt_extension_type" field. Each document
 that registers a new "sbt_extension_type" must describe how to
 interpret the corresponding "sbt_extension_data".

 "sbt_extensions" is a vector of 0 or more SBT extensions. This
 vector MUST NOT include more than one extension with the same
 "sbt_extension_type". The extensions in the vector MUST be ordered
 by the value of the "sbt_extension_type" field, smallest value first.
 If an implementation sees an extension that it does not understand,
 it SHOULD ignore that extension. Furthermore, an implementation MAY
 choose to ignore any extension(s) that it does understand.

 The encoding of the digitally-signed element is defined in [RFC5246].

 "timestamped_entry" is a "TransItem" structure that MUST be of type
 "BIN_entry_v2".

Xia, et al. Expires September 7, 2017 [Page 8]

Internet-Draft CT for Binary Codes March 2017

5. Log Client Messages

 In Section 5 of [I-D.ietf-trans-rfc6962-bis], a set of messages is
 defined for clients to query and verify the correctness of the log
 entries they are interested in. In this document, a new message is
 defined and an existing message is extended for CT to support Binary
 Transparency.

5.1. Add Binary Code and Certificate Chain to Log

 POST https://<log server>/ct/v1/add-Binary-chain

 Inputs:
 bin_signed_type: indicates whether the input parameter "software"
 is constructed by the binary code or its digest.
 software: the binary code (or digest), the signature, and the
 information used to describe the software and the software
 provider publishing the software, which are encapsulated
 following the way specified in CMS[RFC5652] . The submitter
 desires a SBT for this element.
 chain: An array of base64-encoded certificates. The first element is
 the certificate used to sign the binary code (or digest); the
 second certifies the first and so on to the last, which either is,
 or is certified by, an accepted trust anchor.If the certificate
 chain information has been included in the "software" field, this
 field could be empty.

 Outputs:
 sbt: A base64 encoded "TransItem" of type "BIN_sbt_v2", signed by this
 log, that corresponds to the submitted software.

 Error codes:
 Be identical with the according part in Section 5.1 (Add Chain to Log) of
 [I-D.ietf-trans-rfc6962-bis].

5.2. Retrieve Entries and STH from Log

Xia, et al. Expires September 7, 2017 [Page 9]

Internet-Draft CT for Binary Codes March 2017

 GET https://<log server>/ct/v2/get-entries
 Inputs:
 start: 0-based index of first entry to retrieve, in decimal.
 end: 0-based index of last entry to retrieve, in decimal.
 Outputs:
 entries: An array of objects, each consisting of
 leaf_input: The base64 encoded "TransItem" structure of type
 "x509_entry_v2" or "precert_entry_v2" or "BIN_entry_v2"
 (see Section 4.3).
 log_entry: The base64 encoded log entry (see Section 4.1). In the
 case of an "x509_entry_v2" entry, this is the whole
 "X509ChainEntry"; and in the case of a "precert_entry_v2",
 this is the whole "PrecertChainEntryV2"; and in the case of a
 "BIN_entry_v2", this is the whole "BinaryChainEntryV2".
 sct: The base64 encoded "TransItem" of type "x509_sct_v2" or "precert_sct
_v2"
 or "BIN_sbt_v2"corresponding to this log entry.
 sth: A base64 encoded "TransItem" of type "signed_tree_head_v2", signed
 by this log.

 More details are identical with Section 5.7 of [I-D.ietf-trans-
 rfc6962-bis].

5.3. Summary

 In summary, the above extensions of Binary Transparency enable the
 software providers, the end users, and anyone to monitor and audit
 the CT logs to mitigate the possible attacks induced by tampered
 software, or software misdistribution.

 This section gives a brief introduction to all the other aspects of
 Binary Transparency mechanisms for the reason of completeness, since
 they comply with the basic CT protocol specification. For more
 details please refer to the corresponding sections of [I-D.ietf-
 trans-rfc6962-bis].

 Software providers act the same as TLS servers in CT protocol. They
 present one or more SBTs from one or more logs to each end user while
 distributing the software, where each SBT corresponds to the
 software. Software providers SHOULD also present corresponding
 inclusion proofs and STHs. In which way the software providers
 present this information is beyond the scope of this document.

 The end users of software acts the same as Clients of logs described
 in CT protocol. They can perform various different functions, such
 as: get log metadata, exchange STHs they see, receive and validate
 SBTs, Validate inclusion proofs.

Xia, et al. Expires September 7, 2017 [Page 10]

Internet-Draft CT for Binary Codes March 2017

 Binary Transparency also provides monitoring and auditing functions
 with the same algorithms defined for CT protocol.

 Binary Transparency supports the same algorithm agility feature for
 signature algorithm and hash algorithm as CT protocol.

6. Acknowledgements

7. IANA Considerations

 To be added.

8. Security Considerations

 To be added.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <http://www.rfc-editor.org/info/rfc5652>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

9.2. Informative References

 [I-D.ietf-trans-rfc6962-bis]
 Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency Version 2.0", draft-
 ietf-trans-rfc6962-bis-24 (work in progress), December
 2016.

Authors’ Addresses

 Liang Xia (editor)
 Huawei

 Email: frank.xialiang@huawei.com

Xia, et al. Expires September 7, 2017 [Page 11]

Internet-Draft CT for Binary Codes March 2017

 Dacheng Zhang
 Huawei

 Email: dacheng.zhang@huawei.com

 Daniel Kahn Gillmor
 CMRG

 Email: dkg@fifthhorseman.net

 Behcet Sarikaya
 Huawei USA
 5340 Legacy Dr. Building 3
 Plano, TX 75024

 Email: sarikaya@ieee.org

Xia, et al. Expires September 7, 2017 [Page 12]

