TRANS L. Xia, Ed.

I nternet-Draft D. Zhang
I ntended status: Standards Track Huawei
Expi res: Septenber 7, 2017 D. GIInor
CVRG

B. Sarikaya

Huawei USA

March 6, 2017

CT for Binary Codes
draft-zhang-trans-ct-binary-codes- 04

Abstract

Thi s docunent proposes a solution extending the Certificate
Transparency protocol [I-D.ietf-trans-rfc6962-bis] for transparently
| oggi ng the software binary codes (BCor its digest with their
signature, to enable anyone to nonitor and audit the software
provider activity and notice the distribution of suspect software as
well as to audit the BC | ogs thenselves. The solution is called

"Bi nary Transparency" in this docunent.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on Septenber 7, 2017

Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega

Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of

Xia, et al. Expi res Septenber 7, 2017 [Page 1]

Internet-Draft CT for Binary Codes March 2017

publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . 2
1.1. Requirenents Language . . 3
2. Cryptographi c Conponents of Brnary Transparency . 3
3. Mdtivation Scenarios . 3
4. Log Format and Operation Exten5|ons . 4
4.1. Log Entries . . 5
4. 2. Translteantructure . 5
4.3. Merkle Tree Leaves . 6
4.4, Structure of the Signed Brnary Trnestanp 7
5. Log dient Messages . . 9
5.1. Add Binary Code and Cbrtlflcate Chaln to Log 9
5.2. Retrieve Entries and STH from Log . - Ce 9
53 Summary 10
6. Acknow edgenents 11
7. | ANA Considerations 1
8. Security Considerations 11
9. References . . e v
9.1. Normative References Pt I
9.2. Informative References 11
Authors’ Addresses 12
1. Introduction

Digital signatures have been widely used in software distributions to
prove the authenticity of software. Through verifying signature, an
end user can ensure that the gotten software is devel oped by a | ega
provider (e.g., Mcrosoft) and is not tanpered during the
distribution. |If an end user does not have a direct trust
relationship with the software provider, an certificate chain to a
trust anchor that the user trusts should be provided. That is why
many signature nechani sns for software distribution are based on
public key infrastructure (PKlI). However, signature nechani sns
cannot prevent software provider fromdistributing software either

wi th custom zed backdoors/drawbacks, or they do not own the right to
distribute. Besides, it may be hard for a user to detect the

di fferences between the software it got and the software provided to
ot her users.

Xia, et al. Expi res Septenber 7, 2017 [Page 2]

Internet-Draft CT for Binary Codes March 2017

This draft describes the Binary Transparency nechani sm whi ch extends
the Certificate Transparency (CT) protocol specified in [I-D.ietf-
trans-rfc6962-bis] to support |ogging binary codes. A software

provi der can subnit its software Binary Codes (BC) (or digests of
codes in order to e.g., save space or avoid violating |license
restrictions) with associated signhature to one or nore CT |o0gs.
Therefore, a user can easily detect the existence of software BC with
cust om zed backdoors, by conparing with the according CT log entries.
The software provider can nonitor the logs all the tine to detect
whet her there are tenpered copies of its software in the log, or its
software is submtted into the | og by other software providers

wi thout authority. |In summary, the end users should be informed when
all the above situations happen, how to achieve it is beyond the
scope of this docunent.

Wth this nmechanism when a section of binary codes and associ at ed
signature has been subnmitted to a log, if the provided certificate
chain ends with a trust anchor that is accepted by the log, the log
will accept it and return the Signed Binary Tinmestanp (SBT) to the
software provider as the evidence of its acceptance provided to the
users later. Thus, the users should only trust the software
acconpani ed by SBT, even if it is associated with a proper signature.
This approach then forces the software providers to subnmit their

bi nary codes to | ogs before distributing them

Bi nary Transparency is an extension to Certificate Transparency,
whi ch conply with nost of the specification in [I-D.ietf-trans-
rfc6962-bis]. This docunent only focuses on the extension part of
Bi nary Transparency nechani sns.

1.1. Requirenents Language
The key words "MJST", "MJST NOT', "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

2. Cryptographic Conponents of Binary Transparency
When applying CT for binary codes, a log is a single, ever-grow ng,
append-only binary Merkle Hash Tree of software BC, with associated
signature and certificate chain, conplying with the Merkle Hash Tree
specification in Section 2 of [I-D.ietf-trans-rfc6962-bis].

3. Mdtivation Scenarios
The docunents di scl osed by Edward Snowden have rai sed the concerns of

people on the vulnerability of the network devices to the passive
attacks perforned by NSA or other organizations. Meanwhile, the

Xia, et al. Expi res Septenber 7, 2017 [Page 3]

Internet-Draft CT for Binary Codes March 2017

net wor k devi ce vendors are also concerned in their foreign nmarkets
because their products are suspected to have custoni zed backdoors for
adversaries to performattacks. It is desired for vendors to publish
the design details of the products and provide sufficient facilities
for clients to check whether certain hardware or software of a device
has been inproperly nodified. There are various techniques that
could be used for this purpose. One way is to force a vendor to
submit the binary codes of its firmvares to the public CT | ogs.

Theref ore, anyone can verify the correctness of each log entry and
nmoni t or when new software BCs are added to it. Specially, custoners
can easily detect whether the vendor is releasing the sane firmare
to everyone. In addition, under the assistance of the Binary
Transparency, customer will have nore confidence on the quality of
firmvare. Since the same codes are used by different custonmers al
over the world, the drawbacks in firmvare will be easier to be

det ect ed.

There are similar requirenments to detect the custom zed backdoors or
nm sdistribution in the software market. Besides the software itself,
a user may al so concern whether there are custom zed backdoors in the
patches. The Binary Transparency can hel p address such concerns in

the sane way. |n addition, this nechanismcan al so show sone
advantages in the scenarios where the signer is not aware that their
keys have been conpromi sed. |If their update systemis required to

use a CT log, they have the chance to find out about their
conprom se

4. Log Format and Operation Extensions

The software provider can subnit the software and the associated
signature to any preferred CT logs before distributing it. |In sone
cases, the software provider may select only to subnmit the signed

di gest of the software because of the license restriction or the
space restriction of log entry. In order to verify the attribution
of each log entry, a log SHALL publish a set of certificates that it
trusts to benefit an software provider to construct an certificate
chai n connecting a trust anchor and the certificate containing the
key used to sign the software.

A log needs to verify the certificate chain provided by the software
provi der, and MJST refuse to accept the signed software/digest if the
chain cannot |ead back to a trusted anchor. |If the software/di gest
and the signature are accepted by a log and an SBT is issued, the |og
MUST store the entire chain and MJUST present this chain for auditing
upon request.

Conplying with the log format definition in [I-D.ietf-trans-
rfc6962-bis], sone definitions remain the sane: "Log I D', "Merkle

Xia, et al. Expi res Septenber 7, 2017 [Page 4]

Internet-Draft CT for Binary Codes March 2017

Tree Head", "Signed Tree Head", "Merkle Consistency Proofs", "Merkle
I ncl usi on Proofs", "Shutting down a log"... The other required | og
format extension for Binary Transparency are specified in the
foll owi ng secti ons:

4.1. Log Entries

Each software entry in a |l og MJIST include a "BinaryChai nEnt ryV2"
structure as bel ow

enum { binary(TBDl), binary_digest(TBD2) } BIN_Signed_Type

opaque BI NARY<1. . 2"24-1>
opaque ASN. 1Cert<1..2724-1>
struct {
Bl N_Si gned_Type bin_signed_type;
Bl NARY si ghed_sof t war e;
ASN. 1Cert certificate _chain<l..2"24-1>
} Bi naryChai nEntryVv2

"bi n_signed_type" indicates whether the signature is generated based
on the software or its digest.

"signed_software" consists a Contentlnfo structure specified in
CMS[RFC5652] . Specifically, this field includes the binary codes/
di gest, the signature, and any other additional information used to
describe the software and the issuer publishing the software. The
software SHOULD be encapsul ated and signed foll owi ng the ways
specified in CM5[RFC5652] . If signed type is TBDl1, the software
binary code is encapsulated in this field. |If signed_type is TBD2,
t he SHA- 256 di gest of software binary code is encapsulated in this
field.

"certificate_chain" includes the certificates constructing a chain
fromthe certificate of software provider to a certificate trusted by
the log. The first certificate MUST be the certificate of software
provider. Each following certificate MIST directly certify the one
preceding it. The final certificate MJST either be, or be issued by,
a root certificate accepted by the log. |If the certificate chainis
provided in the "signed software" field structure, this field is set

to enpty.
4.2. Transltem Structure

The extended "Transltent structure is defined as bel ow

Xia, et al. Expi res Septenber 7, 2017 [Page 5]

Internet-Draft CT for Binary Codes March 2017

enum {
reserved(0),
x509 _entry_v2(1l), precert_entry v2(2),
x509 sct _v2(3), precert_sct_v2(4),
signed_tree_head v2(5), consistency_proof v2(6),
i ncl usi on_proof _v2(7), x509_sct_with_proof_v2(8),
precert_sct_with_proof_v2(9), BIN entry_v2(TBD3),
BI N_sbt_v2(TBD4), BIN _sbt_w th_proof_v2(TBD5),
(65535)

} VersionedTransType;

struct {

Ver si onedTransType versioned_type;

sel ect (versioned type) {
case x509 entry v2: TinestanpedCertificateEntryDataVz;
case precert_entry v2: TinestanpedCertificateEntryDataV2;
case x509_sct _v2: SignedCertificateTi mestanpDat aV2;
case precert_sct_v2: SignedCertificateTi nestanpbDat aVvz;
case signed_tree_head_v2: SignedTreeHeadDat aVvz;
case consi stency_proof v2: Consi st encyProof Dat aVz;
case inclusion_proof _v2: InclusionProof Dat aV2;
case x509 sct_with _proof v2: SCTWthProof Dat aV2;
case precert_sct_wi th_proof_v2: SCTWthProof Dat aV2;
case BIN entry_v2: Ti mestanpedBi naryEnt r yDat aV2;
case BIN_sbt_v2: SignedBi naryTi mest anpDat aV2;
case BIN sht _with _proof v2: SBTWt hProof Dat aVz;

} data;

} Transltem
"versioned_type " is the type of the encapsul ated data structure of
Transltem Three new values are added to it -- BIN entry v2(TBD3),
BI N sbt v2(TBD4), BIN sbt with proof v2(TBD5).

For "data" structure, a new type structure of
Ti mest anpedBi naryEnt ryDat aV2 i s added.

. 3. Merkl e Tree Leaves

Each Merkle Tree leaf is defined as the hash value of a "Transltent
structure of according type. Here, a new type ("BIN_entry_v2") of
"Translteni structure is created, which encapsul ates a new

"Ti mest anpedBi nar yEnt r yDat aV2" structure defined as bel ow

Xia, et al. Expi res Septenber 7, 2017 [Page 6]

Internet-Draft CT for Binary Codes March 2017

opaque TBSCertificate<l..2724-1>
struct {
ui nt 64 ti mestanp;
opaque issuer_key hash<32..278-1>
Bl N_Si gned_Type bin_signed_type;
TBSSi gnedSof t ware tbs_si gned_sof t war e;
Sbt Ext ensi on sbt _ext ensi ons<0..2"16- 1>
} Ti mest anpedBi nar yEnt r yDat aV2

"timestanp" is the NTP Tine [RFC5905] at which the software binary
code was accepted by the log, neasured in mlliseconds since the
epoch (January 1, 1970, 00:00 UTC), ignoring |leap seconds. Note that
the leaves of a log’'s Merkle Tree are not required to be in strict
chronol ogi cal order.

"i ssuer_key hash" is the HASH of the public key of the software

provi der that signed the software, cal cul ated over the DER encodi ng
of the key represented as Subject PublicKeylnfo [RFC5280]. This is
needed to bind the software provider to the software binary code,
making it inpossible for the corresponding SBT to be valid for any

ot her software whose TBSSi gnedSoftware mat ches "tbs_si gned_sof t ware".
The length of the "issuer_key hash" MJST nmatch HASH SI ZE.

"bi n_signed_type" indicates whether the signature is generated based
on the software or its digest.

"tbs_signed_software" is the DER encoded TBSSi gnedSoftware fromthe
"signed_software" in the case of a "BinaryChai nEntryV2"

4.4, Structure of the Signed Binary Tinestanp

An SBT is a "Transltenm structure of type "bin_sbt_v2", which
encapsul ates a " Si gnedBi naryTi nest anpDat aV2" structure:

Xia, et al. Expi res Septenber 7, 2017 [Page 7]

Internet-Draft CT for Binary Codes March 2017

enum {
reserved(65535)
} Sbt Ext ensi onType;

struct {
Sht Ext ensi onType sbt _extensi on_type;
opaque sbt _ext ensi on_dat a<0. . 2"16- 1>
} Sbt Ext ensi on;

struct {
Logl D | og_i d;
ui nt 64 ti mestanp;
Sbt Ext ensi on sbt _ext ensi ons<0..2"16- 1>
digitally-signed struct {
Transltem ti mest anped_entry;
} signature;
} Si gnedBi naryTi nest anpDat aV2;

"log_id" is this log's unique ID, encoded in an opaque vector

"timestanp” is equal to the tinestanp fromthe
"Ti mest anpedBi nar yEnt ryDat aV2" structure encapsulated in the
"timestanped _entry".

"sbt _extension_type" identifies a single extension fromthe | ANA
registry in Section 6. At the tine of witing, no extensions are
speci fi ed.

The interpretation of the "sht_extension_data" field is deternined
solely by the value of the "sbt extension_type" field. Each docunent
that registers a new "sbt_extension_type" nust describe howto
interpret the correspondi ng "sbt_extension_data"

"sbt _extensions" is a vector of 0 or nore SBT extensions. This
vector MJUST NOT include nore than one extension with the sane

"sbt _extension_type". The extensions in the vector MJST be ordered
by the value of the "sbt_extension_type" field, snallest value first.
If an inplenmentation sees an extension that it does not understand,
it SHOULD ignore that extension. Furthernore, an inplenmentation MAY
choose to ignore any extension(s) that it does understand.

The encoding of the digitally-signed elenent is defined in [RFC5246].

"timestanped_entry" is a "Transltenm structure that MJST be of type
"Bl N_entry_v2".

Xia, et al. Expi res Septenber 7, 2017 [Page 8]

Internet-Draft CT for Binary Codes March 2017

5. Log Oient Messages

In Section 5 of [I-D.ietf-trans-rfc6962-bis], a set of nessages is
defined for clients to query and verify the correctness of the |og
entries they are interested in. 1In this docunent, a new nessage is
defined and an existing nessage is extended for CT to support Binary
Transpar ency.

5.1. Add Binary Code and Certificate Chain to Log
PCST https://<log server>/ct/vl/ add-Bi nary-chain

I nput s:
bi n_si gned_type: indicates whether the input paraneter "software"
is constructed by the binary code or its digest.
software: the binary code (or digest), the signature, and the
i nformation used to describe the software and the software
provi der publishing the software, which are encapsul ated
followi ng the way specified in CM5[RFC5652] . The subnitter
desires a SBT for this elenent.
chain: An array of base64-encoded certificates. The first elenent is
the certificate used to sign the binary code (or digest); the
second certifies the first and so on to the last, which either is,
or is certified by, an accepted trust anchor.If the certificate
chain information has been included in the "software" field, this
field could be enpty.

Qut put s:
sbt: A base64 encoded "Transltenm of type "BIN sbt _v2", signed by this
| og, that corresponds to the subnmitted software.
Error codes:
Be identical with the according part in Section 5.1 (Add Chain to Log) of
[I-Dietf-trans-rfc6962-his].

5.2. Retrieve Entries and STH from Log

Xia, et al. Expi res Septenber 7, 2017 [Page 9]

Internet-Draft CT for Binary Codes March 2017

GET https://<log server>/ct/v2/get-entries
| nput s:
start: O-based index of first entry to retrieve, in decinal.
end: O0-based index of last entry to retrieve, in decinal
CQut put s:
entries: An array of objects, each consisting of
| eaf _input: The base64 encoded "Transltent structure of type
"x509 _entry_v2" or "precert_entry_v2" or "BIN entry v2"
(see Section 4.3).
|l og entry: The base64 encoded |l og entry (see Section 4.1). |In the
case of an "x509 entry v2" entry, this is the whole
"X509Chai nEntry"; and in the case of a "precert_entry_v2"
this is the whole "PrecertChai nEntryV2"; and in the case of a
"BIN entry v2", this is the whol e "Bi naryChai nEntryVv2"
sct: The base64 encoded "Transltenm® of type "x509 sct_v2" or "precert_sct
v2"
or "BIN sbt_v2"corresponding to this log entry.
sth: A base64 encoded "Transltem of type "signed tree head v2", signed
by this Iog.

More details are identical with Section 5.7 of [I-D.ietf-trans-
rfc6962-hisj.

5.3. Summary

In summary, the above extensions of Binary Transparency enable the
software providers, the end users, and anyone to nonitor and audit
the CT logs to mtigate the possible attacks induced by tanpered
software, or software m sdistribution

This section gives a brief introduction to all the other aspects of
Bi nary Transparency mechani sns for the reason of conpl eteness, since
they comply with the basic CT protocol specification. For nore
details please refer to the corresponding sections of [I-D.ietf-
trans-rfc6962-bis].

Sof tware providers act the sanme as TLS servers in CT protocol. They
present one or nore SBTs fromone or nore |logs to each end user while
di stributing the software, where each SBT corresponds to the
software. Software providers SHOULD al so present correspondi ng

i nclusion proofs and STHs. In which way the software providers
present this information is beyond the scope of this docunent.

The end users of software acts the sane as Clients of |ogs described
in CT protocol. They can performvarious different functions, such
as: get |log netadata, exchange STHs they see, receive and validate
SBTs, Validate inclusion proofs.

Xia, et al. Expi res Septenber 7, 2017 [Page 10]

Internet-Draft CT for Binary Codes March 2017

Bi nary Transparency al so provides nonitoring and auditing functions
with the sane algorithnms defined for CT protocol.

Bi nary Transparency supports the sane algorithmagility feature for
signature al gorithm and hash algorithmas CT protocol.

6. Acknow edgenents
7. | ANA Consi derations

To be added.

8. Security Considerations

To be added.

9. References
9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119,

DO 10.17487/ RFC2119, March 1997,
<http://wwv. rfc-editor.org/info/rfc2119>.

[RFC5652] Housley, R, "Cryptographic Message Syntax (CMs5)", STD 70,
RFC 5652, DA 10. 17487/ RFC5652, Septenber 2009,
<http://ww.rfc-editor.org/info/rfc5652>.

[RFC5905] MIls, D, Martin, J., Ed., Burbank, J., and W Kasch,
"Network Time Protocol Version 4: Protocol and Al gorithmns
Speci fication", RFC 5905, DA 10.17487/RFC5905, June 2010,
<http://ww. rfc-editor.org/info/rfc5905>.

9.2. Informative References

[I-Dietf-trans-rfc6962-bis]

Laurie, B., Langley, A, Kasper, E., Messeri, E., and R
Stradling, "Certificate Transparency Version 2.0", draft-
ietf-trans-rfc6962-hbis-24 (work in progress), Decenber
2016.

Aut hors’ Addresses

Liang Xia (editor)
Huawei

Emai | : frank. xi al i ang@uawei . com

Xia, et al. Expi res Septenber 7, 2017 [Page 11]

Internet-Draft CT for Binary Codes March 2017
Dacheng Zhang
Huawei
Enai | : dacheng. zhang@wuawei . com
Dani el Kahn G I nor
CVRG

Enmai | : dkg@i f t hhor senan. net

Behcet Sari kaya

Huawei USA

5340 Legacy Dr. Building 3
Pl ano, TX 75024

Emai | : sari kaya@ eee. org

Xia, et al. Expi res Septenber 7, 2017 [Page 12]

