
Design Considerations for Low 
Power Internet Protocols

Draft-ayers-low-power-interop-00

Hudson Ayers

Paul Crews, Hubert Teo, Conor McAvity, Amit Levy, Philip Levis



Motivation

• “The Working Group will generate the necessary documents to 
ensure interoperable implementations of 6LoWPAN networks” –
6LoWPAN WG Charter

• Analysis of existing 6LoWPAN implementations reveals significant 
variation across stacks



6LoWPAN Interoperability Study

• Conducted an Interoperability study between five Open Source 
6LoWPAN implementations:

• No pairing of these implementations completely interoperates!



Why?

Primary Reason: Constraints on Processor Resources (Code Size / 
RAM)



How to Prevent This?

Our Take: Principled protocol design that anticipates problems that 
stem from the nature of the IoT space

We Present: An informational internet-draft intended to assist in this



Outline

1. Motivation – Interoperability problems in 6LoWPAN 

2. 4 Design Guidelines

3. Example Application of the guidelines to 6LoWPAN

4. Discussion/Takeaways



6LoWPAN Interoperability Study
Feature Stack

Contiki OpenThread Riot ARM Mbed TinyOS
Uncompressed IPv6 ✓ ✓ ✓ ✓

6LoWPAN Fragmentation ✓ ✓ ✓ ✓ ✓

1280 byte packets ✓ ✓ ✓ ✓ ✓

Dispatch_IPHC Header Prefix ✓ ✓ ✓ ✓ ✓

IPv6 Stateless Address Compression ✓ ✓ ✓ ✓ ✓

Stateless multicast address Compression ✓ ✓ ✓ ✓ ✓

802.15.4 16 bit short address support ✓ ✓ ✓ ✓

IPv6 Address Autoconfiguration ✓ ✓ ✓ ✓ ✓

IPv6 Stateful (Context Based) Address Compression ✓ ✓ ✓ ✓ ✓

Stateful multicast address compression ✓ ✓ ✓

IPv6 Traffic Class and Flow Label compression ✓ ✓ ✓ ✓ ✓

IPv6 NH Compression: IPv6 (tunneled IPv6) ✓ ✓ ✓

IPv6 NH Compression: UDP ✓ ✓ ✓ ✓ ✓

UDP Port Compression ✓ ✓ ✓ ✓ ✓

UDP Checksum elision ✓

Compression + headers past first fragment ✓ ✓

Compression of IPv6 Extension Headers ~ ✓ ✓

Mesh Header ✓ ✓ ~
Broadcast Header ✓

Regular IPv6 ND ✓ ✓ ✓ ~
RFC 6775 6LoWPAN ND ✓ ✓

RFC 7400 Generic Header Compression Support

~ = Partial Support



6LoWPAN Interoperability Study

Result:

• Example: Mbed OS → Contiki w/ IPv6 Extension Header

• Silent network layer drops!

• Disconcertingly easy to produce more examples of this



Why?

Possible Reasons:

• Incomplete development

• Difficulty keeping up with the changing protocol

• Lack of an established reference implementation

• Constraints on Processor Resources (Code Size / RAM)



Why?

• Evidence of concerns about code size and RAM can be found 
throughout each 6LoWPAN stack



Problem

• IoT platforms, apps vary 
significantly
• Code Size

• Memory

• Power

• Size

• Embedded OSes must support 
broad range of boards

Platform Program Memory (kB) RAM (kB)

Tmote Sky 48 10

Zolertia Z1 92 8

Atmel RZRaven 128 8

TI CC2650 128 28

SAMR21 Xpro 256 32

Nordic nRF52 DK 512 64

Arduino Due 512 96

Nest Protect* 750+ 100

6LoWPAN Platforms supported by 
Contiki OS or Riot OS



6LoWPAN Code Size Study

Platform Program Memory (kB) RAM (kB)
Tmote Sky 48 10
Zolertia Z1 92 8
Atmel RZRaven 128 8
TI CC2650 128 28
SAMR21 Xpro 256 32
Nordic nRF52 DK 512 64
Arduino Due 512 96
Nest Protect* 750+ 100

The results in the above table should 
generally be considered lower bounds

*TinyOS inlines compression code into 
fragmentation, and does not completely 
implement the mesh header

Stack Code Size Measurements (kB)

Full IP Stack 6LoWPAN-All Compression Fragmentation Mesh/Broadcast Headers

Contiki 37.5 11.5 6.0 3.3 N/A

OpenThread 42.5 26.5 5-20 1.3 4.5

Riot 31.0 7.5 >4.8 1.5 N/A

Arm Mbed 46.0 22.1 17.9 3.1 1.3

TinyOS 37.3 16.2 -- --* 0.6*



Code Size vs. Compression

• Advanced MAC and physical layers, tracking network state, etc. can
reduce radio energy consumption.

• These techniques require larger and more complex implementations.

• If too much of emphasis is put on saving energy through techniques
that require substantial code space or RAM, it can force a
requirement for more expensive, power hungry microcontrollers.



Other Considerations

• As a general rule, increased complexity is harmful to expectations of
interoperability

• Postel’s Law: “an implementation should be conservative in its
sending behavior, and liberal in its receiving behavior”

• Difficult to assume this law will be followed in the embedded space, where
the cost of completely supporting reception of complicated protocols can be
expensive

• Instead, designers of low power protocols must prepare for the reality that
some implementations may skimp wherever possible to conserve memory



4 Design Guidelines

Author’s Note: I am not strongly committed to the *exact* examples in 
the slides that follow – I am committed to the guidelines, but am 
looking for discussion regarding my example applications, and do not 
want the evaluation of the guidelines themselves to be tainted by any 
specific details of the example applications.



Guideline 1: Capability Advertisements

• Silent drops should not occur due to unimplemented portions of a
specification

• There should be an explicit mechanism by which devices can
efficiently learn the capabilities of other devices

• If two devices wish to communicate, they can default to the lower of
their supported capability levels



Application to 6LoWPAN

Two mechanisms for capability advertisement:

• New ICMP6 message type: 6LoWPAN Class Unsupported
• Do not require state to communicate failures

• Typical means of communicating lack of support

• We believe that an addition of such a message should be seriously
considered

• New 6LoWPAN ND Option
• 6LoWPAN ND + small amount of state would allow for storing capability class

alongside addresses

• Minimizes energy cost of classes by preventing failures before they occur



Guideline 2: Capability Spectrum

• Given that these capability advertisements exist, how can they
efficiently share useful information?

• A protocol should support a spectrum of device capabilities.

• Defines a clear ordering via which devices can reduce code size or RAM use by
eliding features

• Makes a protocol usable by extremely low resource devices without forcing
more resourceful devices to communicate inefficiently.

• Somewhat similar to the idea presented in draft-hui-6lowpan-interop-00 in
2008 for testing interoperability of independent implementations



Application to 6LoWPAN

Replace the large collection of “MUST” requirements with 6 levels of functionality:



Guideline 3: Provide Reasonable Bounds

• Specifications should specify reasonable bounds on recursive or
variable features.
• Allows implementations to safely limit their RAM use without silent

interoperability failures.



Application to 6LoWPAN

• Bound 6LoWPAN Header decompression to 50 bytes
• Allows for simple implementations which conserve RAM by preventing need

for initial fragment buffers to be much larger than 128 bytes

• Remove requirement for compression of Interior Headers for
Tunneled IPv6
• Many interop failures associated with this requirement

• Limits complexity of next header compression and removes possibility of
unbounded recursion



Guideline 4: Don’t Break Layering

• Energy-saving optimizations should not make assumptions about the
rest of the stack despite the appeal of cross-layer optimization in
embedded systems

• Long-lived IoT systems will evolve and change, and systems use and
draw on existing operating systems as well as libraries. Enforcing
layering ensures developers need not own and customize the entire
software stack.



Application to 6LoWPAN

• Remove UDP Checksum elision from RFC 6282
• Rarely used

• Complex to implement with application layer + link layer checks

• Breaks end-to-end argument

• Breaks layering



Discussion + Conclusion

• Worth thinking about why 6LoWPAN interoperability is lacking
• Historically, the embedded research community largely separate from 

communities dealing with protocol creation + interoperability

• Guidelines not limited to 6LoWPAN

• Central Idea: Low Power Internet protocols must allow devices to use 
the protocol and optimize for their particular resource tradeoffs


