draft-ali-spring-srv6-oam-01.txt
SRv6 OAM

Zafar Ali - Cisco Systems (zali@cisco.com) - Presenter
Clarence Filsfils - Cisco Systems (cfilsfil@cisco.com)
Nagendra Kumar - Cisco Systems (naikumar@cisco.com)
Carlos Pignataro – Cisco Systems (cpignata@cisco.com)
Faisal Iqbal – Cisco Systems (faiqbal@cisco.com)
Rakesh Gandhi - Cisco Systems (rgandhi@cisco.com)
John Leddy Comcast (John.Leddy@cable.comcast.com)
Satoru Matsushima – Softbank (satoru.matsushima@g.softbank.co.jp)
Robert Raszuk Bloomberg LP (robert@raszuk.net)
Daniel Voyer - Bell Canada (daniel.voyer@bell.ca)
Gaurav Dawra – LinkedIn (gdawra.ietf@gmail.com)
Bart Peirens – Proximus (bart.peirens@proximus.com)
Mach Chen – Huawei (mach.chen@huawei.com)
Gaurav Naik - Drexel University (gn@drexel.edu)
Reference Topology

1. SRv6 Capable
2. classic IPv6 Node
3. classic IPv4 Node
4. Message Processing Node
History of the Draft

• draft-ali-6man-srv6-oam-00 was published in July 2017.
 – Main draft describing use-cases including classic ping and traceroute in SRv6 networks.

• draft-ali-6man-srv6-oam-01 was published in October 2017.
 – Revision with editorial changes.

• draft-ali-spring-srv6-oam-00.txt was published in Feb 2018.
 – Added SRv6 ping and traceroute.
 – Added SRv6 segment-by-segment ping and overlay traceroute.

• draft-ali-spring-srv6-oam-01.txt was published in July 2018.
 – Moved O-bit flag from draft-ietf-6man-segment-routing-header-14
 – Moved OAM SIDs from draft-filsfils-srv6-network-programming-05
OAM Building Blocks

• OAM SIDs
 – END.OP
 > OAM Endpoint with Punt.
 – END.OTP
 > OAM Endpoint with Timestamp and Punt.

• SRH.Flags.O-flag
 – O-flag processing
 > Punt a timestamped copy of the packet and forward
 > Forward and punt a timestamped copy of the packet

```
0 1 2 3 4 5 6 7
+---------+---------+---------+
|         | O       |         |
+---------+---------+---------+
```
Use Cases (I-D illustrations)

• Classic Ping
• Classic Traceroute
• Use of the existing ICMP mechanisms.
 – ICMPv6 related processing remains unchanged.
 – Works seamlessly with the classic IPv6 nodes.
 – Adds a new ICMPv6 message type for SRv6 OAM.
ICMPv6 Ping Via a SID list

- The originator node constructs an SRH using the segment list specified by the user and adds it to IPv6 packet.
- All other ICMPv6 related processing remains unchanged.
- No changes are required at the transit node.
- No changes are required at the destination node.
Traceroute
Via a SID list

• The originator node constructs an SRH using the segment list specified by the user and adds it to traceroute probe packet.

• All other IPv6 traceroute related processing remains unchanged.

• No changes are required at the transit node.

• No changes are required at the destination node.
Use Cases (I-D illustrations – cont’ed)

• SRv6 Ping
 – End-to-end
 – Segment-by-segment

• SRv6 Traceroute
 – Hop-by-hop
 – Segment-by-Segment (Overlay Traceroute)

• SRv6 Paths Monitoring
 – Applicability of draft-ietf-spring-oam-usecase-10 to SRv6 Networks

• In-situ OAM
 – Applicability of ietf-ippm-ioam-data to SRv6 Networks
Pinging a SID Function

- An:OTP:: SID is instructed in front of the target SID where punt behavior needs to be programmed. E.g., A4::C45 in this example.
SRv6 Overlay Traceroute

As Hop Limit is set to 64, all classic transit and SRv6 pure transit nodes are skipped in the overlay traceroute.

- O-bit is set and hop limit is set to 64.
- As Hop Limit is set to 64, the classic and SRv6 transit nodes do not respond.
- At each segment node, SRH.Flags.O=1 causes a copy of the packet punt and processed.
- Rest of the ICMPv6 message processing remains unchanged.
Next Steps

• The authors would like to request WG for the review and the feedback.