
Unified Properties for ALTO
-04 updates and discussion

ALTO WG meeting IETF102 – July 16, 2018

W. Roome

S. Chen

S. Randriamasy

Y. Yang

J. Zhang

IETF 102 - Montreal – July 16, 2018 Unified Properties 1

Main Motivation for Changes

• The goal of -04

• To address WG request during IETF 101

• Specify a consistency procedure between ALTO Address Type (AAT) and ALTO
Entity Domain (AED) registries

• To clarify text and names

• Two technical issues are remaining in -04

• Entities for address blocks may be decomposed in Filtered Property Map

• Resource dependencies in "uses" may have ambiguity

• Next version -05 planned after IETF 102

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 2

Main Updates and Discussion

• Updates from -03 to -04

• Registry consistency: between AAT and AED registries

• Option chosen: “manual” method

• Detailed in section on IANA considerations

• Upon IANA guidance at IETF 101

• Update on error handling on entities and properties

• Text and terms updates

• Adoption of term “Entity Domain“ instead of “Domain” to avoid ambiguities with
"network domain"

• Discussion on proposed further changes in -05

• Systematic specification of requesting entities for address blocks

• Systematic specification of uses for resource-specific properties

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 3

Manual Consistency between AAT and AED Registries

• New Section 9.2.1 “Consistency Procedure between ALTO Address Type
Registry and ALTO Entity Domain Registry”

• Defines 2 conditions at which both registries are consistent

• Rule: if an ALTO domain has the same identifier as an ALTO address type, their
addresses encoding MUST be compatible

• Consistency procedure when a new ALTO domain is registered
• Do corresponding entity addresses match a known "network" address type?

• If YES: is such an address type present in the ALTO Address Type Registry?
• If YES: new ALTO domain identifier = found ALTO address type identifier

• If NO

• Define new ALTO domain identifier and use it to register a new address type in the AAT Registry
following Section 14.4 of [RFC7285]

• Register the new ALTO domain in the AAD

• If NO: register the new ALTO domain in the AAD

• Domain name registration process in AAD specified in section 9.2.2

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 4

Can be simplified

in 1 instruction

Manual Consistency between AAT and AED Registries

• Example 1: “ipv4” and “ipv6” entity domains proposed in section 9.2
• Entity addresses match a known "network" address type

• Entity addresses already specified in AAT registry

� domain name MUST be the same = “ipv4” and “ipv6”

• Example 2: entity domain “cell”
• Entity addresses match a known "network" address type, e.g. ECGI type

• Not yet specified in AAT
• New ALTO Domain ID = “Cell”

• New AAT created = “Cell” + registered in AAT registry

• Domain ID “Cell” registered in AED registry

• Example 3: entity domain “pid” proposed in section 9.2
• Entity addresses does not match a known "network" address type

� New ALTO Domain ID = “pid” + registered in AED registry

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 5

Error Handling on Entities and Properties

• In section « 5.6. Response » - to Filtered Property Map requests

• ALTO server MUST return an "E_INVALID_FIELD_VALUE" error

• When member « entities » of request is invalid

• When requested property not defined in IRD for this service/resource

• Section 5.6 defines when member “entities” is invalid

• Invalid address format

• Entity address is an invalid address of the entity domain (to be re-phrased)

• If Server does not define a value for a requested property on an entity

• It MUST omit that property from the response for only that entity

• Discussion: or put a “null” value?

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 6

Other Updates

• Adopted usage of expression "ALTO Entity Domain" throughout the
document

• Section 1. “Introduction”: paragraph introducing ALTO Entity domains

• Section 6.3 “Impact on the pid Property”

• some rewording to clarify between "pid" and "PID" and avoid headaches,

• Section 10 References: updates and reformatting

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 7

Updates in Examples

• 7.3 example IRD: name update for the Endpoint property resource
• Removed "availbw-property-map" for "ane" entities
• Added "location-property-map" for "pid" entities
• Resource name of legacy Endpoint property "pid" changed to "legacy-pid-property"

• 7.8. Filtered Property Map Example #4

• Example response for
• with Entity “ane” replaced by example by entity “pid”

"pid:pid5": {

"country": "ca",

"state": "QC"

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 8

Remaining Issues

• Issue 1: Entity decomposition
• Section 5.6: "... it only includes the entities and properties requested by the

client."

• Consider a request for property P of entity A=ipv4:192.0.2.0/31. Assume that
P has value v0 for A, and has value v1 for A1=ipv4:192.0.2.0/32.

• If response only includes A (as defined in Section 5.6), the client gets wrong P
for all addresses in A1.

• To be fixed: Specify how the server responds the Filtered Property Map
request correctly.

• Issue 2: Resource-specific properties
• The ALTO client SHOULD be able to resolve the dependencies of resource-

specific properties without ambiguity.

• To be fixed: Specify how the client interprets the "uses" field correctly.

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 9

Next Steps

• WG discussion on proposed solutions to issues 1 and 2

• Submit version -05 with upon WG agreement

• WGLC on -05

THANK YOU

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 10

Backup Slides:

Open Discussions

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 11

Issue 1: Entity Decomposition

• Filtered Property Map allows the client to request properties for an address block.

• Basic principle: The client SHOULD be able to get or derive correct properties for
each address in the requested address block.

• Current revision (-04) cannot guarantee this principle.

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 12

EXAMPLE: Assume the full property map:

"property-map": {

"ipv4:192.0.2.0/23": {"pid": "pid0"},

"ipv4:192.0.2.0/28": {"pid": "pid1"},

"ipv4:192.0.2.16/28": {"pid": "pid2"}

}

If the client requests "ipv4:192.0.2.0/27", it will get

the following response from the inheritance rule:

"property-map": {

"ipv4:192.0.2.0/27": {"pid": "pid0"}

}

From the response, the client will interpret the

"pid" property of "ipv4:192.0.2.1" as "pid0", but it

should be "pid1" from the full property map.

Solution for Entity Decomposition

• Proposed solution (in the revision -05):
• Rule 1: If a property for a requested entity is inherited from another entity not included in the request,

the response SHOULD include this property for the requested entity.

• Rule 2: If there are entities covered by a requested entity but having different values for the requested
properties, the response SHOULD include all those entities and the different property values for them.

• Rule 3: If an entity in the response is already covered by some other entities in the same response, it
SHOULD be removed from the response for compactness.

• Considering the same full property map, if the client requests "ipv4:192.0.2.0/27", the response

SHOULD be:

"property-map": {

"ipv4:192.0.2.0/27": {"pid": "pid0"},

"ipv4:192.0.2.0/28": {"pid": "pid1"},

"ipv4:192.0.2.0/28": {"pid": "pid2"}

}

• Involved sections: Sec 4.6, Sec 5.6 and Sec 6.3

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 13

From Rule 1, inherit "pid0" from "ipv4:192.0.2.0/23

From Rule 2, include "ipv4:192.0.2.0/28"

and "ipv4:192.0.2.16/28"

From Rule 3, "ipv4:192.0.2.0/27" SHOULD be removed

Issue 2: Resource-Specific Properties

• Basic principle: The "uses" field should have no ambiguity in specifying dependencies.

• Previous version (-04 and before) does not handle generic dependencies well.

• Example 1 (<"pid", "region"> depends on "net1" or "net2"?)

"uses": ["net1", "net2"],
"capabilities": {
"entity-domain-types": ["pid"],
"property-types": ["region", "center"]

}

• Example 2 (who depends on "pv1"?)

"uses": ["net1", "pv1"],
"capabilities": {
"entity-domain-types": ["ipv4", "ipv6", "ane"],
"property-types": ["pid"]

}

• How does the ALTO client resolve the relationship between each dependent Resource in
"uses" and each resource-specific (Domain, Property) pair in "capabilities"?

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 14

Solution for Resource-Specific Properties

• Proposed solution (in the revision -05):

the ALTO server MUST ensure the ALTO client can interpret the resource dependencies by the following "uses" rule:

➜ For each domain in "entity-domains", take the full "uses" list, and then,

➜ go over each property in "properties" capability in array order:

➜ If the property is a resource-specific property for the current domain, and it needs a sequence of S
resources, then

➜ take the S resource ID(s) at the beginning of "uses" to interpret the property;

➜ and remove the S resource ID(s) from "uses".

• Two examples show the interpretation process in the client side:

IETF 102 - Montreal - 16/07/2018 draft-ietf-alto-unified-props-new-04 15

• Involved sections: Sec 2.7, Sec 4.5, Sec 4.6, Sec 5.5 and Sec 5.6

Interpretation of the IRD in Example 1:

// uses=["net1", "net2"];

pid_uses = uses.copy();

DepRes ["pid"]["region"] = pid_uses.pop(); // net1

DepRes ["pid"]["center"] = pid_uses.pop(); // net2

Interpretation of the IRD in Example 2:

// uses=["net1", "pv1"];

ipv4_uses = uses.copy();

DepRes["ipv4"]["pid"] = ipv4_uses.pop(); // net1

ipv6_uses = uses.copy();

DepRes["ipv6"]["pid"] = ipv6_uses.pop(); // net1

ane_uses = uses.copy();

DepRes["ane"]["pid"] = ane_uses.pop(2); // net1 and pv1

