Autoconfiguration of NOC services in ACP networks via GRASP

IETF 102 Montreal 2018

draft-eckert-anima-noc-autoconfig-00

Toerless Eckert tte+ietf@cs.fau.de (Huawei USA)

Problem and resolution

- ANI Pledge gets enrolled with BRSKI zero-touch
- Now what ?
- We wanted to create more zero-touch "autonomic" nodes
- This draft proposes the smallest possible incremental step
 - For ANI nodes used in conjunction with existing, centrally managed network
 - Minimum standards work to make RFC8368 work better
 - RFC8366 = ANIMA stable connectivity draft: Use ACP for management from NOC
 - RFC8366 is informational, deals with all possible migration scenarios, etc. pp.
 - Does not specify any of the really good, simple automations possible
 - Those automations need standards work
- This draft is extending ANI standard framework to support RFC8366 neworks

So, what do we need?

- Node needs accurate time. Find NTP server, sync time from it.
- Node needs to automatically syslog, so NOC knows what is going on
 - Including "I am new Pledge, enrolled but unconfigured"
- Remote access to node via ACP needs to be possible SECURELY
 - SSH, Netconf (Netconf typically on top of SSH or TLS)
 - Automatically discover Radius/Diameter server, enable SSH/Netconf servers, allow access to node SH/Netconf VIA ACP ONLY
- Good minimum? Open to expand/change the minimum set of automated service
 - Also want to use this document as showcase for vendors to understand how to easily automatey any more services (standards based or not)

Great! How does it work?

- DNS-SD service discovery across ACP via GRASP
 - draft-eckert-anima-grasp-dnssd
 - GRASP allows to flood objective, this draft proposed a standard to announce/discover DNS-SD services
- draft-eckert-anima-noc-autoconfig
 - Defines required services that ACP nodes (supporting this document) must support, and what to do then:
 - Syslog -> log
 - ntp -> sync time
 - Radius/Diameter -> enable SSH/Netconf

```
[M FLOOD, 12340815,
   h'fd89b714f3db0000200000064000001'. 210000.
  ["SRV.syslog", 4, 255,
    { rfcXXXX: {
      &(sender-loop-count:1) => 255,
      &(srv-element:2) => {
        \&(msg-type:1) => \&(describe: 0),
        &(service:2) => "syslog",
        &(instance:3) => "east-coast-primary",
        \&(priority:5) => 0,
        &(weight:6) => 65535,
        &(kvpairs:7) => { "replicate" => 2 },
        \&(range:8) => 2,
    }}
  [O IPv6 LOCATOR,
    h'fd89b714f3db0000200000064000001', TLS12,
514]
```

How does it compare to "normal" DNS-SD?

- Multi-hop flooding of DNS-SD has no good solution ?!
 - Proxy solutions for more constrained network
- Ability to flood allows to measure hop-distance, select nearest server
 - Part of spec draft-eckert-anima-grasp-dnssd
- DNS-SD for GRASP allows kvpairs like unicast/mDNS encoding
 - Added one kvpair "replication" to indicate #servers to connect to simultaneously
 - For redundancy in services: Eg: send syslog messages to 3 best found servers
 - In other services it does not make sense:
 - Connect to always only one Radius server, switch over quickly when the server is unresponsive.

Summary:

- Make ACP/ANI network automatically use NOC services
- NOC services announce themselves via DNS-SD
 - ACP/ANI nodes discovery serves, autoconfigure themselves accordingly
- GRASP/ACP as flooding transport, DNS-SD message encoding.
- NTP ssh/Netconf, syslog most key core services?
 - If not, happy to modify list of key services
- Should be easy to individually add more and more services specs

Thank You!