
HMAC security for Babel

Juliusz Chroboczek
Joint work with Clara Dô and Weronika Kołodziejak

IRIF
Université Paris-Diderot (Paris 7)

17 July 2018

1/16



Disclaimer

I am just the janitor here. Credit goes to:
– Denis Ovsienko (started the whole thing);
– Clara Dô and Weronika Kołodziejak (implementation

and new protocol design based on Denis’ work);
– David Schinazi (pseudo-header);
– Markus Stenberg (index mechanism);
– Toke Høyland-Jørgensen;
– Florian Horn and Paul Rozière.

2/16



Two protocols for Babel security

There is a natural tension between:
– simple, reviewable protocol;
– useful features.

Two security protocols for Babel:

HMAC (this talk):
– Babel unchanged;
– no dependencies;
– minimal features:

– symmetric keying;
– few keys per

interface;
– key rotation.

DTLS (David’s talk):
– Babel over unicast;
– depends on DTLS;
– features of DTLS:

– asymmetric keying;
– pairwise keying;
– ASN.1.

3/16



Naive HMAC

HMAC guarantees the authenticity of a message.

Very roughly, send

m ‖H(m ‖k)

where m is the message, k is the (secret) key, and H is
a cryptographic hash function (e.g. SHA256).

HMAC does not protect against replay.

B: announce, HMAC
A installs a route through B.
(later)
C: replays announce, HMAC.
A installs a route through C.

4/16



Protecting addresses: pseudo-header

Mitigation: protect addresses as well as packet
contents.

Send:
m ‖H(src ‖dst ‖m ‖k)

where src is the source address and dst is the
destination address. src ‖dst is the pseudo-header.

B: announce, HMAC
A: installs a route through B.
(later)
C: replays announce, HMAC, with B’s source address.
A installs a route through B.

The protocol is still vulnerable to replay, but the
consequences are less severe.

5/16



HMAC with simple replay protection

Include a per-sender packet counter in each packet.

B: announce, PC=42, HMAC
A installs a route through B.
(later)
C: replays announce, PC=42, HMAC
A: rejects C’s packet (PC too old).

The protocol requires that:
– the sender’s PC is strictly increasing

(reliable hardware clock or reliable persistent
storage);

– the receiver keeps persistent state about each
neighbour forever.

6/16



Simple replay protection: issues
RFC 7298 does simple replay protection. Two issues:

– requires that every sender maintain a strictly
monotonic PC;

– requires that every receiver keep the PC history of
every peer it has ever encountered forever.

Persistent sender state difficult to do portably;
– persistent storage is non-portable and unreliable;
– hardware clocks are not universal, sometimes reset

even when available.
Very unpleasant failure mode: node is blackholed.

Persistent receiver state (“ANM”) unrealistic:
– unbounded amounts of persistent storage.

Failure mode is gentler: after loss of state, we are
vulnerable to replay (Denis Ovsienko, IETF 96).

7/16



Avoiding persistent state

In draft-do-babel-hmac, we avoid persistent state by
using two additional mechanisms:

– a challenge mechanism (a cryptographic
handshake, with nonces) to create fresh receiver
state;

– an index mechanism to indicate when sender state
has been reset.

8/16



Receiver-side state: challenge with nonce

B: announces, PC=42, HMAC
A (has no state about B): challenge, nonce=57, HMAC
B: challenge reply, nonce=57, PC=43, HMAC

Since the nonce is fresh, B’s challenge reply cannot be
a replayed packet. A can safely establish receiver state
from the challenge reply.

A can send a new challenge at any time (cost = 1RTT);
when to purge receiver state is now an implementation
detail.

9/16



Sender-side state: indices

B: announce, PC=42, index=99, HMAC
A (index mismatch): challenge, nonce=57, HMAC
B: challenge reply, nonce=57, PC=43, index=99, HMAC

Whenever it has no state (e.g. at boot), B generates a
fresh index, which it sends with every PC.

Whenever it detects an index change, A sends a new
challenge; if the challenge is successful, A discards its
old state about B.

B can generate a new index at any time (cost = 1RTT);
when to purge sender state is now an implementation
detail.

10/16



Specification and implementation status

draft-do-babel-hmac-00 needs some more work, but
good enough for implementation. 16 pages including
boilerplate, 7 normative.

We already have two independent implementations:
– Dô, Kołodziejak:

– integrated in babeld (but not merged yet);
– 793 lines of code (not counting SHA256);
– minimal changes to babeld;
– “Easier to implement than RFC 7298.”

– Højland-Jørgensen:
– integrated in BIRD (but not merged yet);
– 533 lines of code;
– “I found the draft pleasant to read and

straightforward to implement.”

11/16



Open questions

A number of choices remain (already discussed on list):
– size of nonce and index;
– use of packet trailer;
– explicit vs. implicit indices.

12/16



Open questions: size of nonce and index

A Babel TLV can be up to 255 octets long. This gives
enough space for up to 255 octets of nonce and up to
251 octets of index.

– a nonce can usefully encode a cookie (for DoS
avoidance); arbitrary size nonces do not complicate
implementation much;

– we see no reason to allow large indices; arbitrary
size indices complicate implementation somewhat.

Proposition:
– nonces can be any size, from 0 to 255 octets;
– indices can be 0 to 10 octets, larger indices are

silently dropped.

13/16



Open questions: packet trailer

Where should HMACs live? Two possibilities:
– within the packet trailer, beyond the packet body;
– within the packet body itself.

Storing HMACs within the packet body itself (which
participates in HMAC computation) requires a complex
dance of clearing the HMAC TLV before computing
HMAC.

Storing HMACs in the packet trailer simplifies
implementation, at the cost of a slightly more complex
specification. The authors support this choice.

14/16



Open questions: implicit indices
Markus Stenberg noticed that the index is already
known by the receiver, except during challenges.

Idea: omit the index in ordinary packets, only include it
in challenge replies.

Pros:
– shaves off a few bytes on the wire;
– clever solution.

Cons:
– HMAC can only be computed after parsing the

packet;
– more complex encoding;
– clever solution.

See Appendix C of draft-do-babel-hmac-00 for details.

15/16



Conclusion

A simple, easily implementable cryptographic
authenticity extension for Babel:

– simple specification: 16 pages (7 normative);
– simple implementation: 533 to 793 lines of code;
– two independent, interoperable implementations.

Some open issues, need discussion and thought.

Please adopt?

16/16


