Secure L3VPN over Public Infrastructure

- Draft-rosen-bess-secure-l3vpn-00
- Eric Rosen, Ron Bonica

Goals:
- augment RFC4364 technology for use over “public” backbone network
 - untrusted
 - no MPLS transport
- retain RFC4364 “multi tenancy” features
Basic Concept

- Customer Premises Equipment (CPE) provides PE functionality ("C-PE")
- C-PE control plane: IPsec-protected BGP to secure RR
 - Private routes advertised as VPN-IP routes with private C-PE loopback as next hop
 - Private C-PE loopback advertised as IP route with:
 - Public C-PE address as next hop
 - Tunnel Encapsulation attribute that specifies a C-PE to C-PE IPsec Security Association (SA)
- Data plane uses these IPsec SAs
C-PE Red Routes

- C-PEs have red interfaces (to private sites) and black interfaces (to public net)
- Each C-PE has a red loopback (private) and a black loopback (public)
- C-PEs originate two kinds of red route:
 - VPN-IP routes pointing out red interfaces
 - Set Next Hop to red loopback
 - IP route to red loopback (see next slide)
- Red routes only advertised over IPsec-protected (red) BGP sessions (IBGP or EBGP)
Use of Tunnel Encapsulation Attribute

• The red IP route whose NLRI is the red loopback carries a Tunnel Encapsulation attribute (TEA):
 • tunnel type = MPLS-in-IPsec (RFC 4023)
 • remote endpoint = black loopback
 • Note: does not change when route is propagated, even when propagated via EBGP
 • TLVs with whatever other information is needed to set up the IPsec SA
Resolution of Red VPN-IP Routes

• How does C-PE1 forward a packet it receives over a local red interface?
 • Suppose packet’s IP DA, interpreted in proper VRF context, matches <NLRI=X, NH=C-PE2-red>
 • Recursive resolution of C-PE2-red finds TEA:
 • Tunnel type = MPLS-in-IPsec
 • Remote endpoint = black loopback of C-PE2
 • IPsec SA gets set up over public backbone between C-PE black loopbacks
 • Remember, black loopbacks are public addresses
 • Therefore the packet gets sent to C-PE2 through the MPLS-in-IPsec tunnel
Cautions

• MUST NOT:
 • accept VPN-IP route from insecure BGP session
 • transfer data between red and black interfaces unless protected by IPsec on the black interfaces

• MUST:
 • Resolve next hop of VPN-IP route via route (with appropriate TEA) received over secure BGP session
Setting up the Secure BGP Sessions

- RRs have red loopback address, black loopback address, black interface addresses
- BGP sessions to C-PEs run through IPsec transport mode SAs between the black addresses
- RRs:
 - may be provisioned with pre-shared secrets of C-PEs,
 - or may use certificates to authenticate C-PEs,
 - have no prior knowledge of C-PE black addresses, so C-PEs can move
- C-PEs initiate the sessions
The Data Plane IPsec SAs

- Can be set up when route with TEA is received
- Or can be set up when needed for data
- Granularity: C-PE to C-PE
- BTW, what is MPLS-in-IPsec?
 - Same as MPLS-in-IP in IPsec transport mode
 - On wire, IPsec header followed by label followed by user payload
 - Only black C-PE addresses are in the clear
Next Steps

- Call for adoption