Precision and Accuracy of Packet Generators

Who tests the testers?

Paul Emmerich, Sebastian Gallenmüller, Alexander Frank, Georg Carle
emmericp@net.in.tum.de
Technical University of Munich
Chair of Network Architectures and Services
IETF-102, 17.07.2018
Expensive packet generators: awesome!
Cheap packet generators: awesome?

Source: www.intel.com
What do you expect of your packet generator?

Let’s start with some questions:

- What should a packet generator be able to do?
- Can a cheap software-based packet generator be reliable?
- How can you validate that your packet generator works as advertised?
- Is your packet generator precise?
- Is it accurate?
What should your packet generator do?

Example: Main packet generator requirements from ETSI GS NFV-TST009
(Draft V0.0.13, 2018-07, Section 7.1 paraphrased)

- Accurately generate constant frame at specified rates
- Accurately generate bursty traffic at specified rates
- Support accurate latency measurements, timestamp applied "as close as possible to actual transmission"
Accuracy vs. precision in latency measurements

Example setup: a packet generator measuring the latency of a cable.

Precision: The deviation between the measurements is low
- The latency of the cable should not change
- Typical source of measurement error: queuing delays in generator included

Accuracy: The average reported latency is correct
- The latency of a cable can be estimated from its length
- Typical source of measurement error: processing time in generator included

Source: https://commons.wikimedia.org/wiki/File:Accuracy_and_precision.svg
Testing latency measurements: measure a cable

- Cable’s latency should not change under increasing packet rate
- Validate with different cable lengths? (Only 30 meter single mode fiber here)
- Precision here: 37 nanoseconds
- Accuracy here: average reported latency is 161 nanoseconds
 - Estimated correct latency: 150 nanoseconds with 0.66c propagation speed
 - What to use as ground truth?
What are traffic patterns?

Traffic pattern: the way packets are spaced on the wire, most common are
- Constant bit rate (CBR): same space between all packets
- Bursty: back-to-back packets followed by a longer gap
- Poisson: exponential distribution of delays

- RFC 2544 wants CBR by default, also allows for further tests with other patterns
- ETSI GS NFV-TST009 wants CBR and bursty traffic

- Software packet generators prefer bursty traffic (sometimes even if configured otherwise!)
- Bursty traffic is easiest to generate (NIC drivers work that way)
- CBR is hardest to generate (multi-core scaling is challenging without hardware support)
- Poisson is easy to scale (adding Poisson distributions yields a new poisson distribution)

- Poisson is arguably most realistic, CBR least realistic
CBR can lead to weird effects

- Forwarding latency of Open vSwitch (kernel), increasing load
- Dynamic interrupt throttling (ixgbe driver) and poll-mode (NAPI) don’t play well with CBR traffic
Real-world traffic isn’t CBR

- Only change: time between packets
- Completely different response from the device under test
Summary: what to measure and how to benchmark?

Latency measurements (ideas)
- Measure the latency of cables of different length
- Report the minimum, maximum and average reported latency
- Repeat measurements with varying packet rates: does it get worse at high rates?
 - Queues filling up?
- What is the ground truth for the latency of a cable?

Traffic pattern measurements
- Measure packet arrival at device under test with high-precision timestamping
- Hard to measure with commodity hardware
- We have done some measurements using a NetFPGA

Require Poisson traffic? Or is bursty traffic close enough?
- CBR is not realistic
Lots of open questions, so …

Discussion?
Backup: CBR/Burst Comparison

- Forwarding latency of Open vSwitch (kernel), increasing load
- Baseline latency: CBR traffic, varying burst sizes

- Bursts are important for performance
- Typical default burst sizes: 16 to 256
- Packet generators often fail to generate CBR reliably
Target rate = 1 Mpps/1μs inter-arrival time
Backup: Rate Control Comparison

Target rate = 4 Mpps/0.25µs inter-arrival time
Most packet generators fail to generate this when configured without bursts

Relative probability [%]

- PF_RING ZC zsend: MSE = 37682
- Pktgen-DPDK: MSE = 59838
- MoonGen (SW): MSE = 20599
Backup: MoonGen Rate Control

1 and 4 Mpps, MoonGen SW rate control with corrupted packets filling the gaps
Backup: Latency measurements

Latency distributions, QoS enabled, 8Gbit/s BG traffic

Figure 3. Latency distribution of 1 Gbit/s RT traffic with 8 Gbit/s BG traffic, QoS enabled

The total forwarding latency l consists of the delay introduced by the connection from the packet generator to the switch l_{gen}, the forwarding latency l_{switch} of the switch, and the number of hops n:

$$l = 2 \cdot l_{\text{gen}} + n \cdot l_{\text{switch}}$$

We measured the forwarding latency through the switch with various loop lengths from $n = 0$ (sending the traffic back directly) to $n = 23$. Figure 6 shows the CDFs of different loop lengths up to $n = 15$ to improve the readability of the graph as the remaining CDFs look similar. We can calculate the following median latencies from these results:

- $l_{\text{gen}} = 480 \text{ ns}$
- $l_{\text{switch}} = 729 \text{ ns}$

These values include propagation delay due to varying cable lengths, we used copper cables with various lengths between 0.5 and 3 meter. This introduces an additional error of 12 ns (assuming a propagation speed of $0.7c$) in addition to the granularity of 12.8 ns of the packet generator.

Note that these results are crucial for FLOWer: The latency of the switch is important for further tests using the switch to amplify traffic for a separate DuT. In such a setup, the switch is part of the measurement equipment, and its accuracy therefore limits the total accuracy of the experiment.

These results show that forwarding latency does not depend on the switch ports. This indicates the high accuracy of the packet generator and that latency is independent from the used switch port. We did not test all combinations of ports, one should repeat this test with the appropriate set of ports to verify this before relying on a switch to run latency-critical experiments. There may be differences in the latency between ports on a switch due to the internal architecture of the switch.

The difference between the minimum and maximum observed forwarding latency was only 217.6 ns (cf. the steep CDFs in Figure 6, each based on 48,000 timestamped packets over 48 seconds). This is important when the switch is used to amplify traffic while also measuring latency, the inaccuracy of the switch affects the measurement. OpenFlow switches with a far lower jitter exist and can be used if a better precision is required.

5. Amplifying Traffic

After evaluating the suitability of an OpenFlow Switch for our testing purposes in Section 4 we apply the FLOWer 3. MoonGen cannot timestamp all packets, only random samples.