
Precision and Accuracy of Packet Generators

Paul Emmerich, Sebastian Gallenmüller, Alexander Frank, Georg Carle
emmericp@net.in.tum.de
Technical University of Munich
Chair of Network Architectures and Services
IETF-102, 17.07.2018

Who tests the testers?

2
Source: www.spirent.com

Expensive packet generators: awesome!

3

Source: www.intel.com

Cheap packet generators: awesome?

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What do you expect of your packet generator?

Let’s start with some questions:

What should a packet generator be able to do?
Can a cheap software-based packet generator be reliable?
How can you validate that your packet generator works as advertised?
Is your packet generator precise?
Is it accurate?

4

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What should your packet generator do?

Example: Main packet generator requirements from ETSI GS NFV-TST009
(Draft V0.0.13, 2018-07, Section 7.1 paraphrased)

Accurately generate constant frame at specified rates
Accurately generate bursty traffic at specified rates
Support accurate latency measurements, timestamp applied "as close as
possible to actual transmission"

5

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Accuracy vs. precision in latency measurements
Example setup: a packet generator measuring the latency of a cable.

Precision: The deviation between the measurements is low
The latency of the cable should not change
Typical source of measurement error: queuing delays in generator included

Accuracy: The average reported latency is correct
The latency of a cable can be estimated from its length
Typical source of measurement error: processing time in generator included

6Source: https://commons.wikimedia.org/wiki/File:Accuracy_and_precision.svg

https://commons.wikimedia.org/wiki/File:Accuracy_and_precision.svg

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Testing latency measurements: measure a cable

Cable’s latency should not change under increasing packet rate
Validate with different cable lengths? (Only 30 meter single mode fiber here)
Precision here: 37 nanoseconds
Accuracy here: average reported latency is 161 nanoseconds

Estimated correct latency: 150 nanoseconds with 0.66c propagation speed
What to use as ground truth?

7

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Baseline – 30 m fiber cable

Frank – Networking 10

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What are traffic patterns?

8

Traffic pattern: the way packets are spaced on the wire, most common are
Constant bit rate (CBR): same space between all packets
Bursty: back-to-back packets followed by a longer gap
Poisson: exponential distribution of delays

RFC 2544 wants CBR by default, also allows for further tests with other patterns
ETSI GS NFV-TST009 wants CBR and bursty traffic  

Software packet generators prefer bursty traffic (sometimes even if configured otherwise!)
Bursty traffic is easiest to generate (NIC drivers work that way)
CBR is hardest to generate (multi-core scaling is challenging without hardware support)
Poisson is easy to scale (adding Poisson distributions yields a new poisson distribution)

Poisson is arguably most realistic, CBR least realistic

CBR can lead to weird effects

9

• Forwarding latency of Open vSwitch (kernel), increasing load
• Dynamic interrupt throttling (ixgbe driver) and poll-mode (NAPI) 

don’t play well with CBR traffic

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

O↵ered Load [Mpps]

L
a
te
n
cy

[µ
s]

CBR (median)

CBR (25th/75th percentile)

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

O↵ered Load [Mpps]

L
a
te
n
cy

[µ
s]

CBR (median)

CBR (25th/75th percentile)

Poisson (median)

Poisson (25th/75th percentile)

Real-world traffic isn’t CBR

10

• Only change: time between packets
• Completely different response from the device under test

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Summary: what to measure and how to benchmark?

11

Latency measurements (ideas)
Measure the latency of cables of different length
Report the minimum, maximum and average reported latency
Repeat measurements with varying packet rates: does it get worse at high
rates?

Queues filling up?
What is the ground truth for the latency of a cable?

Traffic pattern measurements
Measure packet arrival at device under test with high-precision timestamping
Hard to measure with commodity hardware
We have done some measurements using a NetFPGA

Require Poisson traffic? Or is bursty traffic close enough?
CBR is not realistic

Lots of open questions, so …

12

Discussion?

Backup: CBR/Burst Comparison

13

400
500

R
el

at
iv

e
la

te
nc

y
[%

] Burst Sizes 4 16 32 64 128

0 0.5 1 1.5 2

100

150

200

Offered load [Mpps]

• Bursts are important for performance
• Typical default burst sizes: 16 to 256
• Packet generators often fail to generate CBR reliably

• Forwarding latency of Open vSwitch (kernel), increasing load
• Baseline latency: CBR traffic, varying burst sizes

Backup: Rate Control Comparison

14

Target rate = 1 Mpps/1µs inter-arrival time

Measurements
Rate control - pure software approach

0

5

10 MSE = 57508PF_RING ZC zsend

0

5

10 MSE = 38008MoonGen (SW)

0

5

10 MSE = 36983

R
el

at
iv

e
pr

ob
ab

ili
ty

[%
]

netmap pkt-gen

0

5

10 MSE = 25937pfq-gen

0

5

10 MSE = 20370Pktgen-DPDK

Pure software approach, configured for constant bit rate 1 Mpps

Paul Emmerich — Mind the Gap - A Comparison of Software Packet Generators 7

Backup: Rate Control Comparison

15

Target rate = 4 Mpps/0.25µs inter-arrival time
Most packet generators fail to generate this when configured without bursts

Measurements
Rate control - pure software approach

0
10
20
30

MSE = 37682
PF_RING ZC zsend

0

2

4 MSE = 59838

R
el

at
iv

e
pr

ob
ab

ili
ty

[%
]

Pktgen-DPDK

0
2
4 MSE = 20599 MoonGen (SW)

Pure software approach, configured for constant bit rate 4 Mpps

• The excluded packet generators did not meet the throughput performance of 4 Mpps

Paul Emmerich — Mind the Gap - A Comparison of Software Packet Generators 8

Backup: MoonGen Rate Control

16

Measurements
Rate control - corrupted CRC approach

0

20

40 MSE = 24
MoonGen (CRC)

R
el

at
iv

e
pr

ob
ab

ili
ty

[%
]

0 250 500 750 1000 1250
0

30

60

MSE = 1225

Inter-arrival time [ns]

MoonGen (CRC)

Pure software approach, configured for constant bit rate 1 Mpps

Paul Emmerich — Mind the Gap - A Comparison of Software Packet Generators 13

1 and 4 Mpps, MoonGen SW rate control with corrupted packets filling the gaps

Backup: Latency measurements

17

RT latency distributions, QoS enabled, 8Gbit/s BG

12

1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

Latency [µs]

R
e
l
a
t
i
v
e
P
r
o
b
a
b
i
l
i
t
y
[
%
]

Figure 3. Latency distribution of 1 Gbit/s RT traffic with 8 Gbit/s BG
traffic, QoS enabled

The total forwarding latency l consists of the delay
introduced by the connection from the packet generator to
the switch lgen, the forwarding latency lswitch of the switch,
and the number of hops n:

l = 2 · lgen + n · lswitch

We measured the forwarding latency through the switch with
various loop lengths from n = 0 (sending the traffic back
directly) to n = 23. Figure 6 shows the CDFs of different
loop lengths up to n = 15 to improve the readability of
the graph as the remaining CDFs look similar. We can
calculate the following median latencies from these results:
lgen = 480ns and lswitch = 729ns. These values include
propagation delay due to varying cable lengths, we used
copper cables with various lengths between 0.5 and 3 meter.
This introduces an additional error of 12 ns (assuming a
propagation speed of 0.7c [?]) in addition to the granularity
of 12.8 ns of the packet generator [?].

Note that these results are crucial for FLOWer: The
latency of the switch is important for further tests using
the switch to amplify traffic for a separate DuT. In such
a setup, the switch is part of the measurement equipment,
and its accuracy therefore limits the total accuracy of the
experiment.

These results show that forwarding latency does not
depend on the switch ports. This indicates the high accuracy
of the packet generator and that latency is independent from
the used switch port. We did not test all combinations of
ports, one should repeat this test with the appropriate set of
ports to verify this before relying on a switch to run latency-
critical experiments. There may be differences in the latency
between ports on a switch due to the internal architecture
of the switch.

The difference between the minimum and maximum
observed forwarding latency was only 217.6 ns (cf. the
steep CDFs in Figure 6, each based on 48 000 timestamped

1 1.5 2 2.5 3 3.5

0

20

40

60

80

100

1Gbit/s BG tra�c

2Gbit/s BG tra�c

4Gbit/s BG tra�c

8Gbit/s BG tra�c

16 - 414Gbit/s BG tra�c

Latency [µs]

C
u
m
u
l
a
t
i
v
e
p
r
o
b
.
[
%
]

Figure 4. Latency distributions of 1 Gbit/s RT traffic with varying BG
traffic, QoS enabled

Switch

Moon-
Gen

Switch wiring
OpenFlow connection
Packet generator wiring

Figure 5. Loop forwarding test setup

0 2 4 6 8 10 12

0

20

40

60

80

100

n
=
0

n
=

1

n
=
2

n
=

3

n

=

4

n

=

5

n
=

6

n
=
7

n
=

8

n
=

9

n

=
1
0

n
=
1
1

n
=

1
2

n
=
1
3

n
=

1
4

n

=
1
5

Latency [µs]

C
u
m
u
l
a
t
i
v
e
p
r
o
b
.
[
%
]

Figure 6. Latency distributions traffic forwarded through the switch n times

packets over 48 seconds3). This is important when the switch
is used to amplify traffic while also measuring latency, the
inaccuracy of the switch affects the measurement. OpenFlow
switches with a far lower jitter exist [?] and can be used if
a better precision is required.

5. Amplifying Traffic

After evaluating the suitability of an OpenFlow Switch
for our testing purposes in Section 4 we apply the FLOWer

3. MoonGen cannot timestamp all packets, only random samples.

