
2017-01-09: CBOR WG
• Concise Binary Object Representation  

Maintenance and Extensions

1. Formal process: Take RFC 7049 to IETF STD level  
(October 2018 milestone)

2. Standardize CDDL as a data definition language  
(May 2018 milestone)

3. (Maybe define a few more CBOR tags, as needed.)

 1

CDDL
Henk Birkholz, Christoph Vigano, Carsten Bormann

draft-ietf-cbor-cddl

 2

Changes since IETF102
• –03:
• Editorial: clarify group entry definition, clarify

barewords, fix “inheritance” example, typos.
• Say that 1 is int (so does not match 1.0) and 1.0 is

float (so does not match 1).
• Add security considerations.
• Add straw man for control operator registry (policy

to be decided).

 3

Changes since IETF102

• –04-in-the-making:
• Define “byte”.
• Say what target types “.size” is defined for.

 4

Changes we missed

• (Jim’s review. Ouch.)
• Need to convert into issues and act upon them.

 5

Open Issues (1)

• For the freezer (CDDL 2.0):  
Co-occurrence constraints (#22).  
(Tool issue #5 waiting for cddl tool v2)

• Editorial: Be a bit more explicit about history and
contributers.

 6

Open Issues:  
Specify group matching #14

• I believe this is an editorial issue.

• Maybe include some of the clarifications and
examples from the thread at  
https://www.ietf.org/mail-archive/web/cbor/current/
msg00380.html

 7

Open Issues:
IANA registry for control operators? #17

• Recent discussion on the mailing list

• (1) Not sure we have consensus that there should
be a registry at all

• (2) What is the policy? Proposal: Specification
Required, plus guidance for Designated Expert to
actually look at the specification and apply some
quality control (hinted at by RFC 8126 but not
consistently practiced)

 8

Open Issues: Which data
model do .eq and .ne use? #18
• .lt/.ge, .gt/.le are defined for numeric types

• Not clear that there is value trying to extend
• .eq/.ne are useful in two variants:

• (1) Numeric equality (with no intent to solve “epsilon”):
• (1..5) .ne 3.0 ≡ 1 / 2 / 4 / 5
• number .eq 3 ≡ 3 / 3.0

• (2) Structural equivalence (which can be used for
non-numeric types, too); define semantics close to
“matches”/“does not match”

• .default is like .ne, but probably the structural one

 9

.ne/.eq naming?
• .ne is in use today (.eq is mostly there for symmetry)
• Often useful with non-numeric semantics (for general type

difference), and would even be useful with more than a single
value:
• label .ne “foo”

• label .ne (“foo” / “bar”)
• label .ne keyword

• any .ne bytes
• Note that we already have .and for type intersection

• (1) break those specs by defining .eq/.ne like the (numeric)
inequalities; add a structural difference/subtraction control

• (2) cater to those specs, introduce numeric variants for .ne/.eq (but
leave .lt/.ge and .gt/.le alone)

 10

Serialization variants
• Discussion of “representation variants” on mailing

list: one data item has multiple representations

• Issue comes up on two levels: information model to
data model, data model to serialization; the
discussion was really about the latter

• Maybe be more specific about the latter and talk
about serialization variants

 11

CBOR issue: Serialization variants
and Consistent Encoding

• Consistent Encoding (“c14n”) defines a preferred
serialization variant for each set of serialization
variants
• Expensive (map sorting)

• Maybe there should be a “preferred encoding” as
well (like consistent except where that would be
expensive)
• Define “expensive”, then

 12

Serialization choices
• A format specification employing CBOR may

• Disallow floating point numbers

• Disallow 64-bit floating point numbers

• Disallow 64-bit integers, string lengths, item counts, tags

• Disallow indefinite lengths

• Disallow indefinite lengths for byte/text strings

• NOT RECOMMENDED: Disallow a preferred encoding, while
selecting a non-preferred encoding

 13

Serialization choices vs.
data model level

• Disallowing serialization of floating point numbers makes
it useless to allow floating point in the data model

• Can handle disabling floating point in the data model —
just don’t use floating point!

• Choose float32 instead of float: not a serialization choice,
but a data model choice: only allow numbers that can be
represented in a binary32

• With preferred encoding, becomes a serialization
choice!

 14

Serialization variants are
invisible at CDDL level

• CDDL defines data model
• Earlier drafts hinted at potential need for selection

of representation variants
• That need did not occur at the granularity of

CDDL (or could be handled by making data
model choices)

• Today: No hints of serialization choices in CDDL;
data model only

 15

Jim’s comments

• Editorial: Jim’s 1, 2, 9; (10 covered)

• 9:  
Reluctant to change section numbers at this point

 16

Consistency-Checking a
specification (Jim #4)

• It is possible to have elements in a specification
that never match, or that take a lot of work to
always match

• This may be a specifier’s error, or it may be the
result of composition of generic components

• ➔ “dead code” should not be a hard error
• Tool quality issue: emit warnings
• (Language issue: silence warnings ➔ freezer)

 17

Items from Jim’s review, cont

• (5) unwrap grammar is indeed a bit weird,
unwrapping a map or array type yields a group,
while unwrapping a tagged type yields a type

• Proposal: s/groupname/typename/, but keep in
type2 production for the latter case:  
 
type2 = value ………  
 / "~" S typename [genericarg]

 18

Items from Jim’s review

• (6) 3.10 could indeed say generics applies to
groups as well as types

• (8) oops.  
Need to open a Precedence 8 with & and ~

 19

Points of unhappiness (1)
• The regex issue

• Solve by adding controls for additional regex
types (in freezer)

• Limited reach of cuts: works well for map keys,
does not cover { type: “foo”, … } constructs
yet

• Solve by extending cuts in the next version

 20

Points of unhappiness (2)

• Grammar is context-insensitive

• Maps are context-sensitive, overlaid over grammar

• Cuts introduce sequence dependence into map
specifications

• Well, maybe that is the special, sweet-and-salty
CDDL flavor

 21

Then Ship it!

• Publish –04 based on this and maybe some more
mailing list discussion by 2018-07-30

• Start a 2nd WGLC then to make sure no French
people can read it? (Sorry about that. You have
one day.)

• Check timing with AD.

 22

CDDL:
A peek into the freezer

• (1) making CDDL as a data description language
better within its envelope
• E.g., issues about “specifying in the

large” (naming, module systems)
• Functional support for specific application

domains (usually by adding controls)
• (2) adding functions beyond (case-insensitive)

structural interoperability

 23

CDDL:
A peek into the freezer (2)

• New functions:
• Semantic augmentation (“semantic styles”)

• Might work well with the desire for code
generation

• Going beyond context-free grammars
• Co-Occurrence constraints
• (Also: discussions at WISHI Hackathon about

predicate-based extensions to CDDL; cf.
Schematron vs. Relax-NG)

 24

CDDL: Selectors and
Semantics

• Most of the above can be done well by pairing
selectors with semantics that is applied
everywhere the selector matches

• Simplest kind of selector: CDDL rulename
• Need predicates in selectors, relative paths, …
• ➔ CBOR Path (and CBOR pointers?)

• Don’t do another XPath, though
• Semantics could be for matching or for

augmentation
 25

CBOR (RFC 7049) bis
Concise Binary Object Representation

Carsten Bormann, 2018-07-17

 26

Take CBOR to STD

• Do not: futz around
• Do:
• Document interoperability
• Make needed improvements in specification quality

• At least fix the errata :-)
• Check: Are all tags implemented interoperably?

 27

Take CBOR to STD

Process as defined by RFC 6410:

• independent interoperable implementations ✔

• no errata (oops) ✔ in draft

• no unused features [_]

• (if patented: licensing process) [N/A]

 28

Implementations

• Parsing/generating CBOR
easier than interfacing with
application

• Minimal implementation:  
822 bytes of ARM code

• Different integration models,
different languages

• > 50 implementations

 29 http://cbor.io

7049bis has been “stable”
for a while

• … while one author focused on getting up to speed again
and fixing CDDL.

• To do:

• See CBOR issues above (serialization invariants,
consistent/preferred encoding, …)

• Finish the discussion on the mailing list.

• Fix github issues

• Fix issues from IETF 101 minutes

 30

Tag for ECMAscript Regex
#23

• This is not the CDDL issue.

• Tag #35 “is for regular expressions in Perl Compatible
Regular Expressions (PCRE) / JavaScript syntax
[ECMA262]”. 

• Proposal: Add a tag specifically for ECMAscript syntax.

• Sure, could do that.

• Is this a fix or a new feature?

 31

Editorial: Make more use of
(now defined) data model

• E.g., updating PR#11 (map keys)

• (This text is currently broken, a byte string is
definitely *not* equivalent to a text string, and
neither should be int and float; tagged items
definitely differ from untagged ones)

 32

Processing behavior on
invalid input

• CBOR is careful to not require validity checks in a
decoder except in strict mode

• CBOR does not require a decoder to be able to
handle well-formed, but invalid input

• In effect, behavior with invalid input is not defined
(but not in the C language “you are allowed to
explode” kind of “undefined”)

• PR #17 proposes to define some of that behavior
• Maybe make it more explicit that it isn’t

 33

CBOR tag definitions
Carsten Bormann, 2018-07-17

 34

Batteries included
• RFC 7049 predefines 18 Tags

• Time, big numbers (bigint, float, decimal),
various converter helpers, URI, MIME message

• Easy to register your own CBOR Tags

• > 20 more tags: 6 for COSE;  
UUIDs, Sets, binary MIME, Perl support,  
language tagged string, compression

 35

Time for a “my favorite tags”
document?

• Some Tags are defined in RFCs (e.g., RFC 8152 COSE,
RFC 8392 CBOR Web Token (CWT) or in I-Ds that might
become RFCs (draft-bormann-cbor-time-tag).

• Some are just registered, with a specification somewhere

• Specifications in many places, varying forms, levels of
details, etc.

• Objective: Collect definitions of “generally useful”
registered tags in an RFC

• Great target date: 5 years of CBOR, October 2018 🤣

 36

