KANGAROOTWELVE
draft-viguier-kangarootwelve-02

Benoît Viguier¹
CFRG Meeting, July 17, 2018

¹Radboud University, Nijmegen, The Netherlands
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
- provides scalable parallelism increasing with input size
- is based on a permutation that won the open worldwide SHA-3 competition
 - reuse of code and/or hardware for FIPS 202, e.g. in ARMv8.2 instruction
 - inherently faster than FIPS 202 and SP-800-185
- is a public design and has vast amount of 3rd party cryptanalysis
 - 35 third-party cryptanalysis papers in 10 years of Keccak/SHA-3
 - more cryptanalysis than SHA-256 and/or SHA-512 (we counted about 21)
- For reduced-round Keccak, best attacks seem to stabilize to
 - 5 rounds for collision and (second) preimage attacks
 - 8 rounds for distinguishers
 - KangarooTwelve has 12 rounds.
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
- provides **scalable parallelism** increasing with input size
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
- provides **scalable parallelism** increasing with input size
- is based on a permutation that won the open worldwide SHA-3 competition
 - reuse of code and/or hardware for FIPS 202, (e.g. in ARMv8.2 instruction)
 - inherently **faster** than FIPS 202 and SP-800-185

35 third-party cryptanalysis papers in 10 years of Keccak/SHA-3 cryptanalysis (https://keccak.team/third_party.html)

More cryptanalysis than SHA-256 and/or SHA-512 (we counted about 21)

For reduced-round Keccak, best attacks seem to stabilize to
- 5 rounds for collision and (second) preimage attacks
- 8 rounds for distinguishers

KangarooTwelve has 12 rounds.
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
- provides **scalable parallelism** increasing with input size
- is based on a permutation that won the open worldwide SHA-3 competition
 - reuse of code and/or hardware for FIPS 202, (e.g. in ARMv8.2 instruction)
 - inherently **faster** than FIPS 202 and SP-800-185
- is a public design **and** has vast amount of 3rd party cryptanalysis

- 35 third-party cryptanalysis papers in 10 years of Keccak/SHA-3 cryptanalysis (https://keccak.team/third_party.html)
- more cryptanalysis than SHA-256 and/or SHA-512 (we counted about 21)
- For reduced-round Keccak, best attacks seem to stabilize to
 - 5 rounds for collision and (second) preimage attacks
 - 8 rounds for distinguishers
- KangarooTwelve has 12 rounds.
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
- provides **scalable parallelism** increasing with input size
- is based on a permutation that won the open worldwide SHA-3 competition
 - reuse of code and/or hardware for FIPS 202, (e.g. in ARMv8.2 instruction)
 - inherently **faster** than FIPS 202 and SP-800-185
- is a public design and has vast amount of 3rd party cryptanalysis
 - 35 third-party cryptanalysis papers in 10 years of KECCAK/SHA-3 cryptanalysis (https://keccak.team/third_party.html)
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
- provides **scalable parallelism** increasing with input size
- is based on a permutation that won the open worldwide SHA-3 competition
 - reuse of code and/or hardware for FIPS 202, (e.g. in ARMv8.2 instruction)
 - inherently **faster** than FIPS 202 and SP-800-185
- is a public design and has vast amount of 3rd party cryptanalysis
 - 35 third-party cryptanalysis papers in 10 years of KECCAK/SHA-3 cryptanalysis (https://keccak.team/third_party.html)
 - more cryptanalysis than SHA-256 and/or SHA-512 (we counted about 21)
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
- provides **scalable parallelism** increasing with input size
- is based on a permutation that won the open worldwide SHA-3 competition
 - reuse of code and/or hardware for FIPS 202, (e.g. in ARMv8.2 instruction)
 - inherently faster than FIPS 202 and SP-800-185
- is a public design and has vast amount of 3rd party cryptanalysis
 - 35 third-party cryptanalysis papers in 10 years of KECCAK/SHA-3 cryptanalysis (https://keccak.team/third_party.html)
 - more cryptanalysis than SHA-256 and/or SHA-512 (we counted about 21)
 - For reduced-round KECCAK, best attacks seem to stabilize to
 - 5 rounds for collision and (second) preimage attacks
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
- provides **scalable parallelism** increasing with input size
- is based on a permutation that won the open worldwide SHA-3 competition
 - reuse of code and/or hardware for FIPS 202, (e.g. in ARMv8.2 instruction)
 - inherently **faster** than FIPS 202 and SP-800-185
- is a public design and has vast amount of **3rd party cryptanalysis**
 - 35 third-party cryptanalysis papers in 10 years of **KECCAK/SHA-3 cryptanalysis** (https://keccak.team/third_party.html)
 - more cryptanalysis than SHA-256 and/or SHA-512 (we counted about 21)
 - For reduced-round KECCAK, best attacks seem to stabilize to
 - 5 rounds for collision and (second) preimage attacks
 - 8 rounds for distinguishers
Yet another hash function?

No RFC exists with a hash function that . . .

- supports arbitrary output length: XOF rather than a hash function
- provides **scalable parallelism** increasing with input size
- is based on a permutation that won the open worldwide SHA-3 competition
 - reuse of code and/or hardware for FIPS 202, (e.g. in ARMv8.2 instruction)
 - inherently **faster** than FIPS 202 and SP-800-185
- is a public design **and** has vast amount of 3\(^{rd}\) party cryptanalysis
 - 35 third-party cryptanalysis papers in 10 years of **KECCAK/SHA-3** cryptanalysis (https://keccak.team/third_party.html)
 - more cryptanalysis than SHA-256 and/or SHA-512 (we counted about 21)
 - For reduced-round **KECCAK**, best attacks seem to stabilize to
 - 5 rounds for collision and (second) preimage attacks
 - 8 rounds for distinguishers

KangaRooTwelve has 12 rounds.
Why is it interesting for the IETF?

► **Keccak/KangarooTwelve** is an open design
 - Public design rationale
 - Result of an open international competition
 - Long-standing active scrutiny from the crypto community

► Best security/speed trade-off
 - Speed-up w/o wasting cryptanalysis resources
 - Proven generic security (sponges, tree)

► Scalable parallelism
 - As much parallelism as the implementation can exploit
 - Without additional parameter