
OPAQUE:

OPRF-based asymmetric* PAKE

[S. Jarecki, H. Krawczyk, J. Xu, Eurocrypt 2018]

[draft-krawczyk-cfrg-opaque-00]

1

* a.k.a. augmented

aPAKE: ‘a’ for asymmetric/augmented

 Password-Authenticated Key Exchange in the client-server setting

 aPAKE requirements: PKI free and security against server compromise

(forces offline dict attack)  prevent pre-computation attacks

 In other words, best possible security, only unavoidable attacks allowed:

online guesses + offline upon server compromise

 Compare password-over-TLS:

 Prevents pre-computation (via salted hashes) but fully dependent on PKI +

server sees passwd (and so do middle boxes, termination points, MitM, etc.)

 Clearly, aPAKE is better (no PKI dependence, server does not see pwd)

… but is it, really?

2

 All knonwn aPAKE protocols are
vulnerable to pre-computation attacks!

 Why? They do not accommodate secret salt

 Either they do not use salt at all or send it in the clear from server to user

 Wait, but there are aPAKE that are proven secure…

 … Yes, but the standard aPAKE definitions do not exclude pre-

computation attacks (this includes BMP’00 and GMR’06)

 Worse than password-over-TLS in this fundamental aPAKE aspect

 This includes SRP, SPAKE2+, AugPAKE, VTBPEKE, etc.

3

Nope…

4

Is this essential (proven impossibility)?

OPAQUE: First aPAKE secure against pre-

computation (and with proof)

5

Oblivious PRF (OPRF)

6

Pseudo-Random Function
(PRF) Fk(x)

x

Fk(x)or $Fk or $ Adv

?
S(k) C(x)

Fk(x)Nothing

 OPRF protocol

FK

 OPRF: An interactive PRF “service” that returns PRF results

 without the server learning the input or output of

the function

Indistinguishable from random
function (w/o secret key)

OPAQUE: Basic idea

 Assume KE protocol w/ private-public keys privU, pubU, privS, pubS

 Define rwd = OPRFK(pwd) ; U has pwd, S has K, only U learns rwd

 Server stores C = AuthEncrwd(privU, pubS), privS and OPRF key K

 For login:

 U and S run OPRF protocol, so U obtains rwd

 S sends C to U, so U obtains privU, pubS

 U and S run KE with keys (privU, pubU, privS, pubS)

 A “compiler” from any KE to an aPAKE (with any OPRF) .

 -modular and flexible
7

Follows FK’00,
Boyen’09, JKKX17

DH-OPRF

 PRF: over group with generator is a key, hashes x into a

random element in .

 Oblivious computation via Blind DH Computation (C has x, S has k)

 C, on input x, chooses random sends to S

 S replies with and

 C sets and

 Note that

 The blinding factor works as a one-time encryption key, hence it

hides and perfectly (from S).



8

Server: 1 var-base exponent’n
Client: 1 var-base, 1 fixd-base
Single round

OPAQUE with DH-OPRF

9

server
stores

U, a = H’(pwd) gr, gx

CU, vU, b = aKu, gy
pwd

CU = AuthEncrwd(privU, pubS), privS, KU, vU=gKu

rwd = H(pwd, vU, b v∙ v U
-r)SK = KE(privS, y, pubU, gx)

• E.g., KE=HMQV. total # expon’s (fixed base/ variable base):

 Client 2 fixed base, 2.17 var base, Server 1 fixed base, 2.17 var base

r
(onetime)

privU, pubS  Decrwd(CU)

SK = KE(privU, x, pubS, gy)

OPAQUE Performance

 Single round w/ implicit authentication + 1 msg for explicit auth’n

 Cost: KE + 1 server exponentiation, 2 client exponentiations*

* One or two fixed-base exponentiations (gr, v-r) for user

 OPAQUE with HMQV (# exp’s): Client 2 fixed base, 2.17 var base,

Server 1 fixed base, 2.17 var base (about 2.5 exp each)

 Similar to SPAKE2+ in performance

 but with security against pre-computation and with a proof

 and flexibility for choice of KE (e.g HMQV*, SIGMA, TLS, etc.)

* HMQV patent: may be solvable if real interest in standardizing

10

OPAQUE with TLS 1.3

 Reuse DH exchange of TLS DH exchange, use privU as signature key

for client authentication (perfect fit with 3-flight handshake)

 User account privacy: use resumption key if available

Or: Add extra round trip (between TLS 2nd and 3rd flight)

 post-handshake client auth’n and exported authenticators may help

11

OPAQUE Security

 Secure against pre-computation attacks (secret salt)!!

 Proof

 Strong aPAKE model (PKI-free and disallows pre-computation attacks)

 Proof of OPAQUE is generic: OPRF + KE (with KCI)

 With DH-OPRF: In ROM under Gap-OMDH

 Forward security

 User-side hash iterations

 increased security against offline attacks upon server compromise
12

OPAQUE Features
 Efficient, provably secure and …

 No reliance on PKI

 Server never sees password, not even at init (good against pwd reuse)

 Private salt: Attacker cannot pre-compute dictionary

 Hash iterations can be offloaded to user

 TLS integration (hedged PKI: PAKE-protected TLS)

 Storing other user secrets

 User-transparent server-side threshold implementation

13

Final Remarks

 IF we are looking for a strong aPAKE to standardize (are we?)

OPAQUE seems to fit perfectly

 In particular, a good fit for TLS 1.3

 Passwords are not going away, so let’s improve their use

 Additional new tools help too: Sphinx password manager, TOPPSS password

protected secret sharing, …

14

	Slide 1
	aPAKE: ‘a’ for asymmetric/augmented
	Slide 3
	Nope…
	Slide 5
	Oblivious PRF (OPRF)
	OPAQUE: Basic idea
	DH-OPRF
	OPAQUE with DH-OPRF
	OPAQUE Performance
	OPAQUE with TLS 1.3
	OPAQUE Security
	OPAQUE Features
	Final Remarks

