
OPAQUE:

OPRF-based asymmetric* PAKE

[S. Jarecki, H. Krawczyk, J. Xu, Eurocrypt 2018]

[draft-krawczyk-cfrg-opaque-00]

1

* a.k.a. augmented

aPAKE: ‘a’ for asymmetric/augmented

 Password-Authenticated Key Exchange in the client-server setting

 aPAKE requirements: PKI free and security against server compromise

(forces offline dict attack) prevent pre-computation attacks

 In other words, best possible security, only unavoidable attacks allowed:

online guesses + offline upon server compromise

 Compare password-over-TLS:

 Prevents pre-computation (via salted hashes) but fully dependent on PKI +

server sees passwd (and so do middle boxes, termination points, MitM, etc.)

 Clearly, aPAKE is better (no PKI dependence, server does not see pwd)

… but is it, really?

2

 All knonwn aPAKE protocols are
vulnerable to pre-computation attacks!

 Why? They do not accommodate secret salt

 Either they do not use salt at all or send it in the clear from server to user

 Wait, but there are aPAKE that are proven secure…

 … Yes, but the standard aPAKE definitions do not exclude pre-

computation attacks (this includes BMP’00 and GMR’06)

 Worse than password-over-TLS in this fundamental aPAKE aspect

 This includes SRP, SPAKE2+, AugPAKE, VTBPEKE, etc.

3

Nope…

4

Is this essential (proven impossibility)?

OPAQUE: First aPAKE secure against pre-

computation (and with proof)

5

Oblivious PRF (OPRF)

6

Pseudo-Random Function
(PRF) Fk(x)

x

Fk(x)or $Fk or $ Adv

?
S(k) C(x)

Fk(x)Nothing

 OPRF protocol

FK

 OPRF: An interactive PRF “service” that returns PRF results

 without the server learning the input or output of

the function

Indistinguishable from random
function (w/o secret key)

OPAQUE: Basic idea

 Assume KE protocol w/ private-public keys privU, pubU, privS, pubS

 Define rwd = OPRFK(pwd) ; U has pwd, S has K, only U learns rwd

 Server stores C = AuthEncrwd(privU, pubS), privS and OPRF key K

 For login:

 U and S run OPRF protocol, so U obtains rwd

 S sends C to U, so U obtains privU, pubS

 U and S run KE with keys (privU, pubU, privS, pubS)

 A “compiler” from any KE to an aPAKE (with any OPRF) .

 -modular and flexible
7

Follows FK’00,
Boyen’09, JKKX17

DH-OPRF

 PRF: over group with generator is a key, hashes x into a

random element in .

 Oblivious computation via Blind DH Computation (C has x, S has k)

 C, on input x, chooses random sends to S

 S replies with and

 C sets and

 Note that

 The blinding factor works as a one-time encryption key, hence it

hides and perfectly (from S).

8

Server: 1 var-base exponent’n
Client: 1 var-base, 1 fixd-base
Single round

OPAQUE with DH-OPRF

9

server
stores

U, a = H’(pwd) gr, gx

CU, vU, b = aKu, gy
pwd

CU = AuthEncrwd(privU, pubS), privS, KU, vU=gKu

rwd = H(pwd, vU, b v∙ v U
-r)SK = KE(privS, y, pubU, gx)

• E.g., KE=HMQV. total # expon’s (fixed base/ variable base):

 Client 2 fixed base, 2.17 var base, Server 1 fixed base, 2.17 var base

r
(onetime)

privU, pubS Decrwd(CU)

SK = KE(privU, x, pubS, gy)

OPAQUE Performance

 Single round w/ implicit authentication + 1 msg for explicit auth’n

 Cost: KE + 1 server exponentiation, 2 client exponentiations*

* One or two fixed-base exponentiations (gr, v-r) for user

 OPAQUE with HMQV (# exp’s): Client 2 fixed base, 2.17 var base,

Server 1 fixed base, 2.17 var base (about 2.5 exp each)

 Similar to SPAKE2+ in performance

 but with security against pre-computation and with a proof

 and flexibility for choice of KE (e.g HMQV*, SIGMA, TLS, etc.)

* HMQV patent: may be solvable if real interest in standardizing

10

OPAQUE with TLS 1.3

 Reuse DH exchange of TLS DH exchange, use privU as signature key

for client authentication (perfect fit with 3-flight handshake)

 User account privacy: use resumption key if available

Or: Add extra round trip (between TLS 2nd and 3rd flight)

 post-handshake client auth’n and exported authenticators may help

11

OPAQUE Security

 Secure against pre-computation attacks (secret salt)!!

 Proof

 Strong aPAKE model (PKI-free and disallows pre-computation attacks)

 Proof of OPAQUE is generic: OPRF + KE (with KCI)

 With DH-OPRF: In ROM under Gap-OMDH

 Forward security

 User-side hash iterations

 increased security against offline attacks upon server compromise
12

OPAQUE Features
 Efficient, provably secure and …

 No reliance on PKI

 Server never sees password, not even at init (good against pwd reuse)

 Private salt: Attacker cannot pre-compute dictionary

 Hash iterations can be offloaded to user

 TLS integration (hedged PKI: PAKE-protected TLS)

 Storing other user secrets

 User-transparent server-side threshold implementation

13

Final Remarks

 IF we are looking for a strong aPAKE to standardize (are we?)

OPAQUE seems to fit perfectly

 In particular, a good fit for TLS 1.3

 Passwords are not going away, so let’s improve their use

 Additional new tools help too: Sphinx password manager, TOPPSS password

protected secret sharing, …

14

	Slide 1
	aPAKE: ‘a’ for asymmetric/augmented
	Slide 3
	Nope…
	Slide 5
	Oblivious PRF (OPRF)
	OPAQUE: Basic idea
	DH-OPRF
	OPAQUE with DH-OPRF
	OPAQUE Performance
	OPAQUE with TLS 1.3
	OPAQUE Security
	OPAQUE Features
	Final Remarks

