DINRG & ANIMA
IETF102

T. Eckert, Huawei (tte@cs.fau.de)
v1.5
Summary

• Existing ANIMA work can serve as infra/dev platform for DINRG work
 • If DINRG solutions can leverage what ANIMA offers
 • And does not want/need to reinvent/improve it

• DINRG could help define guidelines or work for ANIMA
 • Like NMRG did for first charter round of ANIMA
 • ANIMA continues to look for definitions from NMRG,
 but DINRG likely a better source for multiple unresolved ANIMA items
Overview: From NMRG to ANIMA

- **NMRG** defined RFC7575/RFC7576 for **Autonomic Networks**:
 - **Goal**: evolve networks to be built with self-X (configuring, healing, managing, optimizing, protecting)
 - **Key building block**: **ASA** – Autonomic Service Agents. Distributed software modules embodying a distributed function/service on a node.
 - Managed by Intent (Q: what is Intent ?)
 - Leveraging a shared Autonomic Network Infra
 - This was the seed to charter ANIMA
 - Bottoms up, starting with ANI

Figure 1: Reference Model for an Autonomic Node

from RFC7575 slightly enhanced
Overview: ANIMA now

- Charter of ANIMA until now:
- **Build ANI**
 - Details next slide
- **Define two example validation documents**

 To show applicability of ANI

 RFC8368 - use/benefits of ANI for classical centralized network management (“stable connectivity)

 draft-ietf-anima-prefix-management – automated prefix assignment for access interface via ANI (ACP/GRASP). First simple ASA. Prototype code:

 - documented at

Figure 1: Reference Model for an Autonomic Node from RFC7575 slightly enhanced
Autonomic Network according to ANIMA

Autonomic Network (AN)

Intent and Reporting
Network wide, abstract management

Autonomic Function N

ASA N

Autonomic Function 1

ASA 1
Autonomic Service Agent

Secure GRASP messages

GRASP
Generic Signaling

ACP - Autonomic Control Plane

BRSKI – Secure Bootstrap

ANI: Secure, reliable and automatic IPv6 NOC connectivity, Secure bootstrap, Zero touch service auto configuration

Domain wide (NOC and infrastructure) zero-touch certificates

Autonomic Network (AN):
Intent based network management

Controller

EMS

Domain Certificates

Reporting/Telemetry/Analytics

MSO OSS

Simple, legacy Management Tools

NOCS – Network Operations Center
OAM – Operation, Administration, Maintenance
ANIMA vs DINRG

• ANI should be a great tool for DINRG work
 • Eliminates the need to re-implement most fundamental common requirements for distributed software (e.g.: DINRG software / “ASA”)
 • **BRSKI: Bootstrap / Certificates**: Zero-touch bring-up of network (BRSKI)
 • Each node gets a certificate/trust anchor usable for any mutual authentication
 • **ACP: Addressing/secure-connectivity**: An IPv6 only management “VRF” with a lightweight routing protocol (RPL) is automatically build, and hop hop-by-hop encrypted and a simple (ACP).
 • Distributed software can securely and reliably talk to each other without requiring any SDN backend – BRSKI/ACP automate everything
 • **GRASP: discovery/protocol-session-layer-framework**: and A lightweight JSON/CBOR encoding protocol allows to easier design new protocol between distributed software components. Eliminates need for custom TLV protocols.
 • GRASP also provides automatic service discovery for distributed software components
Some ANIMA ideas/draft for simple network-wide configuration distribution, no model, languages, ...

NMRG to the rescue ??! Wants to define Intent better

What distributed services ?
Many idea draft for distributed services, one RFC in editor queue (distributed address management)

DINRG to the rescue ??! What distributed services are important to DINRG. Could they use ANIMA framework ?

How to build distributed services
APIs, design guidelines, .. Ides in ANIMA. Candidate next charter round work for ANIMA. **DINRG collab welcome**

ANI: Result of ANIMA charter01
provides a range of important functions
Improvements welcome
Decentralized alternative discussions ???
ANI does not manage user control/data!

• ANI is ONLY management plane!
 • Any DINRG work that is meant to manage/control/monitor the network
 • Is not in conflict with ANI
 • But can leverage ANI to make it easier to self-orchestrate

• Life without ANI:
 • See picture
 • Difficult to get from “unconfigured boxes” to “network where distributed software can run” – and depend on yourself to pull out of the mud.

• Example: distributed agents autoconfiguring addressing, IGP/iBGP.
 • Q: How do you ensure your distributed autoconfiguration agents can still talk to each other when their addresses or routes are not correctly autoconfigured?
 • Not only a day-0, but ongoing issue when there is ongoing autoconfiguration.
 • A: Agents can use ANI to talk to each other
 • its like a separate Mgmt network
ACP domains

- Distributed!
 - ACP Domains (e.g. @lake) consists of members that trust each other because of their certificates
 - ACP: Fully distributed autonomic building of secure IPv6 connectivity between members using these certificates between all members
 - GRASP: Fully distributed autonomic messaging including service-discovery

- How do pledges become a member?
 - Get a certificate, somehow

- And how do I do this...?
 - Next slide
Domain membership management

- Registrar
 - Drives/coordinates process
- Manufacturer (MASA) -> Voucher
 - Let Pled know Registrar may control it
- Admission Control
- Address allocation
 - Simple sequential allocation enough, but want to maintain database
- Certificate (signing)
 - Rely on certificate authority (CA)
 - Potentially a hierarchy.

- ACP/GRASP + BRSKI/EST = ANI
 - BRSKI/EST: Automated, secure instance of this:
 - Protocols/State-machineries
 - Pledge, Registrar CA, MASA

Many non-decentralized components in this!!!
Decentralized == “Federated”? vision

Federated Ownership System
- Transactions
 - Owner buys node from manufacturer
 - Owner resells node ...
- (Anonymous/public) Ownership-(claim) Ledger (pledge/owner)
- Federated across multiple manufacturers/resellers
- Reduce work for Mfgs
- Reduces need for owners to trust Mfgs
- Eases reselling
- ...

Federated Domain member Ops
- Transactions:
 - Owner pledges node to domain
 - Domain enrolls pledge including address ?!
 - Domain kicks member
- Ownership Ledger
- (Anonymous/public) Pledge/member Ledger (include address/…)
- One instance per domain ?
- Runs on Domain member nodes
- Domain Mgmt members may also be domain members

Federated Domain Mgmt / Policy Ops
- Transactions:
 - Propose Domain policies (change)
 - Consensus voting on policies ...
- Domain rules/policies
 - Member / Management: admit/eject
 - Member address allocation
 - Mgmt member policies ...
- One instance per domain ?
- Run on Domain management team nodes

- Technically interesting for ANIMA
 - But unclear about short term business acceptance (especially replacing sales receipts, CA)
Thank You
Some more technical details

• ANI uses RPL routing protocol because we did not want to invent a complex large-scale network self-configuration mechanism for addresses that can be aggregated (can DINRG do that please?).
 • RPL uses host-routes for network nodes, can scale to networks with >> 20,000 small-scale IoT nodes. Trick: Spanning tree routes (no shortest path), only routes away from root are remembered. Could support 100,000++ non-constrained (rfc7228) network nodes.

• GRASP not a complete protocol but a “common message encoding/exchange scheme”
 • For new protocols between distributed components
 • How would we have done encoding for IETF TLV protocols if we had today’s tools? (RIP, ISIS, OSPF, BABEL, NTP, DNS, PIM, IGMP, DHCP, ….
 100th more):
 • GRASP message structure uses JSON like encoding: CBOR is ~ binary JSON
 • Software sending/receiving GRASP packets therefor as easy to code as JSON app software (common in web apps)
 • Schema definition language for CBOR used to define new GRASP protocols messages: CDDL
 • GRASP itself defines few common headers – and discovery.

• GRASP not tied to ANI. Just use it for any new protocol you want to build.
 • You choose whether to run over TCP or TLS or UDP (or any other underlying transport)
Administrative thoughts (may be boring, WG-chair territory)

• When and what work to do in ANIMA
 • ANIMA is IETF-WG:
 • Focus on interop standardization. Work/specs must be precise enough to allow for interoperable implementations.
 • ANIMA is OPS-Area WG
 • Architectures, Frameworks, Use-cases less welcome than Specs and Yang models
 • IETF/OPS/AD area choice, not necessarily ANIMA WG-chair/participant preference
 • Goal is on enhancing operations.
 • Wide scope, but NOT reinventing wheels that exist.
 • ANI is defined through integration of existing technology components, incremental improvements of existing technologies, inventing only new when nothing existed (e.g.: GRASP protocol).
 • Standardization of mayor new complex or contentious items resulting from DINRG might potentially go to a different WG