
Formal Verification of the 
Stellar Consensus Protocol

Giuliano Losa

UCLA

giuliano@cs.ucla.edu

www.losa.fr

mailto:giuliano@cs.ucla.edu


Goals

• Formal specification of SCP
• A formal version of the Internet Draft



Goals

• Formal specification of SCP
• A formal version of the Internet Draft

• Formal proofs that the SCP specification satisfies its intended 
properties



Goals

• Formal specification of SCP
• A formal version of the Internet Draft

• Formal proofs that the SCP specification satisfies its intended 
properties

• Formally verified implementation



What is a formal specification?

• An abstract machine with states and transitions 
that specifies allowed behaviors



What is a formal specification?

• An abstract machine with states and transitions 
that specifies allowed behaviors

• A specification looks like a program, but
• Has precise meaning

• Is written for clarity

• Specifies an envelope of allowed behaviors,
leaving room for implementation choices



Why specify formally?

• Unambiguous protocol description
• Given an API call trace, it is clear whether it satisfies the spec or not

• Advantages:
• Communication between protocol designer and implementer: 

avoids interpretation errors

• Can be used as test oracle

• Intended properties of the specification can be formally verified

• Can be used to formally verify implementations



type statement = {commit, abort}

relation vote(V:node, B:ballot, S:statement)

relation accept(V:node, B:ballot, S:statement)

relation confirm(V:node, B:ballot, S:statement)

Excerpts from the SCP specification in IVy



type statement = {commit, abort}

relation vote(V:node, B:ballot, S:statement)

relation accept(V:node, B:ballot, S:statement)

relation confirm(V:node, B:ballot, S:statement)

action vote_commit(v:node, b:ballot) = {

require b.n > 0;

require forall C . C < b & C.x ≠ b.x -> confirm(v, C, abort);

vote(v, b, commit) := true;

}

Excerpts from the SCP specification in IVy



type statement = {commit, abort}

relation vote(V:node, B:ballot, S:statement)

relation accept(V:node, B:ballot, S:statement)

relation confirm(V:node, B:ballot, S:statement)

action vote_commit(v:node, b:ballot) = {

require b.n > 0;

require forall C . C < b & C.x ≠ b.x -> confirm(v, C, abort);

vote(v, b, commit) := true;

}

action confirm(v:node, b:ballot, s:statement, q:nodeset) = {

require is_quorum(q);

require forall V . member(V,q) -> accept(V, b, s);

confirm(v, b, s) := true;

}

Excerpts from the SCP specification in IVy



But, is the specification correct?



But, is the specification correct?

A formal proof would ensure that all possible executions of the 
specification satisfy its intended properties



But, is the specification correct?

A formal proof would ensure that all possible executions of the 
specification satisfy its intended properties

For SCP:



But, is the specification correct?

A formal proof would ensure that all possible executions of the 
specification satisfy its intended properties

For SCP:

• Definitions: the quorums of intertwined nodes intersect at well-
behaved nodes; intact nodes are intertwined nodes that are part of a 
quorum consisting only of intact nodes.



But, is the specification correct?

A formal proof would ensure that all possible executions of the 
specification satisfy its intended properties

For SCP:

• Definitions: the quorums of intertwined nodes intersect at well-
behaved nodes; intact nodes are intertwined nodes that are part of a 
quorum consisting only of intact nodes.

• SCP is Safe: no two intertwined nodes externalize different values 
for the same slot



But, is the specification correct?

A formal proof would ensure that all possible executions of the 
specification satisfy its intended properties

For SCP:

• Definitions: the quorums of intertwined nodes intersect at well-
behaved nodes; intact nodes are intertwined nodes that are part of a 
quorum consisting only of intact nodes.

• SCP is Safe: no two intertwined nodes externalize different values 
for the same slot

• SCP is non-blocking: intact nodes always remain able to externalize a 
value



Why prove formally?



Why prove formally?

Distributed protocol are notoriously hard to get right

Informal prose arguments do not suffice







Are formal proofs a realistic goal?

Yes; complex systems (even implementations) have been formally 
proved correct:

• CompCert: C compiler

• seL4: Hypervisor

• Project Everest: cryptography in Firefox

• GRAT toolchain: SAT solver

• FSCQ: journaling file system

• and many other examples…



What is a formal proof?

• Like a mathematician’s proof, but much more detailed

• Machine-checked



What is a formal proof?

• Like a mathematician’s proof, but much more detailed

• Machine-checked

Proof of:



What is a formal proof?

• Like a mathematician’s proof, but much more detailed

• Machine-checked

Proof of:



What is a formal proof?

• Like a mathematician’s proof, but much more detailed

• Machine-checked

Proof of:

𝑃; 𝑃 → 𝑄

𝑄
Modus Ponens: Assumption 

Elimination



Proving from first principles is hard

Example: safety proof of Raft implementation with Verdi: 
50 000 lines of proof for 500 lines of code

Woos, Doug, et al. "Planning for change in a formal verification of the Raft consensus protocol." 
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs. ACM, 2016.



Proving from first principles is hard

Example: safety proof of Raft implementation with Verdi: 
50 000 lines of proof for 500 lines of code

Woos, Doug, et al. "Planning for change in a formal verification of the Raft consensus protocol." 
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs. ACM, 2016.



Proving from first principles is hard

Example: safety proof of Raft implementation with Verdi: 
50 000 lines of proof for 500 lines of code

Woos, Doug, et al. "Planning for change in a formal verification of the Raft consensus protocol." 
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs. ACM, 2016.

Automated Solvers



Proving from first principles is hard

Example: safety proof of Raft implementation with Verdi: 
50 000 lines of proof for 500 lines of code

Woos, Doug, et al. "Planning for change in a formal verification of the Raft consensus protocol." 
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs. ACM, 2016.

Automated Solvers

Amazing tools, but that can still fail…



Inductive Invariants

To prove that P(s) holds for every reachable state s,
find predicate Inv(s) such that:

1. Initiation: Inv(𝑠0) holds in the initial state 𝑠0
2. Consecution: If Inv(s) holds and s → s’, then Inv(s’) holds

3. Safety: Inv(s) implies P(s)



Inductive Invariants

To prove that P(s) holds for every reachable state s,
find predicate Inv(s) such that:

1. Initiation: Inv(𝑠0) holds in the initial state 𝑠0
2. Consecution: If Inv(s) holds and s → s’, then Inv(s’) holds

3. Safety: Inv(s) implies P(s)

This is just proof by induction!



Deductive Verification

• The human provides insight in the form of an inductive 
invariant

• The automated prover “crunches the numbers” and 
automatically checks initiation, consecution, and safety



Safety Property P

Counterexample to Induction 
(CTI)

Proof 

Protocol specification 
in IVy: 𝐼𝑛𝑖𝑡, →

Yes No

Deductive verification in First-Order Logic

Front-End

1) Init(S) Inv(S)?
2) Inv(S) S->S’  Inv(S’)?

3) Inv(S) P(S)?

First Order SAT 
Solver

Invariant Inv

?

First-Order Logic Formulas



Safety Property P

Counterexample to Induction 
(CTI)

Proof 

Protocol specification 
in IVy: 𝐼𝑛𝑖𝑡, →

Yes No

Deductive verification in First-Order Logic

Front-End

1) Init(S) Inv(S)?
2) Inv(S) S->S’  Inv(S’)?

3) Inv(S) P(S)?

First Order SAT 
Solver

Invariant Inv

?

First-Order Logic Formulas



Safety Property P

Counterexample to Induction 
(CTI)

Proof 

Protocol specification 
in IVy: 𝐼𝑛𝑖𝑡, →

Yes No

Deductive verification in First-Order Logic

Front-End

1) Init(S) Inv(S)?
2) Inv(S) S->S’  Inv(S’)?

3) Inv(S) P(S)?

First Order SAT 
Solver

Invariant Inv

?

First-Order Logic Formulas



Safety Property P

Counterexample to Induction 
(CTI)

Proof 

Protocol specification 
in IVy: 𝐼𝑛𝑖𝑡, →

Yes No

Deductive verification in First-Order Logic

Front-End

1) Init(S) Inv(S)?
2) Inv(S) S->S’  Inv(S’)?

3) Inv(S) P(S)?

First Order SAT 
Solver

Invariant Inv

?

First-Order Logic Formulas



Safety Property P

Counterexample to Induction 
(CTI)

Proof 

Protocol specification 
in IVy: 𝐼𝑛𝑖𝑡, →

Yes No

Deductive verification in First-Order Logic

Front-End

1) Init(S) Inv(S)?
2) Inv(S) S->S’  Inv(S’)?

3) Inv(S) P(S)?

First Order SAT 
Solver

Invariant Inv

?

First-Order Logic Formulas



Safety Property P

Counterexample to Induction 
(CTI)

Proof 

Protocol specification 
in IVy: 𝐼𝑛𝑖𝑡, →

Yes No

Deductive verification in First-Order Logic

Front-End

1) Init(S) Inv(S)?
2) Inv(S) S->S’  Inv(S’)?

3) Inv(S) P(S)?

First Order SAT 
Solver

Invariant Inv

?

Use Decidable 
fragments of 

First-Order Logic

First-Order Logic Formulas



invariant forall V1,V2,B1,B2 . 

confirm(V1,B1,commit) & confirm(V2,B2,commit) -> B1.x = B2.x

Example: SCP’s inductive invariant



invariant forall V1,V2,B1,B2 . 

confirm(V1,B1,commit) & confirm(V2,B2,commit) -> B1.x = B2.x

invariant forall V,B . ~ accept(V,B,commit) & accept(V,B,abort)

Example: SCP’s inductive invariant



invariant forall V1,V2,B1,B2 . 

confirm(V1,B1,commit) & confirm(V2,B2,commit) -> B1.x = B2.x

invariant forall V,B . ~ accept(V,B,commit) & accept(V,B,abort)

invariant forall V,B,S . confirm(V,B,S) -> (exists Q . is_quorum(Q) & 

forall V2 . member(V2,Q) -> accept(V2,B,S))

Example: SCP’s inductive invariant



invariant forall V1,V2,B1,B2 . 

confirm(V1,B1,commit) & confirm(V2,B2,commit) -> B1.x = B2.x

invariant forall V,B . ~ accept(V,B,commit) & accept(V,B,abort)

invariant forall V,B,S . confirm(V,B,S) -> (exists Q . is_quorum(Q) & 

forall V2 . member(V2,Q) -> accept(V2,B,S))

invariant forall V, B2 . accept(V,B2,commit) -> (

(forall B1 . B1 < B2 & B1.x ≠ B2.x -> 

exists Q . is_quorum(Q) & (forall V . member(V,Q) -> accept(N,B1,abort))

|

(exists B1 . B1 < B2 & B1.x = B2.x & accept(V,B1,commit)) )

Example: SCP’s inductive invariant



Current Status

• High-level specification of the ballot protocol has been proved safe
https://github.com/nano-o/SCP-Verification

• Next
• Produce a formal document that is readable along with the Internet Draft

• Proof of non-blocking property

• Verified (reference) implementation

https://github.com/nano-o/SCP-Verification


More information on IVy and its verification 
techniques
• https://microsoft.github.io/ivy/

• Padon, Oded, et al. "Paxos made EPR: decidable reasoning about 
distributed protocols.“ OOPSLA 2017

• Padon, Oded, et al. "Reducing liveness to safety in first-order logic.“ 
POPL 2018

• Taube, Marcelo, et al. "Modularity for decidability of deductive 
verification with applications to distributed systems.“ PLDI 2018

https://microsoft.github.io/ivy/

	Formal Verification of the Stellar Consensus Protocol
	Goals
	Goals
	Goals
	What is a formal specification?
	What is a formal specification?
	Why specify formally?
	Excerpts from the SCP specification in IVy
	Excerpts from the SCP specification in IVy
	Excerpts from the SCP specification in IVy
	But, is the specification correct?
	But, is the specification correct?
	But, is the specification correct?
	But, is the specification correct?
	But, is the specification correct?
	But, is the specification correct?
	Why prove formally?
	Why prove formally?
	Slide 19 
	Slide 20 
	Are formal proofs a realistic goal?
	What is a formal proof?
	What is a formal proof?
	What is a formal proof?
	What is a formal proof?
	Proving from first principles is hard
	Proving from first principles is hard
	Proving from first principles is hard
	Proving from first principles is hard
	Inductive Invariants
	Inductive Invariants
	Deductive Verification
	Deductive verification in First-Order Logic
	Deductive verification in First-Order Logic
	Deductive verification in First-Order Logic
	Deductive verification in First-Order Logic
	Deductive verification in First-Order Logic
	Deductive verification in First-Order Logic
	Example: SCP’s inductive invariant

