
The Stellar Consensus Protocol
(SCP)
dra�-mazieres-dinrg-scp-04

Nicolas Barry, Giuliano Losa, David Mazières, Jed McCaleb,
Stanislas Polu

IETF102

Friday, July 20, 2018



Motivation: Internet-level consensus

Atomically transact across incompatible/distrustful systems
- E.g., Transfer domain name in exchange for payment
- Can we leverage “the Internet” and its decentralized governance to
create a secure, reliable two-phase commit coordinator?

Irrevocably delegate identifiers
- E.g., certify email user public key w/o ability to equivocate
- Can “the Internet” enforce delegation rules?

Verify public disclosure & timestamp of information
- Build IoT device that only upgrades to public firmware
- Can “the Internet” maintain a so�ware transparency log?

All of these can be addressed w. public append-only log

2 / 18



What is the Internet?

We think of IANA, ICANN, recursive delegation
- But if Google, Netflix, Amazon, Comcast, etc. moved to a parallel IP
network, most people in US wouldn’t care about IANA or ICANN

- People in China care about di�erent sites—can’t even reach Google
Hypothesis: all notions of the Internet transitively converge
- Inherent Brinkmanship to network build out of pairwise peering
- But huge disincentive to leaving keeps network transitively connected

3 / 18



Consensus based on Internet hypothesis
Idea: Everyone picks a quorum slice that speaks for the Internet
- E.g., I pick Stanford, IETF
- You pick Baidu, Wechat, Alibaba
- Alibaba and Stanford both include Google in their quorum slices
- Transitively, we both depend on Google
- Want guaranteed agreement so long as Google honest
For fault tolerance, pick multiple quorum slices
- E.g., depend on 4/5 FAANG companies
- More realistically 3/4 of servers from each of 5 FAANGs
Define quorums as transitive closure of slices
- Let V be all nodes,Q(v) be all of node v’s quorum slices

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that contains at least one slice of each of
its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

4 / 18



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

5 / 18



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

5 / 18



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

5 / 18



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

5 / 18



Quorum slice representation
struct SCPSlices {
uint32 threshold; // the k in k-of-n
PublicKey validators<>;
SCPSlices1 innerSets<>;

};
struct SCPSlices1 {
uint32 threshold; // the k in k-of-n
PublicKey validators<>;
SCPSlices2 innerSets<>;

};
struct SCPSlices2 {
uint32 threshold; // the k in k-of-n
PublicKey validators<>;

};

Can’t represent arbitrary quorum slices compactly
Instead, use k-of-n configuration that can recurse twice
- E.g., allows policies like 51% of each organization for 3/4 of
organizations

6 / 18



Votemessages
struct SCPStatement {
PublicKey nodeID; // v (node signing message)
uint64 slotIndex;
Hash quorumSetHash;
union switch (SCPStatementType type) {
case SCP_ST_PREPARE:
SCPPrepare prepare;
case SCP_ST_COMMIT:
SCPCommit commit;
case SCP_ST_EXTERNALIZE:
SCPExternalize externalize;
case SCP_ST_NOMINATE:
SCPNominate nominate;

} pledges;
};
struct SCPEnvelope {
SCPStatement statement;
Signature signature;

};

Transmit quorum slices as SHA-256 hash of SCPQuorumSet
- Use side protocol to request preimage if not cached 7 / 18



Main subroutine: federated voting
vote a ∨ accept a
quorum thresh.

accept a
quorum thresh.

a is valid

accept a
blocking thresh.

uncommitted

voted a accepted a confirmed a

voted a

Nodes vote for or against a conceptual statement a
Can’t accept contradictory statements if quorum intersection
despite faulty nodes (intertwined) and in honest quorum (intact)
Can’t confirm contradictory statements if intertwined
Could get stuck in voted or accepted stage
- But if one intact node confirms statement, all will

8 / 18



Federated voting outcomes

bivalent

a-valent a agreed

a-valent

stuck

a agreed

If you can vote for or against statement a, vote may get stuck
- E.g., split vote precludes quorum (since no way to change vote)
- Or was quorum but nodes failed before everyone learned of it

If you can’t vote against a, then vote can always terminate
- As long as there’s a non-failed quorum, it can always vote for a
- Call a irrefutable if honest nodes can’t vote against it

9 / 18



Federated voting outcomes

bivalent

a-valent a agreed

a-valent

stuck

a agreed

If you can vote for or against statement a, vote may get stuck
- E.g., split vote precludes quorum (since no way to change vote)
- Or was quorum but nodes failed before everyone learned of it

If you can’t vote against a, then vote can always terminate
- As long as there’s a non-failed quorum, it can always vote for a
- Call a irrefutable if honest nodes can’t vote against it

9 / 18



SCP nominationmessage
typedef opaque Value<>;

struct SCPNominate {
Value voted<>; // vote to nominate these values
Value accepted<>; // assert that these are accepted
};

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_NOMINATE:
SCPNominate nominate;
/* ... */
};

Nodes broadcast nominated values in voted
- Initially vote values in all received votes (ignoring optimization here)
Upon accepting nomination of a, move from voted to accepted
Stop voting for new values once any is confirmed nominated
- But continue accepting and repeating votes already cast
New: stop sending SCPNominatewhen ballot confirmed prepared
- Means NOMINATION phase overlaps with PREPARE phase

10 / 18



Nomination flow

v1

NOMINATE
tx1, tx2

v2

NOMINATE
tx3

v3

NOMINATE
∅

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated

Nomination irrefutable, so will converge on set of values

Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

11 / 18

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Nomination flow

v1

NOMINATE
tx1, tx2, tx3

v2

NOMINATE
tx1, tx2, tx3

v3

NOMINATE
tx3

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated

Nomination irrefutable, so will converge on set of values

Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

11 / 18

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Nomination flow

v1

NOMINATE
tx1, tx2, tx3

v2

NOMINATE
tx1, tx2, tx3

v3

NOMINATE
tx1, tx2, tx3

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated

Nomination irrefutable, so will converge on set of values

Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

11 / 18

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Nomination flow

v1

x =
⋃
i txi

v2

x =
⋃
i txi

v3

x =
⋃
i txi

Nodes nominate values and re-nominate any nominations seen

Stop adding to votes once any value confirmed nominated

Nomination irrefutable, so will converge on set of values

Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x
- Complication: impossible to know when protocol has converged [FLP]
- c.f. asynchronous reliable broadcast

11 / 18

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


SCP ballots
struct SCPBallot {
uint32 counter; // n
Value value; // x
};

Composite nomination output must be run through balloting
- Guarantees safety even if started before nomination converges

A ballot b is a pair 〈b.counter,b.value〉where b.counter is a
candidate output value
- Ballots totally ordered with countermore significant than value
- Nodes may vote to commit or abort a ballot, not both
- If a node confirms commit b for any b, it outputs b.value

Let prepared(b) = {abort b′ | b′ < b and b′.value 6= b.value}
Invariant: cannot vote commit b unless federated voting has
confirmed every statement in prepared(b)

12 / 18



SCP preparemessage
struct SCPPrepare {
SCPBallot ballot;
SCPBallot *prepared;
SCPBallot *preparedPrime;
uint32 hCounter;
uint32 cCounter;
};

vote-or-accept prepare(ballot)
if prepared 6= NULL: accept prepare(*prepared)
if preparedPrime 6= NULL: accept prepare(*preparedPrime)
if hCounter 6= 0: confirm prepare(〈hCounter,ballot.value〉)
if cCounter 6= 0:
{vote commit(〈n,ballot.value〉) | cCounter ≤ n ≤ hCounter}

Progress to COMMIT phase upon accepting commit of any ballot
13 / 18



Setting the prepare fields

ballot.counter starts at 1, increases w. timeouts and received
messages (details in a few slides)

ballot.value b.value from highest bwith confirmed prepared(b)
(if any), otherwise composite nomination value

prepared highest b for which sender accepted prepared(b)

prepared′ highest bwith accepted prepared(b) and di�erent x
from prepared

hCounter h.counter from highest hwith confirmed prepared(h)
and b.value == h.value (new), else 0

cCounter 0 if hCounter == 0 or internal “commit ballot”
c == NULL. Else, c.counter. Note c← ballotwhen
confirmed prepared and NULLwhen accepted aborted.

14 / 18



SCP commit message

struct SCPCommit {
SCPBallot ballot;
uint32 preparedCounter;
uint32 hCounter;
uint32 cCounter;

};

{accept commit(〈n, ballot.value〉) | hCounter ≤ n ≤ cCounter}
vote-or-accept prepare(〈∞, ballot.value〉)
accept prepare(〈preparedCounter, ballot.value〉)
confirm prepare(〈hCounter, ballot.value〉)
{vote commit(〈n, ballot.value〉) | n ≥ cCounter}

15 / 18



SCP externalize message
struct SCPExternalize {
SCPBallot commit;
uint32 hCounter;

};

{accept commit(〈n, commit.value〉) | commit.counter ≤ n}
{confirm commit(〈n, commit.value〉)

| commit.counter ≤ n ≤ hCounter}
accept prepare(〈∞, commit.value〉)
confirm prepare(〈hCounter, commit.value〉)

By the time you send this, already externalized commit.value
- Means you have confirmed committed a ballot with commit.value
- Goal is definitive record to help other nodes prove value/catch up

16 / 18



Balloting flow

v1

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v2

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v3

PREPARE 〈1, x〉
COMMIT 〈1, x〉

In the common case, will prepare and commit nominated value
Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever
- Timer fires
- A blocking threshold is at a higher ballot counter
Nominationmay finish converging in background
Or if any value confirmed prepared, all nodes will eventually see
it confirmed prepared and start using that value

17 / 18



Balloting flow

v1

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v2

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v3

PREPARE 〈1, x〉
COMMIT 〈1, x〉

In the common case, will prepare and commit nominated value
Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever
- Timer fires
- A blocking threshold is at a higher ballot counter
Nominationmay finish converging in background
Or if any value confirmed prepared, all nodes will eventually see
it confirmed prepared and start using that value

17 / 18



Questions?
18 / 18


